Real-time. Meshless Deformation. Xiaohu Guo, Hong Qin Center for Visual Computing Department of Computer Science Stony Brook

Size: px
Start display at page:

Download "Real-time. Meshless Deformation. Xiaohu Guo, Hong Qin Center for Visual Computing Department of Computer Science Stony Brook"

Transcription

1 Real-time Meshless Deformation Xiaohu Guo, Hong Qin Center for Visual Computing Department of Computer Science Stony Brook

2 Outline Introduction & previous work Meshless methods Computational techniques Hierarchical discretization Modal analysis Experimental results Conclusion & future work

3 Introduction Increasing data acquisition power has made large-scale sampled surfaces prevalent in digital geometry processing pipeline. Laser scanner, structured light, holoimage, Developing new techniques for point- centered digital processing has become a common and long-term mission. This paper focuses on real-time (or interactive) physical animation and manipulation of sampled geometry. Holoimage scanning system in Stony Brook (Courtesy of Gu et al.)

4 Contribution Physical simulation no mesh Point-sampled geometry has no differential properties MLS method Node distribution control and numerical quadrature octree structure Real-time simulation modal warping

5 Computational Framework

6 Previous Work Physics-based animation D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, Elastically Deformable Models, SIGGRAPH 1987 D. L. James and D. K. Pai, ArtDefo:: Accurate Real-time Deformable Objects, SIGGRAPH 1999 G. Debunne,, M. Desbrun,, M. P. Cani,, and A. H. Barr, Dynamic Real-time Deformations using Space & Time Adaptive Sampling, SIGGRAPH 2001 Modal analysis A. Pentland and J. Williams, Good Vibrations: Model Dynamics for Graphics and Animation, SIGGRAPH 1989 D. L. James and D. K. Pai, Dyrt:: Dynamic Response Textures for Real Time Deformation Simulation with Graphics Hardware, SIGGRAPH 2002 K. Hauser, C. Shen, and J. O Brien, O Interactive Deformation using Modal Analysis with Constraints, Graphics Interface 2003 M. G. Choi and H. S. Ko, Modal Warping: Real-time Simulation of Large Rotational Deformation and Manipulations, IEEE TVCG 2005

7 Previous Work Meshless methods T. Belytschko,, Y. Y. Lu, and L. Gu, Element-free Galerkin Methods, Int. J. Num. Meth.. Eng T. Belytschko,, Y. Y. Lu, and L. Gu, Fracture and Crack Growth by Element-free Galerkin Methods, Model. Simul.. Mater. Sci.. Eng M. Desbrun and M. P. Cani, Animating Soft Substances with Implicit Surfaces, SIGGRAPH 1995 M. Desbrun and M. P. Cani, Smoothed Particles: A New Paradigm for Animating Highly Deformable Bodies, EG workshop on Animation and Simulation 1996 M. Muller, R. Keiser, A. Nealen,, M. Pauly,, M. Gross, and M. Alexa, Point Based Animation of Elastic, Plastic and Melting Objects, SCA 2004 M. Muller, B. Heidelberger, M. Teschner,, and M. Gross, Meshless Deformations Based on Shape Matching, SIGGRAPH 2005 M. Pauly,, R. Keiser, B. Adams, P. Dutre,, M. Gross, and L. J. Guibas, Meshless Animation of Fracturing Solids, SIGGRAPH 2005

8 Elastic Deformation We use the Euler-Lagrange equations for the elastic deformation: d dt T u& ( u& ) V ( u) + μu& + u where the kinetic energy: M is the mass matrix: and the elastic potential energy: ε is the strain tensor; = F T ext M = IJ 1 2 Ω Ω ρ( x ) u& u& dω V = 1 2 I, J = ρ( φ ( φ ( dω I J M IJ u& I u& ν 2 ij kl = G tr ( ε ) + δ δ ε ikε jl dω Ω 2 1 ν J φi is the MLS shape function value of node I.

