NONPARAMETRIC REGRESSION SPLINES FOR GENERALIZED LINEAR MODELS IN THE PRESENCE OF MEASUREMENT ERROR

Size: px
Start display at page:

Download "NONPARAMETRIC REGRESSION SPLINES FOR GENERALIZED LINEAR MODELS IN THE PRESENCE OF MEASUREMENT ERROR"

Transcription

1 NONPARAMETRIC REGRESSION SPLINES FOR GENERALIZED LINEAR MODELS IN THE PRESENCE OF MEASUREMENT ERROR J. D. Maca July 1, 1997 Abstract The purpose of this manual is to demonstrate the usage of software for analyzing nonparametric regression spline models in the presence of measurement error. The software was written to be used with the Splus software package, and currently can only be used from the UNIX operating system platform.

2 1 INTRODUCTION The software package analyzes regression data where measurement error is present. With measurement error data, one does not directly observe the independent variable, X. Instead, only X measured with an assumed additive error is found. This X measured with error will be called W. Thus W = X + U, where E(U) =0,var(U)=σu 2. Therefore, the data recorded is { } Y i, (W ij ) m i j=1, m i 1; i =1,...,n. If there are replicates of W at some or all of the X values (m i > 1 for at least one i), then a consistent estimate of the σ u can be found by σ 2 u = 2 Loading the Software ni=1 mi j=1 (W ij W i ) 2 ni=1 (m i 1) (1) Before each session, the comiled C code must be dynamically linked with the Splus software. This is done the the command dyn.load( spline.o ) and will only need to be done once at the begining of each Splus session. The file spline.o contains all the C code necessary for the non parametric regression spline analysis. The Splus code which calls this C code must also be loaded. This program can be loaded by source( NPreg.S ) and will only need to be done once. After loading the program should remain in memory. 3 Mixture of Normal Estimation The first step to fitting the structural spline is to estimate the number and parameters of the mixture normal distribution. This is done with the Splus function: thetas = find.k.mix.norm(w, n1,n2, kmax = k max, sigmau= σ u ) This function will estimate the values for the mixture normal densities in W having k mixtures for all k, 1 k k max, and estimates the value for k which fits the data best, and put these into the variable thetas. To do this, you must provide the function with an ARRAY W, which is a n m array holding the independent measurements. The function will then take n1 Gibbs samples to estimate the mixture normal parameters for each k in 1 k k max. It then picks the optimal value for k, and then calculates n2 gibbs samples for estimates the parameters for a k -mixture normal distribution. 1

3 You can change the maximum number of populations that you wish the mixture normal distribution to have with the kmax = k max option. The default value is 4. If there are replicates in W, then than estimate for the measurement error σ u can be calculated using Equation 1. However, if there are no replicates for W, then and estimate for the measurement error must be provided. This is done with the sigmau= σ u option. 2

