QUESTIONS & ANSWERS FOR. ORTHOPHOTO & LiDAR AOT

Size: px
Start display at page:

Download "QUESTIONS & ANSWERS FOR. ORTHOPHOTO & LiDAR AOT"

Transcription

1 QUESTIONS & ANSWERS FOR ORTHOPHOTO & LiDAR AOT Question# 1. Section 3.2 Will the imagery be clipped to the 1000m boundary? If so, what color will be used for null valued pixels? Yes, the imagery will be clipped to the 1000 meter boundary, 500 meters on either side of the highway centerline. The value for those no data pixels outside the corridor will be 255, 255, 255. Question# 2. Section a. 2-4 control points per priority area was mentioned for a horizontal accuracy check. Will the same points be used for the vertical check? Vertical accuracy can be assessed from the main project ground control and the Quality Control ground control points that have been already set. These points can be used for horizontal and vertical assessments. b. Has the Vermont Agency of Transportation, Survey Section already completed the survey or will the QC vendor be involved in point selection? Quality Control points have already been defined and targeted in the imagery, and surveyed by the VTrans Geodetic Survey Unit. Question# 3. Section a. Will the bare earth points be tested against the v13 accuracy specifications? It is not clear the v13 accuracy specifications listed in the question. Question# 4 Section a. Given the simultaneous acquisition of imagery and LiDAR will Fugro be using the LiDAR data to rectify the imagery or producing a Digital Surface Model? The LiDAR data will be used in the creation of a terrain model to rectify the imagery. Fugro will be providing a Digital Terrain Model to VTrans, based on the processed LiDAR data acquired for this project. Question# 5. Page 2, point of the RFP states that QA/QC shall be performed on a tiled digital terrain model (DTM). Is this dataset to be provided as a RASTER model or a TIN model?

2 The Digital Terrain Model (DTM) will be provided as an ASCII file representing the XYZ values and in a format that a RASTER or GRID can be generated. Question# 6. Page 7, point of the RFP states that approximately 122 miles of highway corridor, 1000 meters wide, will be involved in this project. Without allowing for tiles partially covering areas outside these corridors, this works out to +/- 350 tiles. Allowing for partial tiles may increase that number to more than 500. a. What is the actual number of 750 X 750 m tiles? Is a grid index already defined for these? If so, please provide a copy of the index if it is available in digital form. A 750 meter X 750 meter grid has been defined for the project area. There are 652 tiles (750 meter X 750 meter grid) that intersect the 1000 meter project area swath. There are a considerable number of tiles that only a small fraction of the tile intersects the project corridors. Copies of the 750 meter X 750 meter grid Project750Grid and the corridor project area have been posted in shapefile format to the VTrans FTP site at the following directory: ftp://vtransmap.aot.state.vt.us/maps/vtrans_data_irene/orthophoto_lidar_corridorproject_qaqc/ b. Are partial tiles along the edges of the actual corridors to be processed and QA/QCd also? Yes, there will be imagery within the 1000 meter corridor of the project area and this may be split by tile boundaries. This will create many tiles that are partially covered with imagery and this data does need to be included in the QA/QC. Question# 7. Page 8, point mentions among other things that The difference between the minimum and maximum value in a RBG triplet of any nearly neutral objects within the image shall be less than 10, with a preferred value greater than 5 What is meant by a neutral object? A neutral object is a identifiable feature within the image that has uniform and consistent color, such as a section of pavement or top of a building. c. An object whose color is some shade of gray, with low or zero color saturation? The color of a neutral object does not necessarily need to be a neutral color or have low color saturation.

3 d. An object with a uniform color? Yes. e. Does VTrans have any field verified control points, or a list of known locations having known color characteristics that could be used to verify the orthophotography? Question# 8. Page 8, point states that excessive tilt in buildings and bridges shall be corrected. Does VTrans have a standard, in pixels or units of length for what constitutes allowable vs. excessive building tilt? Question# 9. Page 9, point states among other things that All fiducial mark images shall be visible, clear and sharp Typically, fudicial marks are removed from digital orthophoto mosaics. f. Does this mean that the digital orthophoto mosaic purchased by VTrans includes fiducial marks? No, fiducial marks will not be present in the digital orthophoto mosaic, but may exist in the original images acquired for this project. Fiducial marks are sensor dependent, but must be removed from the final orthophotos. g. Or does this mean that the source non-orthorectified photographs/images used to create the digital orthophoto mosiacs are also to be checked for quality? If so, specify the number of photographs/images that are to be checked. This project does not include the QA/QC of the original non-orthorectified imagery. Question# 10. Page 9, point states that metadata shall be complete and appropriately documented. Does VTrans require the use of any particular metadata standard, such as the US government s FGDC? Metadata for this project will be FGDC compliant. Question# 11. Page 8, point specifies horizontal accuracy requirements for orthophotos and states that The QC Contractor will be given a set of between two (2) and four (4) control points collected by the Vermont Agency of Transportation, Survey Section within each corridor acquisition area for use in horizontal accuracy assessments. The QC Contractor is to use these control points in the performance of an Independent Horizontal Accuracy Evaluation

4 h. Will these control points likely be visible on the imagery, either because they represent landmarks or were marked with targets on the ground prior to image acquisition? Ground control points have been targeted, represented by a white X, V or T on the ground. i. How many control points are there in total? There are 34 control points used for the rectification of the imagery and there are an additional 34 ground control points that have been reserved for QA/QC. The 68 points have been targeted and should be fully visible in the imagery. j. Does independent verification exist to validate that the quantity, density and distribution of control points are appropriate to calculate the accuracy per the ASPRS Class II horizontal RMSE standard? k. In your estimation, will there be a need to field survey additional horizontal control points? If additional horizontal control is required, this information will be provided by the VTrans Geodetic Survey Unit. Question# 12. Page 9, point specifies vertical accuracy standards for the LiDAR data. l. Are the control points mentioned in point on page 8 to be used for this purpose? The QA/QC ground control points referenced in section are specific for the horizontal accuracy assessment, but these points do have vertical data associated and can be used for assessment of the LiDAR data. m. Does independent verification exist to validate that the quantity, density and distribution of control points are appropriate to calculate accuracy per the ASPRS Class I horizontal and vertical RMSE standard? n. In your estimation, will there be a need to field survey additional horizontal and vertical control points? Additional field survey will not be needed from the vendor. Additional ground control points will be collected by the VTrans Geodetic Survey and VTrans Mapping Units and provided to the QA/QC vendor.