9 Meshless Methods Developed in Mechanical Engineering to solve PDEs/ODEs numerically based on scattered nodes without the need of additional mesh structure. Advantages of Meshless Methods: No mesh for the scattered nodes Spatial adaptivity (node insertion/elimination) Shape function polynomial order adaptivity Minimized data management overhead We use the Moving Least Squares (MLS) shape function [Lancaster and Salkauskas,, 1981], employed in the Element-free Galerkin (EFG) method [Belytchko[ et al. 1994]

10 MLS Shape Functions Each node I is associated with a positive weight function w I of compact support. The support of the weight function defines the influence domain of the node: Ω I { x R 2 : w ( = w( x, x ) > 0} = I I The approximation of the field function f at a parametric position x is only affected by those nodes whose weights are non-zero at x. Influence Domain Analysis Domain Node Object Boundary

11 MLS Shape Functions If a function f ( defined on the domain is sufficiently smooth, s we can l define a local approximation around a fixed point x Ω : l f ( x, L f ( = p ( a ( = p x m i= 1 ( a( where p i ( are polynomial basis functions, a i ( are their r coefficients. We can derive ( by minimizing the weighted L norm: J T 2 i.e. T x ) p ( x ) a( ) J = ( Pa f ) W( ( Pa f ) we obtain a( by setting: = A( a( B( f = 0 where the m m matrix A( is called moment matrix: i a 2 [ ] = w I ( x f I I I J a f ( x, i Ω T T T A ( = P W( P B( = P W( So we obtain: 1 a ( = A ( B( f

12 MLS Shape Functions So the approximate field function can be written as: l T 1 f ( x ) f ( x, = p ( A ( B( f = Φ( f where Φ( is the vector of the MLS shape functions: Φ( = T 1 [ φ (, φ (,... ( ] = p ( A ( B( ) 1 2 φ n x The moment matrix A( will be ill-conditioned when: 1. The basis functions p( are (almost) linearly dependent; 2. There are not enough nodal supports overlapping at the given point; Note that the necessary condition for the moment matrix to be invertible is: x Ω card{ I : x Ω. I } > m (patch covering condition) 3. The nodes whose supports overlap at the point are arranged in a special pattern, such as a plane for a complete linear basis p(, or a conic section for a quadratic polynomial basis.

13 MLS Shape Functions The continuity of the shape function is directly related to the continuity of both weight functions and the polynomial basis. The FEM equivalents can be reached if the weight functions are piecewise- constant over each influence domain.

14 Computational Techniques We need to generate overlapping patches Ω I comprising a cover { Ω I } of the domain Ω. Unstructured distribution of nodes will cause many algorithmic difficulties Determination of the patches that contribute to a certain integration point needs an expensive global search. The moment matrix may not be invertible if the patch covering conditions are not satisfied. The interaction of scattered nodes with the geometric boundary becomes b difficult to handle. Hierarchical discretization for meshless dynamics Octree-based distance field for surface geometry Octree-based volumetric node placement and patch generation Octree-based Gaussian integration for matrix assembly

15 Hierarchical Discretization We utilize the Multi-level level Partition of Unity (MPU) implicit surface construction method of [ [Ohtake et al. 2003]

16 Hierarchical Discretization Volumetric node placement and patch generation Gaussian integration for matrix assembly Object boundary α size( OI ) Integration point Integration cell node I Patch Ω I Octant O I

17 Modal Analysis for Meshless Dynamics Basics of Modal Analysis: M u& + Cu& + Ku = F (Rayleigh damping) C = α M + βk Let Ψ and Λ be the solution matrices of the generalized eigenvalue problem KΨ = MΨΛ, such that MΨ I and., = ( α I + βλ, and K z = Λ are all diagonal. M z = I ) C z Ψ T = Ψ T KΨ = Λ is called the modal displacement matrix, and we can let u ( t) = Ψz( t). The ith column of Ψ represents the ith mode shape and z(t) contains the corresponding modal amplitudes. We can take only the dominant l columns of Ψ by examining the eigenvalues. Ψ M && z z + Czz& + K zz = Ψ T F