4 4 Spline estimation The full command for estimating a regression spline is out <- me.glim (W,Y,NS="cp",simex=F,type=1,pmax=1,maxreps=30, B=25, xlim=null, lambda(0,.2,.4,.6,.8,1,1.25), thetas=null,sigmau=null, nknots=10, alpha=c(100,10,1,.05,.01,.001,.0001,.00001, , )) The only required arguments are W, the independent variable measured with error, and Y, the dependent variable. Note, both of these must be matrices with the same number of rows (observations). All other arguments are optional, and will produce optional analysis. The first option is NS="cp", which controls the knot selection method. The default is cp, which is the ridge regression smoothing method( Ruppert & Carroll, 1996). An optional method is the GCV method, which is used by NS="gcv" The next argument is the simex=f option which control whether the structural method or the SIMEX algorithm is used to find the spline. The default, simex=f, specifies that the structural method is used. To use the SIMEX method, change to simex=t. The next option is the type=1, which specifies which GLIM to fit. The default is type=1 which denotes the normal is fit. This will fit the same model as if no distributional assumption are made. The final option for model fitting is the pmax=1, which controls the order of the regression spline. The values 0, 1, 2 represent a linear, quadratic, cubic model respectively. The default is to fit a quadratic model. The rest of the options determine how the models are fit. The first option is maxreps=30, which is the upper limit to the number of iterations in the scoring method to fit the generalized linear model. The next two options pertain to the SIMEX method if used. The option lambda=λ which is a vector of values to be using in the SIMEX algorithm. The default vector is λ =(0,.2,.4,.6,.8,1,1.25). At each of these λ values, there will be B = 25 generated datasets. The number of generated datasets can be changed to any value. The argument alpha = α controls the values used in the ridge regression smoothing method. This can again be changed to any vector containing the exact desired values. The ridge regression method assumes a large number fixed number of fixed knot points. This number is designated by nknots=10. This can be changed to any integer. The function will automatically calculate the mixture normal parameters. However, since this is the most time consuming part of the regression spline estimation, it is should only be done once. For this reason if you know that you are going to fit many splines to the same set of data, to first find the mixture normal parameters by thetas.est = find.k.mix.norm(w, n1,n2, kmax = k max, sigmau= σ u ) 3

5 then use the thetas = thetas.est to uses the previously calculated estimates. As in Section 3, if there is no replicates for W, then an previous estimate for σ u must be used. This estimate is given to the program through the sigmau = σ u command. If no value is given, it will assume that it is unknown, and try to calculate it. 5 Output After the spline has been found to the specifications of the user, it will return four pieces of information. The first set of information is a vector called Xhat and a vector called Yhat. These two vectors can be used for plotting the regression spline estimates. If a structural spline was fit, the range of the Xhat variable can be set with the xlim=null command. If a vector is supplied, such as xlim=c(0,1), this will force the estimates found to only have X values between 0 and 1. The default value is to use the inner 90% of the range between the highest and lowest values for W. The next information returned will be be returned if a structural spline is fit. First, is a vector betahat, which is the vector of the β coefficients for the regression spline. The second part is a vector called knots which is the vector of the knots used for the regression spline estimation. If the SIMEX algorithm was used, both of these vectors will be returned as NULL. 6 Examples For this example, I will be using the data found in the Appendix, in Section 7.1. There is 500 data values, (X), which were generated from an Uniform(0,1) distribution. The true curve was then generated as Y =sin(4πx)+ɛ, where ɛ Normal(0,.05 2 ). The measurement error was generated from the Normal(0, ), and there were 2 replications at each X point. With this data, the Structural curve using 15 knots points and the ridge regression smoothing method would be found by the following command. out <- me.glim(w,y,nknots=15) Note that was not necessary to specify the knot selection procedure, as ridge regression is the default method. The fitted model can now be plotted in Splus, by plot(out$xhat,out$yhat). To find the SIMEX estimate using this same data, and the GCV mothod of knot selection, the following command should be issued out <- me.glim(w,y,ns= gcv,simex=t,b=50) 4

6 which will simulate 50 datasets at each λ value. To find the naive estimate (for comparison), one should give the command out <- me.glim(w,y,simex=t,b=1,lambda=c(0)) 7 Appendix 7.1 Data for Example 1 The data used for the example in Section 6 can be found in Table 1. Although X values are given in the dataset, these are unobseravle in real data situations, and are not used in the spline estimation. They are present here only for simulation purposes. There is a plot of this data in Figure 1 which displays the average W value versus Y for each observation. The true cureve from which the data was generated is also displayed on the plot. 5

7 Table 1: Data for Example 1 Obs X W 1 W 2 Y Obs X W 1 W 2 Y

8 Table 2: Data for Example 1 (continued) Obs X W 1 W 2 Y Obs X W 1 W 2 Y

9 Table 3: Data for Example 1 (continued) Obs X W 1 W 2 Y Obs X W 1 W 2 Y

10 Table 4: Data for Example 1 (continued) Obs X W 1 W 2 Y Obs X W 1 W 2 Y

11 Observed data and true curve Average W value Y values Figure 1: Plot of the true curve on the observed data 10

NONPARAMETRIC REGRESSION WIT MEASUREMENT ERROR: SOME RECENT PR David Ruppert Cornell University