5 Question# 13. In sec five sections of 1000m wide highway corridors are described. In you indicate there will be 2-4 control points for each section provided to test the horizontal accuracy of the orthos and that the tested accuracy should exceed ASPRS Class II accuracies. However, a minimum of 20 points are needed to perform this test in a specific area. So if there are 20 points in the entire data set, this statistical test would be valid. But it is not possible to perform this statistical test within each section with only 2-4 points. Are there additional control points available within each section to perform valid accuracy estimations or are you assuming we will simply test the entire data set with the available points (a min. of 20 is required to perform a valid statistical test)? Additional control points will be collected and provided by the VTrans Geodetic Survey and the VTrans Mapping Units to meet the minimum required points to perform the accuracy assessment. Question# 14. In section similar accuracy tests are requested for the Lidar data. Vertical and horizontal accuracy tests need a minimum of 20 points in each area or ground classification type (bare, short grass, weeds, etc.). Will sufficient control points be available to test the Lidar horizontal and vertical accuracy as specified in ASPRS and FEMA's guidelines? Sufficient points will be provided for the core hard surface areas related to the transportation infrastructure and the adjacent areas of grass/weed cover types. Ground control points for the other main cover types will not be provided to the same level and will have a smaller representative sample of points. Question# 15. In section you ask that the LAS Bare Earth points be tested to meet or exceed the FEMA guidelines. FEMA requires bare earth DEM (min of 5m spacing) be tested using NSSDA. However, this solicitation elsewhere requires that ASPRS test procedures be followed. Can you clarify? The LiDAR will be tested to assure it meets or exceeds the ASPRS Class 1 vertical accuracy of +/ centimeter RSME at 95 confidence level, as defined in Section The horizontal accuracy of the LiDAR will meet the ASPRS Class 1 accuracy for 1:600, as defined in Section The ASPRS specifications will be used for accuracy assessment for this project. Question# 16. Further, FEMA requires a min. of 20 evenly distributed control points in each main category or ground cover classification. Will this be possible with the available ground control? If not, can you indicate which FEMA specifications should be met or exceeded? Sufficient points will be provided for the core hard surface areas related to the transportation infrastructure and the adjacent areas of grass/weed cover types. Ground control points for the other main cover types will not be provided to the same level and will have a smaller representative sample of points.

6 Question# 17. In you ask the DTM accuracy be assessed but no accuracy standard is specified. Can you clarify? The Digital Terrain Model (DTM) will be tested to assure it meets or exceeds the ASPRS Class 1 vertical accuracy of +/ centimeter RSME at 95 confidence level, similar to the LiDAR files defined in Section Question# 18. In secion 4 the solicitation says the bidder must specifically identify and itemize pricing estimates for each activity contained in the proposal and that failure to submit complete and comprehensive pricing will be a default. Yet the pricing sheet indicates you only want 3 prices for general activities and deliverables (and prices for optional items). Can you explain further what detailed activity pricing you need and how do you want that presented on the pricing form? The pricing estimates relate to the items listed in Section 4 and include the Base-1, Base- 2, and Base-3 defined in the matrix in Section 4 on Page 11 of the RFP. There are also optional service items that may be proposed by the vendor and articulated in the estimates. Question# 19. What was the monetary value of the original contract, to produce the 3 product datasets that are to be reviewed? The project cost with Fugro for the 7 corridors comprising approximately 122 miles is $351, Question# 20. How many corridor segments are there? There are 7 corridors. Question# 21. Will Vermont provide a geographic file (e.g. shapefile) of the contracted corridors area of coverage? Yes. A corridor polygon shapefile will be provided. Question# 22. What is the total length of each corridor or all corridors combined? The total length of the corridors combined is miles. A breakdown by corridor by mileage and percent of the total is below: Priority Corridor Mileage Percentage 1 VT-100 (north) from US-4 intersection in Killington to Rochester Village %

7 2 VT-100 (south) from Plymouth to US-4 intersection in West Bridgewater % 3 VT-9 Marlboro to Brattleboro % 4 VT-12A Randolph to Northfield % 5 VT-11 Andover to Chester % 6 US-4 Rutland City to Hartford % 7 VT-107 Stockbridge to Bethel % Totals % Question# 23. What is the maximum allowable sun angle in the Fugro imagery project? Sun angles greater than 30 degrees were required for imagery acquisition. Question# 24. We assume Fugro will be primarily responsible for edge-marching and color correcting the orthophotography tiles and the responsibility of the QC vendor will be to QC this work. Please confirm. Yes, Fugro will be performing the edge-matching and color correction of the orthophotography. The QC vendor will review this work based on the specifications outlined in the section 3.2 of the Scope of Work. Question# 25. In addition to the GeoTIFF tiles, will Fugro also be delivering ortho data sets merged into corridor-wide files? If so, will these be MrSID or another compressed format? No, all the imagery to be delivered will be tiled and not provided as a corridor mosaic. No imagery has been specified to be delivered by Fugro in compressed format. Question# 26. What was the bid price of Fugro s work? The project cost with Fugro for the 7 corridors comprising approximately 122 miles is $351, Question# 27. Has Fugro completed their work? Question# 28. Is Fugro classifying the point cloud points or is that the responsibility of the QC vendor?

8 Fugro will be classifying the point cloud and only QA/QC of this is necessary by the QC vendor. Question# 29. In the QC rfp the near infrared band is mentioned as an option. Should we include QC of this in the bid cost as a separate item? The near infrared (CIR) is being delivered as the 4 th band in the orthophotography. Question# 30. How many ORTHO/lidar tiles are there? There are 652 tiles (750 meter X 750 meter grid) that intersect the 1000 meter project area swath. There are a considerable number of tiles that only a small fraction of the tile intersects the project corridors. Question# 31. Do the ortho/lidar tiles use the same tiling system? Yes. Question# 32. Will the winning vendor be provided a tile grid? Yes. The 750 meter X 750 meter tile and the corridor 1000 meter project areas will be provided to the QC vendor. Question# 33. Is fieldwork expected to QC and verify the accuracy of LiDAR and/or orthophotography? Question# 34. Sec Will the control points chosen by VTrans for horizontal accuracy QC be chosen to be photo-identifable in the orthos? Will those points also have a field-measured Z- value measured by VTrans accurate to project standards? Is fieldwork expected? Field work is not expected. Question# 35. Will the QC vendor receive the draft orthos, LiDAR and DTM at the same time?