18 Modal Warping for Rotational Deformation Modal Warping [ [Choi and Ko,, 2005] = 1 T 1 u ( u + u ) + ( u u T ) = ε +ω 2 2 strain tensor ε = 1 ( u + u T ) 2 1 rotation tensor ω = 1 ( u u T ) = ( u) = w rotation vector w ( = ( u) = ( ) Φ( Ψz 2 2 Φ( is the vector of MLS shape functions

19 Modal Warping for Rotational Deformation Embed a local coordinate frame at each simulation node, which is associated with a rotation matrix R computed from its rotation vector w. The non-linear dynamic system can be approximated at each local coordinate frame as a linear Euler-Lagrangian equation : Mu&& L + Cu& L + Ku L = R T F L L u ( t) = Φz ( t) By modal decomposition : i && z L + C z z& L + K Manipulation constraints (position/rotation) can be integrated using u Lagrange multipliers. i z z L = Ψ T ( T R F)

20 Video

21 Experimental Results Implemented on Windows XP PC with dual Intel Xeon 2.8GHz CPUs, 2.0GB RAM, and GeForce Fx 5900 Ultra GPU. For all the data sets, the MLS pre-computation for the system matrices takes < 10 minutes, and modal decomposition takes < 1 minute. model points nodes modes sec/frame bar 5,634 1, Igea 134, balljoint 137, rabbit 67,038 1, Santa 75,781 1,

22 Conclusion A A real-time meshless animation and simulation paradigm for point-sampled volumetric objects. Both interior and surface representation only consist of point samples. Exploit the Modal Warping technique in the meshless framework to achieve real-time manipulation and deformation.

23 Future Work Meshless physical simulation can be slow, especially when changing topology (such as cracks, or surgical cutting process). Are there any geometry-driven semi-physical simulation possible?... Volumetric mapping for material modeling, human-computer interaction

24 Acknowledgements NSF grant ACI ITR grant IIS Alfred P. Sloan Fellowship The Igea,, rabbit, balljoint,, and santa models are courtesy of Cyberware Inc. Colleagues at Center for Visual Computing, SUNY Stony Brook.

Real-time Meshless Deformation

Real-time Meshless Deformation Real-time Meshless Deformation Xiaohu Guo Hong Qin State University of New York at Stony Brook email: {xguo, qin}@cs.sunysb.edu http://www.cs.sunysb.edu/{ xguo, qin} Abstract In this paper, we articulate

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

Real-time meshless deformation

Real-time meshless deformation COMPUTER ANIMATION AND VIRTUAL WORLDS Comp. Anim. Virtual Worlds 2005; 16: 189 200 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cav.98 Collision Detection and Deformable

More information

Dynamic Points: When Geometry Meets Physics. Xiaohu Guo Stony Brook

Dynamic Points: When Geometry Meets Physics. Xiaohu Guo Stony Brook Dynamic Points: When Geometry Meets Physics Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Point Based Graphics Pipeline Acquisition Modeling Rendering laser scanning

More information

Spline Thin-Shell Simulation of Manifold Surfaces

Spline Thin-Shell Simulation of Manifold Surfaces Spline Thin-Shell Simulation of Manifold Surfaces Kexiang Wang, Ying He, Xiaohu Guo, and Hong Qin Department of Computer Science Stony Brook University Stony Brook, NY 11790-4400, USA {kwang, yhe, xguo,

More information

Meshless Animation of Fracturing Solids

Meshless Animation of Fracturing Solids Meshless Animation of Fracturing Solids Mark Pauly Stanford University Richard Keiser ETH Zurich Bart Adams KU Leuven Philip Dutre KU Leuven Markus Gross ETH Zurich Leonidas J. Guibas Stanford University

More information

Chapter 3: Computer Animation Reminder: Descriptive animation. Procedural animation : Examples. Towards methods that generate motion?