NONPARAMETRIC REGRESSION WIT MEASUREMENT ERROR: SOME RECENT PR David Ruppert Cornell University NONPARAMETRIC REGRESSION WIT MEASUREMENT ERROR: SOME RECENT PR David Ruppert Cornell University www.orie.cornell.edu/ davidr (These transparencies, preprints, and references a link to Recent Talks and

More information

Lecture 17: Smoothing splines, Local Regression, and GAMs

Lecture 17: Smoothing splines, Local Regression, and GAMs Lecture 17: Smoothing splines, Local Regression, and GAMs Reading: Sections 7.5-7 STATS 202: Data mining and analysis November 6, 2017 1 / 24 Cubic splines Define a set of knots ξ 1 < ξ 2 < < ξ K. We want

More information

Nonparametric regression using kernel and spline methods

Nonparametric regression using kernel and spline methods Nonparametric regression using kernel and spline methods Jean D. Opsomer F. Jay Breidt March 3, 016 1 The statistical model When applying nonparametric regression methods, the researcher is interested

More information

Splines. Patrick Breheny. November 20. Introduction Regression splines (parametric) Smoothing splines (nonparametric)

Splines. Patrick Breheny. November 20. Introduction Regression splines (parametric) Smoothing splines (nonparametric) Splines Patrick Breheny November 20 Patrick Breheny STA 621: Nonparametric Statistics 1/46 Introduction Introduction Problems with polynomial bases We are discussing ways to estimate the regression function

More information

Curve fitting using linear models

Curve fitting using linear models Curve fitting using linear models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark September 28, 2012 1 / 12 Outline for today linear models and basis functions polynomial regression

More information

Applied Statistics : Practical 9

Applied Statistics : Practical 9 Applied Statistics : Practical 9 This practical explores nonparametric regression and shows how to fit a simple additive model. The first item introduces the necessary R commands for nonparametric regression

More information

Generalized Additive Models

Generalized Additive Models Generalized Additive Models Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Generalized Additive Models GAMs are one approach to non-parametric regression in the multiple predictor setting.

More information

Splines and penalized regression

Splines and penalized regression Splines and penalized regression November 23 Introduction We are discussing ways to estimate the regression function f, where E(y x) = f(x) One approach is of course to assume that f has a certain shape,

More information

Nonparametric Approaches to Regression

Nonparametric Approaches to Regression Nonparametric Approaches to Regression In traditional nonparametric regression, we assume very little about the functional form of the mean response function. In particular, we assume the model where m(xi)

More information

University of Wisconsin-Madison Spring 2018 BMI/CS 776: Advanced Bioinformatics Homework #2

University of Wisconsin-Madison Spring 2018 BMI/CS 776: Advanced Bioinformatics Homework #2 Assignment goals Use mutual information to reconstruct gene expression networks Evaluate classifier predictions Examine Gibbs sampling for a Markov random field Control for multiple hypothesis testing

More information

Package rgcvpack. February 20, Index 6. Fitting Thin Plate Smoothing Spline. Fit thin plate splines of any order with user specified knots

Package rgcvpack. February 20, Index 6. Fitting Thin Plate Smoothing Spline. Fit thin plate splines of any order with user specified knots Version 0.1-4 Date 2013/10/25 Title R Interface for GCVPACK Fortran Package Author Xianhong Xie Package rgcvpack February 20, 2015 Maintainer Xianhong Xie

More information

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or STA 450/4000 S: February 2 2005 Flexible modelling using basis expansions (Chapter 5) Linear regression: y = Xβ + ɛ, ɛ (0, σ 2 ) Smooth regression: y = f (X) + ɛ: f (X) = E(Y X) to be specified Flexible

More information

Lecture 16: High-dimensional regression, non-linear regression

Lecture 16: High-dimensional regression, non-linear regression Lecture 16: High-dimensional regression, non-linear regression Reading: Sections 6.4, 7.1 STATS 202: Data mining and analysis November 3, 2017 1 / 17 High-dimensional regression Most of the methods we

More information

More advanced use of mgcv. Simon Wood Mathematical Sciences, University of Bath, U.K.