9 It is anticipated that the products will be provided at the same time on a corridor by corridor basis, although the delivery details have not been finalized with Fugro.

Alaska Department of Transportation Roads to Resources Project LiDAR & Imagery Quality Assurance Report Juneau Access South Corridor

Alaska Department of Transportation Roads to Resources Project LiDAR & Imagery Quality Assurance Report Juneau Access South Corridor Alaska Department of Transportation Roads to Resources Project LiDAR & Imagery Quality Assurance Report Juneau Access South Corridor Written by Rick Guritz Alaska Satellite Facility Nov. 24, 2015 Contents

More information

Technical Considerations and Best Practices in Imagery and LiDAR Project Procurement

Technical Considerations and Best Practices in Imagery and LiDAR Project Procurement Technical Considerations and Best Practices in Imagery and LiDAR Project Procurement Presented to the 2014 WV GIS Conference By Brad Arshat, CP, EIT Date: June 4, 2014 Project Accuracy A critical decision

More information

High resolution survey and orthophoto project of the Dosso-Gaya region in the Republic of Niger. by Tim Leary, Woolpert Inc.

High resolution survey and orthophoto project of the Dosso-Gaya region in the Republic of Niger. by Tim Leary, Woolpert Inc. High resolution survey and orthophoto project of the Dosso-Gaya region in the Republic of Niger by Tim Leary, Woolpert Inc. Geospatial Solutions Photogrammetry & Remote Sensing LiDAR Professional Surveying

More information

Reality Check: Processing LiDAR Data. A story of data, more data and some more data

Reality Check: Processing LiDAR Data. A story of data, more data and some more data Reality Check: Processing LiDAR Data A story of data, more data and some more data Red River of the North Red River of the North Red River of the North Red River of the North Introduction and Background

More information

Iowa Department of Transportation Office of Design. Photogrammetric Mapping Specifications

Iowa Department of Transportation Office of Design. Photogrammetric Mapping Specifications Iowa Department of Transportation Office of Design Photogrammetric Mapping Specifications March 2015 1 Purpose of Manual These Specifications for Photogrammetric Mapping define the standards and general

More information

Hamilton County Enhances GIS Base Mapping with 1-foot Contours

Hamilton County Enhances GIS Base Mapping with 1-foot Contours Hamilton County Enhances GIS Base Mapping with 1-foot Contours Presented by Larry Stout, Hamilton County GIS Manager Brad Fugate, Woolpert Inc. Today s Presentation Hamilton County s 2004 Base Mapping

More information

UAV Flight Operations for Mapping. Precision. Accuracy. Reliability

UAV Flight Operations for Mapping. Precision. Accuracy. Reliability UAV Flight Operations for Mapping Precision. Accuracy. Reliability Part One: Why is Mapping different? Part Two: What about accuracy and precision? Part Three: What is the Workflow? Part Four: AGENDA What

More information

PLATTE RIVER RECOVERY IMPLEMENTATION PROGRAM REQUEST FOR PROPOSALS

PLATTE RIVER RECOVERY IMPLEMENTATION PROGRAM REQUEST FOR PROPOSALS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 PLATTE RIVER RECOVERY IMPLEMENTATION PROGRAM REQUEST FOR PROPOSALS SUBJECT: 2016-2019

More information

Sandy River, OR Bathymetric Lidar Project, 2012 Delivery QC Analysis Lidar QC Report March 26 th, 2013

Sandy River, OR Bathymetric Lidar Project, 2012 Delivery QC Analysis Lidar QC Report March 26 th, 2013 O R E G O N D E P A R T M E N T O F G E O L O G Y A N D M I N E R A L I N D U S T R I E S OLC Sandy River, OR Bathymetric Lidar Project Delivery Acceptance Report. Department of Geology & Mineral Industries

More information

BLM Fire Project, 2013 QC Analysis Lidar and Orthophoto QC Report November 25th, 2013

BLM Fire Project, 2013 QC Analysis Lidar and Orthophoto QC Report November 25th, 2013 O R E G O N D E P A R T M E N T O F G E O L O G Y 1937 A N D M I N E R A L I N D U S T R I E S Department of Geology & Mineral Industries 800 NE Oregon St, Suite 965 Portland, OR 97232 BLM Fire Project,

More information

Aerial and Mobile LiDAR Data Fusion

Aerial and Mobile LiDAR Data Fusion Creating Value Delivering Solutions Aerial and Mobile LiDAR Data Fusion Dr. Srini Dharmapuri, CP, PMP What You Will Learn About LiDAR Fusion Mobile and Aerial LiDAR Technology Components & Parameters Project

More information

UAV Surveying II. Precision. Accuracy. Reliability

UAV Surveying II. Precision. Accuracy. Reliability UAV Surveying II Precision. Accuracy. Reliability Part One: Project Lifecycle Deliverables Part Two: Evaluation of UAV Data Accuracy and Examples of Error Part Three: AGENDA Review of Results Examples

More information

Orthophotography and LiDAR Terrain Data Collection Rogue River, Oregon Final Report

Orthophotography and LiDAR Terrain Data Collection Rogue River, Oregon Final Report Orthophotography and LiDAR Terrain Data Collection Rogue River, Oregon Final Report Prepared by Sky Research, Inc. 445 Dead Indian Memorial Road Ashland, OR 97520 Prepared for Rogue Valley Council of Governments

More information

Connecticut Association of Assessing Officers CT Statewide GIS Data Acquisition & Services. June 22, :00 am

Connecticut Association of Assessing Officers CT Statewide GIS Data Acquisition & Services. June 22, :00 am Connecticut Association of Assessing Officers 2016 CT Statewide GIS Data Acquisition & Services June 22, 2016 9:00 am Presented by: Shawn Benham, PMP Project Manager ---------------------------- Brad Arshat,

More information

LiDAR QA/QC - Quantitative and Qualitative Assessment report -

LiDAR QA/QC - Quantitative and Qualitative Assessment report - LiDAR QA/QC - Quantitative and Qualitative Assessment report - CT T0009_LiDAR September 14, 2007 Submitted to: Roald Haested Inc. Prepared by: Fairfax, VA EXECUTIVE SUMMARY This LiDAR project covered approximately

More information

Lidar and GIS: Applications and Examples. Dan Hedges Clayton Crawford

Lidar and GIS: Applications and Examples. Dan Hedges Clayton Crawford Lidar and GIS: Applications and Examples Dan Hedges Clayton Crawford Outline Data structures, tools, and workflows Assessing lidar point coverage and sample density Creating raster DEMs and DSMs Data area

More information

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line.