Chapter 3: Computer Animation Reminder: Descriptive animation. Procedural animation : Examples. Towards methods that generate motion? Chapter 3 : Computer Animation (continued) Chapter 3: Computer Animation Reminder: Descriptive animation Describes a single motion, with manual control Ex: direct kinematics with key-frames, inverse kinematics

More information

A meshfree weak-strong form method

A meshfree weak-strong form method A meshfree weak-strong form method G. R. & Y. T. GU' 'centre for Advanced Computations in Engineering Science (ACES) Dept. of Mechanical Engineering, National University of Singapore 2~~~ Fellow, Singapore-MIT

More information

3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis

3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis Adv. Theor. Appl. Mech., Vol. 1, 2008, no. 3, 131-139 3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis Yunhua Luo Department of Mechanical & Manufacturing Engineering, University of

More information

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (2) May 26, 2016 Kenshi Takayama Physically-based deformations 2 Simple example: single mass & spring in 1D Mass m, position x, spring coefficient k, rest length

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Soft-Bodies. Spatially Coupled Shells. Technical Report (Soft-Bodies) Benjamin Kenwright. 1 Introduction

Soft-Bodies. Spatially Coupled Shells. Technical Report (Soft-Bodies) Benjamin Kenwright. 1 Introduction Technical Report (Soft-Bodies) Soft-Bodies Spatially Coupled Shells Benjamin Kenwright 1 Introduction Fig. 1 Surface and Layers - Illustrating the coupled spatial connection of neighbouring constraints

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Real-Time Simulation of Thin Shells

Real-Time Simulation of Thin Shells EUROGRAPHICS 2007 / D. Cohen-Or and P. Slavík (Guest Editors) Volume 26 (2007), Number 3 Real-Time Simulation of Thin Shells Min Gyu Choi 1, Seung Yong Woo 1, and Hyeong-Seok Ko 2 1 Kwangwoon University,

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations Motivation Freeform Shape Representations for Efficient Geometry Processing Eurographics 23 Granada, Spain Geometry Processing (points, wireframes, patches, volumes) Efficient algorithms always have to

More information

Adaptivity For Meshfree Point Collocation Methods In Linear Elastic Solid Mechanics

Adaptivity For Meshfree Point Collocation Methods In Linear Elastic Solid Mechanics University of South Carolina Scholar Commons Theses and Dissertations 2015 Adaptivity For Meshfree Point Collocation Methods In Linear Elastic Solid Mechanics Joshua Wayne Derrick University of South Carolina

More information

THE FINITE ELEMENT METHOD WITH "OVERLAPPING FINITE ELEMENTS"

THE FINITE ELEMENT METHOD WITH OVERLAPPING FINITE ELEMENTS THE FINITE ELEMENT METHOD WITH "OVERLAPPING FINITE ELEMENTS" Klaus-Jürgen Bathe Massachusetts Institute of Technology, Cambridge, Massachusetts, USA ABSTRACT: We review our efforts to arrive at a finite

More information

Development of a particle difference scheme for dynamic crack propagation problem

Development of a particle difference scheme for dynamic crack propagation problem Development of a particle difference scheme for dynamic crack propagation problem *Young-Choel Yoon 1) and Kyeong-Hwan Kim ) 1) Dept. of Civil Engineering, Myongji College, Seoul 10-776, Korea ) Dept.

More information

Touch-Based Haptics for Interactive Editing on Point Set Surfaces

Touch-Based Haptics for Interactive Editing on Point Set Surfaces Touch-Based Haptics for Interactive Editing on Point Set Surfaces Over the past several years, point-sampled geometry has gained popularity in graphics and related visual computing areas. Point set surfaces,

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

Mass-Spring Based Point-Sampled Surface Modelling

Mass-Spring Based Point-Sampled Surface Modelling Mass-Spring Based Point-Sampled Surface Modelling Zhixun Su, Xiaojie Zhou, Xiuping Liu, Fengshan Liu, Xiquan Shi Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P.R.

More information

Effective adaptation of hexahedral mesh using local refinement and error estimation

Effective adaptation of hexahedral mesh using local refinement and error estimation Key Engineering Materials Vols. 243-244 (2003) pp. 27-32 online at http://www.scientific.net (2003) Trans Tech Publications, Switzerland Online Citation available & since 2003/07/15 Copyright (to be inserted

More information

Real-Time Simulation of Deformation and Fracture of Stiff Materials

Real-Time Simulation of Deformation and Fracture of Stiff Materials Real-Time Simulation of Deformation and Fracture of Stiff Materials Matthias Müller Leonard McMillan Julie Dorsey Robert Jagnow Laboratory for Computer Science, Massachusetts Institute of Technology Abstract.