More advanced use of mgcv. Simon Wood Mathematical Sciences, University of Bath, U.K. More advanced use of mgcv Simon Wood Mathematical Sciences, University of Bath, U.K. Fine control of smoothness: gamma Suppose that we fit a model but a component is too wiggly. For GCV/AIC we can increase

More information

Interpolation by Spline Functions

Interpolation by Spline Functions Interpolation by Spline Functions Com S 477/577 Sep 0 007 High-degree polynomials tend to have large oscillations which are not the characteristics of the original data. To yield smooth interpolating curves

More information

1 Training/Validation/Testing

1 Training/Validation/Testing CPSC 340 Final (Fall 2015) Name: Student Number: Please enter your information above, turn off cellphones, space yourselves out throughout the room, and wait until the official start of the exam to begin.

More information

STAT 705 Introduction to generalized additive models

STAT 705 Introduction to generalized additive models STAT 705 Introduction to generalized additive models Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 22 Generalized additive models Consider a linear

More information

Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010

Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Tim Hanson, Ph.D. University of South Carolina T. Hanson (USC) Stat 704: Data Analysis I, Fall 2010 1 / 26 Additive predictors

More information

Non-Parametric and Semi-Parametric Methods for Longitudinal Data

Non-Parametric and Semi-Parametric Methods for Longitudinal Data PART III Non-Parametric and Semi-Parametric Methods for Longitudinal Data CHAPTER 8 Non-parametric and semi-parametric regression methods: Introduction and overview Xihong Lin and Raymond J. Carroll Contents

More information

Generalized Additive Model

Generalized Additive Model Generalized Additive Model by Huimin Liu Department of Mathematics and Statistics University of Minnesota Duluth, Duluth, MN 55812 December 2008 Table of Contents Abstract... 2 Chapter 1 Introduction 1.1

More information

Nonparametric Mixed-Effects Models for Longitudinal Data

Nonparametric Mixed-Effects Models for Longitudinal Data Nonparametric Mixed-Effects Models for Longitudinal Data Zhang Jin-Ting Dept of Stat & Appl Prob National University of Sinagpore University of Seoul, South Korea, 7 p.1/26 OUTLINE The Motivating Data

More information

GAMs, GAMMs and other penalized GLMs using mgcv in R. Simon Wood Mathematical Sciences, University of Bath, U.K.

GAMs, GAMMs and other penalized GLMs using mgcv in R. Simon Wood Mathematical Sciences, University of Bath, U.K. GAMs, GAMMs and other penalied GLMs using mgcv in R Simon Wood Mathematical Sciences, University of Bath, U.K. Simple eample Consider a very simple dataset relating the timber volume of cherry trees to

More information

Package survivalmpl. December 11, 2017

Package survivalmpl. December 11, 2017 Package survivalmpl December 11, 2017 Title Penalised Maximum Likelihood for Survival Analysis Models Version 0.2 Date 2017-10-13 Author Dominique-Laurent Couturier, Jun Ma, Stephane Heritier, Maurizio

More information

Robust Linear Regression (Passing- Bablok Median-Slope)

Robust Linear Regression (Passing- Bablok Median-Slope) Chapter 314 Robust Linear Regression (Passing- Bablok Median-Slope) Introduction This procedure performs robust linear regression estimation using the Passing-Bablok (1988) median-slope algorithm. Their