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line. Lecture 06 Raster and Vector Data Models Part (1) 1 Common Data Models Vector Raster Y Points Points ( x,y ) Line Area Line Area 2 X 1 3 Raster uses a grid cell structure Vector is more like a drawn map

More information

PROJECT REPORT. Allegany County Acquisition and Classification for FEMA Region 3 FY 12 VA LiDAR. USGS Contract: G12PD00040.

PROJECT REPORT. Allegany County Acquisition and Classification for FEMA Region 3 FY 12 VA LiDAR. USGS Contract: G12PD00040. PROJECT REPORT For the Allegany County Acquisition and Classification for FEMA Region 3 FY 12 VA LiDAR USGS Contract: G12PD00040 Prepared for: United States Geological Survey & Federal Emergency Management

More information

The Reference Library Generating Low Confidence Polygons

The Reference Library Generating Low Confidence Polygons GeoCue Support Team In the new ASPRS Positional Accuracy Standards for Digital Geospatial Data, low confidence areas within LIDAR data are defined to be where the bare earth model might not meet the overall

More information

Fusing LiDAR and Imagery: Providing Effective Solutions for Ohio s s Transportation Infrastructure

Fusing LiDAR and Imagery: Providing Effective Solutions for Ohio s s Transportation Infrastructure Fusing LiDAR and Imagery: Providing Effective Solutions for Ohio s s Transportation Infrastructure Dave Blackstone GIS Manager Ohio Department of Transportation Brian Stevens, CP Project Manager Woolpert

More information

Rogue River LIDAR Project, 2012 Delivery 1 QC Analysis LIDAR QC Report September 6 th, 2012

Rogue River LIDAR Project, 2012 Delivery 1 QC Analysis LIDAR QC Report September 6 th, 2012 O R E G O N D E P A R T M E N T O F G E O L O G Y A N D M I N E R A L I N D U S T R I E S OLC Rogue River Delivery 1 Acceptance Report. Department of Geology & Mineral Industries 800 NE Oregon St, Suite

More information

APPENDIX E2. Vernal Pool Watershed Mapping

APPENDIX E2. Vernal Pool Watershed Mapping APPENDIX E2 Vernal Pool Watershed Mapping MEMORANDUM To: U.S. Fish and Wildlife Service From: Tyler Friesen, Dudek Subject: SSHCP Vernal Pool Watershed Analysis Using LIDAR Data Date: February 6, 2014

More information

Central Coast LIDAR Project, 2011 Delivery 1 QC Analysis LIDAR QC Report February 17 th, 2012

Central Coast LIDAR Project, 2011 Delivery 1 QC Analysis LIDAR QC Report February 17 th, 2012 O R E G O N D E P A R T M E N T O F G E O L O G Y A N D M I N E R A L I N D U S T R I E S OLC Central Coast Delivery 1 Acceptance Report. Department of Geology & Mineral Industries 800 NE Oregon St, Suite

More information

Municipal Projects in Cambridge Using a LiDAR Dataset. NEURISA Day 2012 Sturbridge, MA

Municipal Projects in Cambridge Using a LiDAR Dataset. NEURISA Day 2012 Sturbridge, MA Municipal Projects in Cambridge Using a LiDAR Dataset NEURISA Day 2012 Sturbridge, MA October 15, 2012 Jeff Amero, GIS Manager, City of Cambridge Presentation Overview Background on the LiDAR dataset Solar

More information

Spatial Density Distribution

Spatial Density Distribution GeoCue Group Support Team 5/28/2015 Quality control and quality assurance checks for LIDAR data continue to evolve as the industry identifies new ways to help ensure that data collections meet desired

More information

Introduction Photogrammetry Photos light Gramma drawing Metron measure Basic Definition The art and science of obtaining reliable measurements by mean

Introduction Photogrammetry Photos light Gramma drawing Metron measure Basic Definition The art and science of obtaining reliable measurements by mean Photogrammetry Review Neil King King and Associates Testing is an art Introduction Read the question Re-Read Read The question What is being asked Answer what is being asked Be in the know Exercise the

More information

CREATING CUSTOMIZED SPATIAL MODELS WITH POINT CLOUDS USING SPATIAL MODELER OPERATORS TO PROCESS POINT CLOUDS IN IMAGINE 2014

CREATING CUSTOMIZED SPATIAL MODELS WITH POINT CLOUDS USING SPATIAL MODELER OPERATORS TO PROCESS POINT CLOUDS IN IMAGINE 2014 CREATING CUSTOMIZED SPATIAL MODELS WITH POINT CLOUDS USING SPATIAL MODELER OPERATORS TO PROCESS POINT CLOUDS IN IMAGINE 2014 White Paper December 22, 2016 Contents 1. Introduction... 3 2. ERDAS IMAGINE

More information

By Colin Childs, ESRI Education Services. Catalog

By Colin Childs, ESRI Education Services. Catalog s resolve many traditional raster management issues By Colin Childs, ESRI Education Services Source images ArcGIS 10 introduces Catalog Mosaicked images Sources, mosaic methods, and functions are used

More information

Quality Control Concepts for LiDAR

Quality Control Concepts for LiDAR Quality Control Concepts for LiDAR January 24, 2012 Engineering Architecture Design-Build Surveying GeoSpatial Solutions Presentation Objectives Offer realistic and constructive advice for LiDAR project