More information

Shape Modeling with Point-Sampled Geometry

Shape Modeling with Point-Sampled Geometry Shape Modeling with Point-Sampled Geometry Mark Pauly Richard Keiser Leif Kobbelt Markus Gross ETH Zürich ETH Zürich RWTH Aachen ETH Zürich Motivation Surface representations Explicit surfaces (B-reps)

More information

ElasticPaint: A Particle System for Feature Mapping with Minimum Distortion

ElasticPaint: A Particle System for Feature Mapping with Minimum Distortion ElasticPaint: A Particle System for Feature Mapping with Minimum Distortion Christopher Carner and Hong Qin State University of New York at Stony Brook {ccarner qin}@cs.sunysb.edu Abstract Mapping of features

More information

Free-Form Deformation and Other Deformation Techniques

Free-Form Deformation and Other Deformation Techniques Free-Form Deformation and Other Deformation Techniques Deformation Deformation Basic Definition Deformation: A transformation/mapping of the positions of every particle in the original object to those

More information

Fracture & Tetrahedral Models

Fracture & Tetrahedral Models Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. What are the horizontal and face velocities after 1, 2, and many iterations of divergence adjustment for an incompressible fluid? Fracture

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

Physics-Based Graphics: Theory, Methodology, Techniques, and Modeling Environments

Physics-Based Graphics: Theory, Methodology, Techniques, and Modeling Environments Physics-Based Graphics: Theory, Methodology, Techniques, and Modeling Environments Hong Qin State University of New York at Stony Brook Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA )

High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA ) High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA9550-07-0195) Sachin Premasuthan, Kui Ou, Patrice Castonguay, Lala Li, Yves Allaneau,

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

PROPERTIES OF NATURAL ELEMENT COORDINATES ON ANY POLYHEDRON

PROPERTIES OF NATURAL ELEMENT COORDINATES ON ANY POLYHEDRON PROPRTIS OF NATURAL LMNT COORDINATS ON ANY POLYHDRON P. Milbradt and T. Fröbel Institute of Computer Science in Civil ngineering, Univercity of Hanover, 3067, Hanover, Germany; PH (+49) 5-76-5757; FAX

More information

Surgical Cutting on a Multimodal Object Representation

Surgical Cutting on a Multimodal Object Representation Surgical Cutting on a Multimodal Object Representation Lenka Jeřábková and Torsten Kuhlen Virtual Reality Group, RWTH Aachen University, 52074 Aachen Email: jerabkova@rz.rwth-aachen.de Abstract. In this

More information

Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation

Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation J.P. Lewis Matt Cordner Nickson Fong Presented by 1 Talk Outline Character Animation Overview Problem Statement

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

Simulation of Instrument-Tissue Interactions and System Integration

Simulation of Instrument-Tissue Interactions and System Integration Simulation of Instrument-Tissue Interactions and System Integration Cagatay Basdogan, Ph.D. Jet Propulsion Laboratory California Institute of Technology Phantom II Phantom I Topics: A) Collision detection

More information

Topology optimization in B-spline space

Topology optimization in B-spline space Topology optimization in B-spline space Xiaoping Qian Mechanical, Materials, and Aerospace Engineering Department Illinois Institute of Technology Chicago, IL 60062, USA Email: qian@iit.edu Highlights

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al.