More information

A Method to Create a Single Photon LiDAR based Hydro-flattened DEM

A Method to Create a Single Photon LiDAR based Hydro-flattened DEM A Method to Create a Single Photon LiDAR based Hydro-flattened DEM Sagar Deshpande 1 and Alper Yilmaz 2 1 Surveying Engineering, Ferris State University 2 Department of Civil, Environmental, and Geodetic

More information

TrueOrtho with 3D Feature Extraction

TrueOrtho with 3D Feature Extraction TrueOrtho with 3D Feature Extraction PCI Geomatics has entered into a partnership with IAVO to distribute its 3D Feature Extraction (3DFE) software. This software package compliments the TrueOrtho workflow

More information

Overview. 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes)

Overview. 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes) Overview 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes) 4. Aerial lidar technology advancements (15 minutes) 5. Q & A 1. Aerial

More information

MARS v Release Notes Revised: May 23, 2018 (Builds and )

MARS v Release Notes Revised: May 23, 2018 (Builds and ) MARS v2018.0 Release Notes Revised: May 23, 2018 (Builds 8302.01 8302.18 and 8350.00 8352.00) Contents New Features:... 2 Enhancements:... 6 List of Bug Fixes... 13 1 New Features: LAS Up-Conversion prompts

More information

Validation of Aerial LiDAR Products For Transportation Applications

Validation of Aerial LiDAR Products For Transportation Applications Creating Value Delivering Solutions Validation of Aerial LiDAR Products For Transportation Applications Dr. Srini Dharmapuri, CP, PMP Michael Baker Jr., Inc. Lauren Little, PE Alaska DOT Public Facility

More information

GIS-Generated Street Tree Inventory Pilot Study

GIS-Generated Street Tree Inventory Pilot Study GIS-Generated Street Tree Inventory Pilot Study Prepared for: MSGIC Meeting Prepared by: Beth Schrayshuen, PE Marla Johnson, GISP 21 July 2017 Agenda 2 Purpose of Street Tree Inventory Pilot Study Evaluation

More information

Lidar Standards. Chatham County, Georgia. Jason Lee, Noel Perkins and Vincent Grevemberg

Lidar Standards. Chatham County, Georgia. Jason Lee, Noel Perkins and Vincent Grevemberg 1 Lidar Standards Chatham County, Georgia Jason Lee, Noel Perkins and Vincent Grevemberg 2 SAGIS Lidar Standards Table of Contents Introduction...1 Objective...1.1 Data Description...2 Spatial and Temporal

More information

Image Services for Elevation Data

Image Services for Elevation Data Image Services for Elevation Data Peter Becker Need for Elevation Using Image Services for Elevation Data sources Creating Elevation Service Requirement: GIS and Imagery, Integrated and Accessible Field

More information

Prepared for: CALIFORNIA COAST COMMISSION c/o Dr. Stephen Schroeter 45 Fremont Street, Suite 2000 San Francisco, CA

Prepared for: CALIFORNIA COAST COMMISSION c/o Dr. Stephen Schroeter 45 Fremont Street, Suite 2000 San Francisco, CA REVIEW OF MULTIBEAM SONAR SURVEYS WHEELER REEF NORTH, SAN CLEMENTE, CALIFORNIA TO EVALUATE ACCURACY AND PRECISION OF REEF FOOTPRINT DETERMINATIONS AND CHANGES BETWEEN 2008 AND 2009 SURVEYS Prepared for:

More information

Quinnipiac Post Flight Aerial Acquisition Report

Quinnipiac Post Flight Aerial Acquisition Report Quinnipiac Post Flight Aerial Acquisition Report August 2011 Post-Flight Aerial Acquisition and Calibration Report FEMA REGION 1 Quinnipiac Watershed, Connecticut, Massachusesetts FEDERAL EMERGENCY MANAGEMENT

More information

LiDAR & Orthophoto Data Report

LiDAR & Orthophoto Data Report LiDAR & Orthophoto Data Report Tofino Flood Plain Mapping Data collected and prepared for: District of Tofino, BC 121 3 rd Street Tofino, BC V0R 2Z0 Eagle Mapping Ltd. #201 2071 Kingsway Ave Port Coquitlam,

More information

Drone2Map for ArcGIS: Bring Drone Imagery into ArcGIS. Will

Drone2Map for ArcGIS: Bring Drone Imagery into ArcGIS. Will Drone2Map for ArcGIS: Bring Drone Imagery into ArcGIS Will Meyers @MeyersMaps A New Window on the World Personal Mapping for Micro-Geographies Accurate High Quality Simple Low-Cost Drone2Map for ArcGIS

More information

Windstorm Simulation & Modeling Project

Windstorm Simulation & Modeling Project Windstorm Simulation & Modeling Project Airborne LIDAR Data and Digital Elevation Models in Broward County, Florida Data Quality Report and Description of Deliverable Datasets Prepared for: The Broward

More information

U.S. Geological Survey (USGS) - National Geospatial Program (NGP) and the American Society for Photogrammetry and Remote Sensing (ASPRS)

U.S. Geological Survey (USGS) - National Geospatial Program (NGP) and the American Society for Photogrammetry and Remote Sensing (ASPRS) U.S. Geological Survey (USGS) - National Geospatial Program (NGP) and the American Society for Photogrammetry and Remote Sensing (ASPRS) Summary of Research and Development Efforts Necessary for Assuring

More information

Burns, OR LIDAR Project, 2011 Delivery QC Analysis LIDAR QC Report February 13th, 2012

Burns, OR LIDAR Project, 2011 Delivery QC Analysis LIDAR QC Report February 13th, 2012 O R E G O N D E P A R T M E N T O F G E O L O G Y A N D M I N E R A L I N D U S T R I E S OLC Burns, OR Delivery Acceptance Report. Department of Geology & Mineral Industries 800 NE Oregon St, Suite 965

More information

NEXTMap World 10 Digital Elevation Model

NEXTMap World 10 Digital Elevation Model NEXTMap Digital Elevation Model Intermap Technologies, Inc. 8310 South Valley Highway, Suite 400 Englewood, CO 80112 10012015 NEXTMap (top) provides an improvement in vertical accuracy and brings out greater

More information

Baseline Specifications for Orthophotography and LiDAR Florida GIS

Baseline Specifications for Orthophotography and LiDAR Florida GIS Florida GIS Baseline Specifications for Orthophotography and LiDAR Revision History Baseline Specifications for Orthophotography and LiDAR Version Date Description 0.9 10/17/06 Draft released 0.9.1 04/04/07

More information

LiDAR Technical Report NE Washington LiDAR Production 2017

LiDAR Technical Report NE Washington LiDAR Production 2017 LiDAR Technical Report NE Washington LiDAR Production 2017 Presented to: Washington DNR 1111 Washington Street SE Olympia, Washington 98504 Submitted by: 860 McKinley St Eugene, OR 97402 July 26, 2017

More information

LIDAR MAPPING FACT SHEET

LIDAR MAPPING FACT SHEET 1. LIDAR THEORY What is lidar? Lidar is an acronym for light detection and ranging. In the mapping industry, this term is used to describe an airborne laser profiling system that produces location and

More information

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications N.J.P.L.S. An Introduction to LiDAR Concepts and Applications Presentation Outline LIDAR Data Capture Advantages of Lidar Technology Basics Intensity and Multiple Returns Lidar Accuracy Airborne Laser

More information

Best Practices for Managing Processed Ortho Imagery

Best Practices for Managing Processed Ortho Imagery Best Practices for Managing Processed Ortho Imagery Cody Benkelman DRAFT slides (June 2017) Characteristics of Processed Ortho Imagery Typically 8 bit (sometimes 16) Typically 3 spectral bands (sometimes

More information

Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014 Digital Surface Model and Digital Terrain Model

Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014 Digital Surface Model and Digital Terrain Model Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014 Digital Surface Model and Digital Terrain Model User Guide Provincial Mapping Unit Mapping and Information Resources Branch Corporate Management

More information

SPAR, ELMF 2013, Amsterdam. Laser Scanning on the UK Highways Agency Network. Hamish Grierson Blom Uk

SPAR, ELMF 2013, Amsterdam. Laser Scanning on the UK Highways Agency Network. Hamish Grierson Blom Uk SPAR, ELMF 2013, Amsterdam Laser Scanning on the UK Highways Agency Network Hamish Grierson Blom Uk www.blomasa.com www.blom-uk.co.uk Blom UK Part of the Blom Group Blom Group - Europe s largest aerial

More information

Using ArcGIS Server Data to Assist in Planimetric Update Process. Jim Stout - IMAGIS Rick Hammond Woolpert

Using ArcGIS Server Data to Assist in Planimetric Update Process. Jim Stout - IMAGIS Rick Hammond Woolpert Using ArcGIS Server Data to Assist in Planimetric Update Process Jim Stout - IMAGIS Rick Hammond Woolpert Using ArcGIS Server Data to Assist in Planimetric Update Process Jim Stout - IMAGIS Rick Hammond

More information

GOVERNMENT GAZETTE REPUBLIC OF NAMIBIA

GOVERNMENT GAZETTE REPUBLIC OF NAMIBIA GOVERNMENT GAZETTE OF THE REPUBLIC OF NAMIBIA N$7.20 WINDHOEK - 7 October 2016 No. 6145 CONTENTS Page GENERAL NOTICE No. 406 Namibia Statistics Agency: Data quality standard for the purchase, capture,

More information

2. POINT CLOUD DATA PROCESSING

2. POINT CLOUD DATA PROCESSING Point Cloud Generation from suas-mounted iphone Imagery: Performance Analysis A. D. Ladai, J. Miller Towill, Inc., 2300 Clayton Road, Suite 1200, Concord, CA 94520-2176, USA - (andras.ladai, jeffrey.miller)@towill.com

More information

USAF TRAINING SYSTEMS PRODUCT GROUP (TSPG)

USAF TRAINING SYSTEMS PRODUCT GROUP (TSPG) USAF TRAINING SYSTEMS PRODUCT GROUP (TSPG) COMMON DATASET STANDARD (CDS) Version 1.0 1 DEC 06 Distribution Statement A: Approved for public release; distribution is unlimited. PA Case Number ASC 07-0023.

More information

MODULE 1 BASIC LIDAR TECHNIQUES

MODULE 1 BASIC LIDAR TECHNIQUES MODULE SCENARIO One of the first tasks a geographic information systems (GIS) department using lidar data should perform is to check the quality of the data delivered by the data provider. The department

More information

Lidar Working with LAS Datasets

Lidar Working with LAS Datasets 2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop Lidar Working with LAS Datasets Raghav Vemula (3D Team) Esri UC2013. Technical Workshop. Agenda Las Dataset

More information

Creating, balancing and mosaicing Orthophotos

Creating, balancing and mosaicing Orthophotos Creating, balancing and mosaicing Orthophotos Wizards Map production 3D presentations Annotation Orthophoto Surface gridding Contouring Image mosaicing Data compression Geocoding Spatial analysis Raster

More information

An Introduction to Using Lidar with ArcGIS and 3D Analyst

An Introduction to Using Lidar with ArcGIS and 3D Analyst FedGIS Conference February 24 25, 2016 Washington, DC An Introduction to Using Lidar with ArcGIS and 3D Analyst Jim Michel Outline Lidar Intro Lidar Management Las files Laz, zlas, conversion tools Las

More information

Tools, Tips and Workflows Geiger-Mode LIDAR Workflow Review GeoCue, TerraScan, versions and above

Tools, Tips and Workflows Geiger-Mode LIDAR Workflow Review GeoCue, TerraScan, versions and above GeoCue, TerraScan, versions 015.005 and above Martin Flood August 8, 2016 Geiger-mode lidar data is getting a lot of press lately as the next big thing in airborne data collection. Unlike traditional lidar

More information

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology Maziana Muhamad Summarising LiDAR (Airborne Laser Scanning) LiDAR is a reliable survey technique, capable of: acquiring

More information

Introduction to Lidar Technology and Data Collection

Introduction to Lidar Technology and Data Collection Introduction to Lidar Technology and Data Collection Christopher Crosby San Diego Supercomputer Center / OpenTopography (with content adapted from NCALM, David Phillips (UNVACO), Ian Madin (DOGAMI), Ralph

More information

Lidar Technical Report

Lidar Technical Report Lidar Technical Report Oregon Department of Forestry Sites Presented to: Oregon Department of Forestry 2600 State Street, Building E Salem, OR 97310 Submitted by: 3410 West 11st Ave. Eugene, OR 97402 April