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. Solid Modeling Michael Kazhdan (601.457/657) HB 10.15 10.17, 10.22 FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. 1987 Announcement OpenGL review session: When: Today @ 9:00 PM Where: Malone

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Finite element method - tutorial no. 1

Finite element method - tutorial no. 1 Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 11th October 2017 1 / 22 Introduction to the tutorials E-mail: martin.nesladek@fs.cvut.cz Room no. 622 (6th floor - Dept. of mechanics,

More information

Real-Time Simulation of Deformation and Fracture of Stiff Materials

Real-Time Simulation of Deformation and Fracture of Stiff Materials EUROGRAPHICS 200 / Workshop on Animation and Simulation Real-Time Simulation of Deformation and Fracture of Stiff Materials Matthias Müller Leonard McMillan Julie Dorsey Robert Jagnow Laboratory for Computer

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

Topology Optimization and JuMP

Topology Optimization and JuMP Immense Potential and Challenges School of Engineering and Information Technology UNSW Canberra June 28, 2018 Introduction About Me First year PhD student at UNSW Canberra Multidisciplinary design optimization

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 597D, Fall 2003 3D Object Representations What makes a good 3D object representation? Stanford and Hearn & Baker 1 3D Object

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo What are 3D Objects? 3D Object Representations What are 3D objects? The Graphics Process 3D Object Representations Raw

More information

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere Ram Nair Computational and Information Systems Laboratory (CISL) National Center for Atmospheric Research

More information

Multi-level Partition of Unity Implicits

Multi-level Partition of Unity Implicits Multi-level Partition of Unity Implicits Diego Salume October 23 rd, 2013 Author: Ohtake, et.al. Overview Goal: Use multi-level partition of unity (MPU) implicit surface to construct surface models. 3

More information

3D Physics Engine for Elastic and Deformable Bodies. Liliya Kharevych and Rafi (Mohammad) Khan Advisor: David Mount

3D Physics Engine for Elastic and Deformable Bodies. Liliya Kharevych and Rafi (Mohammad) Khan Advisor: David Mount 3D Physics Engine for Elastic and Deformable Bodies Liliya Kharevych and Rafi (Mohammad) Khan Advisor: David Mount University of Maryland, College Park December 2002 Abstract The purpose of this project

More information

Geometric and Solid Modeling. Problems

Geometric and Solid Modeling. Problems Geometric and Solid Modeling Problems Define a Solid Define Representation Schemes Devise Data Structures Construct Solids Page 1 Mathematical Models Points Curves Surfaces Solids A shape is a set of Points

More information

Interactive Shape Design Using Volumetric Implicit PDEs

Interactive Shape Design Using Volumetric Implicit PDEs Interactive Shape Design Using Volumetric Implicit PDEs Haixia Du Hong Qin Department of Computer Science State University of New York at Stony Brook ABSTRACT Solid modeling based on Partial Differential

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 6, NO. 3, JULY

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 6, NO. 3, JULY IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 6, NO. 3, JULY 2009 409 Meshless Harmonic Volumetric Mapping Using Fundamental Solution Methods Xin Li, Member, IEEE, Xiaohu Guo, Member, IEEE,

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

SPH: Why and what for?

SPH: Why and what for? SPH: Why and what for? 4 th SPHERIC training day David Le Touzé, Fluid Mechanics Laboratory, Ecole Centrale de Nantes / CNRS SPH What for and why? How it works? Why not for everything? Duality of SPH SPH

More information

Current Status of Isogeometric Analysis in LS-DYNA

Current Status of Isogeometric Analysis in LS-DYNA Current Status of Isogeometric Analysis in LS-DYNA Stefan Hartmann Developer Forum, September 24 th, 2013, Filderstadt, Germany Development in cooperation with: D.J. Benson: Professor of Applied Mechanics,

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

Point-based Methods for Medical Modeling and Simulation

Point-based Methods for Medical Modeling and Simulation Point-based Methods for Medical Modeling and Simulation Rifat Aras, Yuzhong Shen, and Michel Audette Department of Modeling, Simulation, and Visualization Engineering, Old Dominion University Norfolk,

More information

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends Imagine stream processor; Bill Dally, Stanford Connection Machine CM; Thinking Machines Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid Jeffrey Bolz Eitan Grinspun Caltech Ian Farmer

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

Deformation Transfer for Detail-Preserving Surface Editing

Deformation Transfer for Detail-Preserving Surface Editing Deformation Transfer for Detail-Preserving Surface Editing Mario Botsch Robert W Sumner 2 Mark Pauly 2 Markus Gross Computer Graphics Laboratory, ETH Zurich 2 Applied Geometry Group, ETH Zurich Abstract

More information

CS-184: Computer Graphics

CS-184: Computer Graphics CS-184: Computer Graphics Lecture #12: Curves and Surfaces Prof. James O Brien University of California, Berkeley V2007-F-12-1.0 Today General curve and surface representations Splines and other polynomial

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 3, 2017, Lesson 1 1 Politecnico di Milano, February 3, 2017, Lesson 1 2 Outline

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Nodal Integration Technique in Meshless Method

Nodal Integration Technique in Meshless Method IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 1 Ver. IV (Feb. 2014), PP 18-26 Nodal Integration Technique in Meshless Method Ahmed MJIDILA

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

Analysis and Reduction of Quadrature Errors in the Material Point Method (MPM)

Analysis and Reduction of Quadrature Errors in the Material Point Method (MPM) INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING This is a preprint of an article published in Int. J. Numer. Meth. Engng, 76 (6), pp. 9-948, 8 Published online in Wiley InterScience (www.interscience.wiley.com).

More information

Rigid Body Dynamics, Collision Response, & Deformation

Rigid Body Dynamics, Collision Response, & Deformation Rigid Body Dynamics, Collision Response, & Deformation Pop Worksheet! Teams of 2. SOMEONE YOU HAVEN T ALREADY WORKED WITH What are the horizontal and face velocities after 1, 2, and many iterations of

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

QP-Collide: A New Approach to Collision Treatment

QP-Collide: A New Approach to Collision Treatment QP-Collide: A New Approach to Collision Treatment Laks Raghupathi François Faure Co-encadre par Marie-Paule CANI EVASION/GRAVIR INRIA Rhône-Alpes, Grenoble Teaser Video Classical Physical Simulation Advance

More information

Anisotropic Kernels for Meshless Elastic Solids

Anisotropic Kernels for Meshless Elastic Solids 2011 12th International Conference on Computer-Aided Design and Computer Graphics Anisotropic Kernels for Meshless Elastic Solids Ning Liu, Fei Zhu, Sheng Li, Guoping Wang Graphics and Interaction Lab

More information

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction FOR 493 - P3: A monolithic multigrid FEM solver for fluid structure interaction Stefan Turek 1 Jaroslav Hron 1,2 Hilmar Wobker 1 Mudassar Razzaq 1 1 Institute of Applied Mathematics, TU Dortmund, Germany

More information

2D Shape Deformation Using Nonlinear Least Squares Optimization

2D Shape Deformation Using Nonlinear Least Squares Optimization 2D Shape Deformation Using Nonlinear Least Squares Optimization Paper ID: 20 Abstract This paper presents a novel 2D shape deformation algorithm based on nonlinear least squares optimization. The algorithm

More information

Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method

Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method Vis Comput DOI 10.1007/s00371-016-1317-x ORIGINAL ARTICLE Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method Junjun Pan 1 Shizeng Yan 1 Hong

More information

PATCH TEST OF HEXAHEDRAL ELEMENT

PATCH TEST OF HEXAHEDRAL ELEMENT Annual Report of ADVENTURE Project ADV-99- (999) PATCH TEST OF HEXAHEDRAL ELEMENT Yoshikazu ISHIHARA * and Hirohisa NOGUCHI * * Mitsubishi Research Institute, Inc. e-mail: y-ishi@mri.co.jp * Department

More information

SHAPE SENSITIVITY ANALYSIS INCLUDING QUALITY CONTROL WITH CARTESIAN FINITE ELEMENT MESHES

SHAPE SENSITIVITY ANALYSIS INCLUDING QUALITY CONTROL WITH CARTESIAN FINITE ELEMENT MESHES VI International Conference on Adaptive Modeling and Simulation ADMOS 2013 J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) SHAPE SENSITIVITY ANALYSIS INCLUDING QUALITY CONTROL WITH CARTESIAN

More information

Hp Generalized FEM and crack surface representation for non-planar 3-D cracks

Hp Generalized FEM and crack surface representation for non-planar 3-D cracks Hp Generalized FEM and crack surface representation for non-planar 3-D cracks J.P. Pereira, C.A. Duarte, D. Guoy, and X. Jiao August 5, 2008 Department of Civil & Environmental Engineering, University