More information

UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA

UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA Aurelio Castro Cesar Piovanetti Geographic Mapping Technologies Corp. (GMT) Consultores en GIS info@gmtgis.com Geographic

More information

Tutorial (Intermediate level): Dense Cloud Classification and DTM generation with Agisoft PhotoScan Pro 1.1

Tutorial (Intermediate level): Dense Cloud Classification and DTM generation with Agisoft PhotoScan Pro 1.1 Tutorial (Intermediate level): Dense Cloud Classification and DTM generation with Agisoft PhotoScan Pro 1.1 This tutorial illustrates how to perform dense point cloud classification in manual and automatic

More information

ArcGIS for Server Imagery Update. Cody A. Benkelman Technical Product Manager, Imagery

ArcGIS for Server Imagery Update. Cody A. Benkelman Technical Product Manager, Imagery ArcGIS for Server Imagery Update Cody A. Benkelman Technical Product Manager, Imagery Outline Mosaic dataset Management and dissemination of imagery - Dynamic image services, Tiled Cache Visualization

More information

Files Used in this Tutorial

Files Used in this Tutorial RPC Orthorectification Tutorial In this tutorial, you will use ground control points (GCPs), an orthorectified reference image, and a digital elevation model (DEM) to orthorectify an OrbView-3 scene that

More information

I. Project Title Light Detection and Ranging (LIDAR) Processing

I. Project Title Light Detection and Ranging (LIDAR) Processing I. Project Title Light Detection and Ranging (LIDAR) Processing II. Lead Investigator Ryan P. Lanclos Research Specialist 107 Stewart Hall Department of Geography University of Missouri Columbia Columbia,

More information

SimActive and PhaseOne Workflow case study. By François Riendeau and Dr. Yuri Raizman Revision 1.0

SimActive and PhaseOne Workflow case study. By François Riendeau and Dr. Yuri Raizman Revision 1.0 SimActive and PhaseOne Workflow case study By François Riendeau and Dr. Yuri Raizman Revision 1.0 Contents 1. Introduction... 2 1.1. Simactive... 2 1.2. PhaseOne Industrial... 2 2. Testing Procedure...

More information

Imagery and Raster Data in ArcGIS. Abhilash and Abhijit

Imagery and Raster Data in ArcGIS. Abhilash and Abhijit Imagery and Raster Data in ArcGIS Abhilash and Abhijit Agenda Imagery in ArcGIS Mosaic datasets Raster processing ArcGIS is a Comprehensive Imagery System Integrating All Types, Sources, and Sensor Models

More information

Analysis Ready Data For Land (CARD4L-ST)

Analysis Ready Data For Land (CARD4L-ST) Analysis Ready Data For Land Product Family Specification Surface Temperature (CARD4L-ST) Document status For Adoption as: Product Family Specification, Surface Temperature This Specification should next

More information

Managing Lidar and Photogrammetric Point Clouds. Lindsay Weitz Cody Benkelman

Managing Lidar and Photogrammetric Point Clouds. Lindsay Weitz Cody Benkelman and Photogrammetric Point Clouds Lindsay Weitz Cody Benkelman Presentation Context What is lidar, and how does it work? Not this presentation! What can you do with lidar in ArcGIS? What does Esri recommend

More information

Files Used in this Tutorial

Files Used in this Tutorial RPC Orthorectification Tutorial In this tutorial, you will use ground control points (GCPs), an orthorectified reference image, and a digital elevation model (DEM) to orthorectify an OrbView-3 scene that

More information

An Introduction to Lidar & Forestry May 2013

An Introduction to Lidar & Forestry May 2013 An Introduction to Lidar & Forestry May 2013 Introduction to Lidar & Forestry Lidar technology Derivatives from point clouds Applied to forestry Publish & Share Futures Lidar Light Detection And Ranging

More information

Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) Light Detection and Ranging (LiDAR) http://code.google.com/creative/radiohead/ Types of aerial sensors passive active 1 Active sensors for mapping terrain Radar transmits microwaves in pulses determines

More information

LiDAR Remote Sensing Data Collection: Yaquina and Elk Creek Watershed, Leaf-On Acquisition

LiDAR Remote Sensing Data Collection: Yaquina and Elk Creek Watershed, Leaf-On Acquisition LiDAR Remote Sensing Data Collection: Yaquina and Elk Creek Watershed, Leaf-On Acquisition Submitted by: 4605 NE Fremont, Suite 211 Portland, Oregon 97213 April, 2006 Table of Contents LIGHT DETECTION

More information

1, Oregon Department of Geology and Mineral Industries; 2, City of Hillsboro, Oregon; 3, Port of Portland, Oregon

1, Oregon Department of Geology and Mineral Industries; 2, City of Hillsboro, Oregon; 3, Port of Portland, Oregon State of Oregon Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist ACQUISITION OF AIRBORNE THERMAL INFRARED (TIR) AND LIDAR IMAGERY IN CENTRAL AND EASTERN OREGON TECHNICAL

More information

Tools River Flattening in TerraModeler TerraModeler, versions 12.xxx and above

Tools River Flattening in TerraModeler TerraModeler, versions 12.xxx and above TerraModeler, versions 12.xxx and above GeoCue Group Support 1/12/2016 Hydro-flattening is a common requirement when it comes to delivering surface models to the U.S. Geological Survey (USGS) National

More information

MassCEC Rooftop Solar Map

MassCEC Rooftop Solar Map MassCEC Rooftop Solar Map Data and Methods Summary Critigen, LLC Overview The detailed analysis of solar rooftop potential is a multi-step workflow with many facets and input parameters to the analysis

More information

2011 Bentley Systems, Incorporated. Bentley Descartes V8i (SELECTseries 3) Advancing Information Modeling For Intelligent Infrastructure

2011 Bentley Systems, Incorporated. Bentley Descartes V8i (SELECTseries 3) Advancing Information Modeling For Intelligent Infrastructure Bentley Descartes V8i (SELECTseries 3) Advancing Information Modeling For Intelligent Infrastructure What is Bentley Descartes? Image Processing Raster Geo-Referencing Advanced raster transformation (warping,

More information

Esri International User Conference. July San Diego Convention Center. Lidar Solutions. Clayton Crawford