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Implementation of a Modified Moving Least Squares Approximation for Predicting Soft Tissue Deformation using a Meshless Method

Implementation of a Modified Moving Least Squares Approximation for Predicting Soft Tissue Deformation using a Meshless Method Implementation of a Modified Moving Least Squares Approximation for Predicting Soft Tissue Deformation using a Meshless Method Habibullah Amin Chowdhury a, Grand Roman Joldes a, Adam Wittek a, Barry Doyle

More information

Stable Deformations using Stiffness Warping

Stable Deformations using Stiffness Warping Stable Deformations using Stiffness Warping Category: Research papers 127 Abstract The linear strain measures that are commonly used in real-time animations of deformable objects yield fast and stable

More information

Space Filling Curves and Hierarchical Basis. Klaus Speer

Space Filling Curves and Hierarchical Basis. Klaus Speer Space Filling Curves and Hierarchical Basis Klaus Speer Abstract Real world phenomena can be best described using differential equations. After linearisation we have to deal with huge linear systems of

More information

1. Carlos A. Felippa, Introduction to Finite Element Methods,

1. Carlos A. Felippa, Introduction to Finite Element Methods, Chapter Finite Element Methods In this chapter we will consider how one can model the deformation of solid objects under the influence of external (and possibly internal) forces. As we shall see, the coupled

More information

Free-Form Deformation for Point-Sampled Surface *

Free-Form Deformation for Point-Sampled Surface * JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 23, 757-771 (2007) Free-Form Deformation for Point-Sampled Surface * PING-HSIEN LIN, TONG-YEE LEE + AND CHENG-FON LIN + Department of Computer Science and

More information

Level-set and ALE Based Topology Optimization Using Nonlinear Programming

Level-set and ALE Based Topology Optimization Using Nonlinear Programming 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Level-set and ALE Based Topology Optimization Using Nonlinear Programming Shintaro Yamasaki

More information

Compu&ng Correspondences in Geometric Datasets. 4.2 Symmetry & Symmetriza/on

Compu&ng Correspondences in Geometric Datasets. 4.2 Symmetry & Symmetriza/on Compu&ng Correspondences in Geometric Datasets 4.2 Symmetry & Symmetriza/on Symmetry Invariance under a class of transformations Reflection Translation Rotation Reflection + Translation + global vs. partial

More information

Parameterization of Triangular Meshes with Virtual Boundaries

Parameterization of Triangular Meshes with Virtual Boundaries Parameterization of Triangular Meshes with Virtual Boundaries Yunjin Lee 1;Λ Hyoung Seok Kim 2;y Seungyong Lee 1;z 1 Department of Computer Science and Engineering Pohang University of Science and Technology

More information

Towards Meshless Methods for Surgical Simulation

Towards Meshless Methods for Surgical Simulation Ashley Horton, Adam Wittek, Karol Miller Intelligent Systems for Medicine Laboratory School of Mechanical Engineering, The University of Western Australia 35 Stirling Highway, Crawley, Perth WA 6009 Australia

More information

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) 1 Cloth Simulation deformable surface model Represent cloth model as a triangular or rectangular grid Points of finite mass as vertices Forces or energies of points

More information

NOISE PROPAGATION FROM VIBRATING STRUCTURES

NOISE PROPAGATION FROM VIBRATING STRUCTURES NOISE PROPAGATION FROM VIBRATING STRUCTURES Abstract R. Helfrich, M. Spriegel (INTES GmbH, Germany) Noise and noise exposure are becoming more important in product development due to environmental legislation.

More information

Set No. 1 IV B.Tech. I Semester Regular Examinations, November 2010 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

A new 8-node quadrilateral spline finite element

A new 8-node quadrilateral spline finite element Journal of Computational and Applied Mathematics 195 (2006) 54 65 www.elsevier.com/locate/cam A new 8-node quadrilateral spline finite element Chong-Jun Li, Ren-Hong Wang Institute of Mathematical Sciences,

More information