Esri International User Conference. July San Diego Convention Center. Lidar Solutions. Clayton Crawford Esri International User Conference July 23 27 San Diego Convention Center Lidar Solutions Clayton Crawford Outline Data structures, tools, and workflows Assessing lidar point coverage and sample density

More information

2011 Bentley Systems, Incorporated. Bentley Descartes V8i Advancing Information Modeling For Intelligent Infrastructure

2011 Bentley Systems, Incorporated. Bentley Descartes V8i Advancing Information Modeling For Intelligent Infrastructure Bentley Descartes V8i Advancing Information Modeling For Intelligent Infrastructure Agenda Why would you need Bentley Descartes? What is Bentley Descartes? Advanced Point Cloud Workflows Advanced Terrain

More information

Third Rock from the Sun

Third Rock from the Sun Geodesy 101 AHD LiDAR Best Practice The Mystery of LiDAR Best Practice Glenn Jones SSSi GIS in the Coastal Environment Batemans Bay November 9, 2010 Light Detection and Ranging (LiDAR) Basic principles

More information

2010 LiDAR Project. GIS User Group Meeting June 30, 2010

2010 LiDAR Project. GIS User Group Meeting June 30, 2010 2010 LiDAR Project GIS User Group Meeting June 30, 2010 LiDAR = Light Detection and Ranging Technology that utilizes lasers to determine the distance to an object or surface Measures the time delay between

More information

Chapters 1 7: Overview

Chapters 1 7: Overview Chapters 1 7: Overview Photogrammetric mapping: introduction, applications, and tools GNSS/INS-assisted photogrammetric and LiDAR mapping LiDAR mapping: principles, applications, mathematical model, and

More information

What s New in ecognition 9.0. Christian Weise

What s New in ecognition 9.0. Christian Weise What s New in ecognition 9.0 Christian Weise Presenting ecognition 9 Release Date: March 2014 Who s eligible? All user with a valid ecognition maintenance contract Presenting ecognition 9 ecognition version

More information

Integrated Multi-Source LiDAR and Imagery

Integrated Multi-Source LiDAR and Imagery Figure 1: AirDaC aerial scanning system Integrated Multi-Source LiDAR and Imagery The derived benefits of LiDAR scanning in the fields of engineering, surveying, and planning are well documented. It has

More information

Summary of Research and Development Efforts Necessary for Assuring Geometric Quality of Lidar Data

Summary of Research and Development Efforts Necessary for Assuring Geometric Quality of Lidar Data American Society for Photogrammetry and Remote Sensing (ASPRS) Summary of Research and Development Efforts Necessary for Assuring Geometric Quality of Lidar Data 1 Summary of Research and Development Efforts

More information

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM Lecture 13: Advanced Data Models: Terrain mapping and Analysis Contents of Lecture Surface Data Models DEM GRID Model TIN Model Visibility Analysis Geography 373 Spring, 2006 Changjoo Kim 11/29/2006 1

More information

Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most

Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most accurate and reliable representation of the topography of the earth. As lidar technology advances

More information

Delivering 3D Engineered Model Data for Highway Construction

Delivering 3D Engineered Model Data for Highway Construction Delivering 3D Engineered Model Data for Highway Construction Objectives After completing this module, you will be able to: Describe how 3D engineered models are created in design Describe how contractors

More information

Digital Photogrammetric System. Version 6.3 USER MANUAL. LIDAR Data processing

Digital Photogrammetric System. Version 6.3 USER MANUAL. LIDAR Data processing Digital Photogrammetric System Version 6.3 USER MANUAL Table of Contents 1. About... 3 2. Import of LIDAR data... 3 3. Load LIDAR data window... 4 4. LIDAR data loading and displaying... 6 5. Splitting

More information

A SENSOR FUSION APPROACH TO COASTAL MAPPING

A SENSOR FUSION APPROACH TO COASTAL MAPPING A SENSOR FUSION APPROACH TO COASTAL MAPPING Maryellen Sault, NOAA, National Ocean Service, National Geodetic Survey Christopher Parrish, NOAA, National Ocean Service, National Geodetic Survey Stephen White,

More information

High Resolution Digital Elevation Model (HRDEM) CanElevation Series Product Specifications. Edition

High Resolution Digital Elevation Model (HRDEM) CanElevation Series Product Specifications. Edition High Resolution Digital Elevation Model (HRDEM) CanElevation Series Product Specifications Edition 1.1 2017-08-17 Government of Canada Natural Resources Canada Telephone: +01-819-564-4857 / 1-800-661-2638

More information

Project Report Nooksack South Fork Lummi Indian Nation. Report Presented to:

Project Report Nooksack South Fork Lummi Indian Nation. Report Presented to: June 5, 2005 Project Report Nooksack South Fork Lummi Indian Nation Contract #2291-H Report Presented to: Lummi Indian Nation Natural Resources Department 2616 Kwina Road Bellingham, WA 98226 Point of

More information

W D-0049/004 EN

W D-0049/004 EN September 21, 2011 Contact Ground Survey Report, Lidar Accuracy Report, & Project Report New Madrid Seismic Zone Northeast of Memphis, Tennessee Contract Number: W91278-09D-0049/004 EN Project: C-10-026

More information

QA/QC Functionality in MARS version 2017.x

QA/QC Functionality in MARS version 2017.x QA/QC Functionality in MARS version 2017.x 1. Check Point Report a. Inputs section b. Statistics and Standards sections c. Other Functions 2. LAS Statistics a. Created During Tile Scheme Generation b.

More information

NEXTMap World 30 Digital Surface Model

NEXTMap World 30 Digital Surface Model NEXTMap World 30 Digital Surface Model Intermap Technologies, Inc. 8310 South Valley Highway, Suite 400 Englewood, CO 80112 083013v3 NEXTMap World 30 (top) provides an improvement in vertical accuracy

More information

Bid Specification Process. Step 1. Obtain project specifications (minimum 7 weeks prior to anticipated project delivery date)

Bid Specification Process. Step 1. Obtain project specifications (minimum 7 weeks prior to anticipated project delivery date) Bid Specification Process Step 1. Obtain project specifications (minimum 7 weeks prior to anticipated project delivery date) If University Communications is designing the project, obtain the project s

More information