More information

Generalized additive models I

Generalized additive models I I Patrick Breheny October 6 Patrick Breheny BST 764: Applied Statistical Modeling 1/18 Introduction Thus far, we have discussed nonparametric regression involving a single covariate In practice, we often

More information

2. Linear Regression and Gradient Descent

2. Linear Regression and Gradient Descent Pattern Recognition And Machine Learning - EPFL - Fall 2015 Emtiyaz Khan, Timur Bagautdinov, Carlos Becker, Ilija Bogunovic & Ksenia Konyushkova 2. Linear Regression and Gradient Descent 2.1 Goals The

More information

See the course website for important information about collaboration and late policies, as well as where and when to turn in assignments.

See the course website for important information about collaboration and late policies, as well as where and when to turn in assignments. COS Homework # Due Tuesday, February rd See the course website for important information about collaboration and late policies, as well as where and when to turn in assignments. Data files The questions

More information

Handout 4 - Interpolation Examples

Handout 4 - Interpolation Examples Handout 4 - Interpolation Examples Middle East Technical University Example 1: Obtaining the n th Degree Newton s Interpolating Polynomial Passing through (n+1) Data Points Obtain the 4 th degree Newton

More information

Assessing the Quality of the Natural Cubic Spline Approximation

Assessing the Quality of the Natural Cubic Spline Approximation Assessing the Quality of the Natural Cubic Spline Approximation AHMET SEZER ANADOLU UNIVERSITY Department of Statisticss Yunus Emre Kampusu Eskisehir TURKEY ahsst12@yahoo.com Abstract: In large samples,

More information

CSC 411: Lecture 02: Linear Regression

CSC 411: Lecture 02: Linear Regression CSC 411: Lecture 02: Linear Regression Raquel Urtasun & Rich Zemel University of Toronto Sep 16, 2015 Urtasun & Zemel (UofT) CSC 411: 02-Regression Sep 16, 2015 1 / 16 Today Linear regression problem continuous

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

Smoothing Scatterplots Using Penalized Splines

Smoothing Scatterplots Using Penalized Splines Smoothing Scatterplots Using Penalized Splines 1 What do we mean by smoothing? Fitting a "smooth" curve to the data in a scatterplot 2 Why would we want to fit a smooth curve to the data in a scatterplot?

More information

Analyzing Longitudinal Data Using Regression Splines

Analyzing Longitudinal Data Using Regression Splines Analyzing Longitudinal Data Using Regression Splines Zhang Jin-Ting Dept of Stat & Appl Prob National University of Sinagpore August 18, 6 DSAP, NUS p.1/16 OUTLINE Motivating Longitudinal Data Parametric

More information

Package gsscopu. R topics documented: July 2, Version Date

Package gsscopu. R topics documented: July 2, Version Date Package gsscopu July 2, 2015 Version 0.9-3 Date 2014-08-24 Title Copula Density and 2-D Hazard Estimation using Smoothing Splines Author Chong Gu Maintainer Chong Gu

More information

Minitab 17 commands Prepared by Jeffrey S. Simonoff

Minitab 17 commands Prepared by Jeffrey S. Simonoff Minitab 17 commands Prepared by Jeffrey S. Simonoff Data entry and manipulation To enter data by hand, click on the Worksheet window, and enter the values in as you would in any spreadsheet. To then save

More information

Motivation Patch tests Numerical examples Conclusions

Motivation Patch tests Numerical examples Conclusions Weakening the tight coupling between geometry and simulation in isogeometric analysis: from sub- and super- geometric analysis to Geometry Independent Field approximation (GIFT) Elena Atroshchenko, Gang

More information

Section 9.3 Graphing Quadratic Functions

Section 9.3 Graphing Quadratic Functions Section 9.3 Graphing Quadratic Functions A Quadratic Function is an equation that can be written in the following Standard Form., where a 0. Every quadratic function has a U-shaped graph called a. If the

More information

Computational Physics PHYS 420

Computational Physics PHYS 420 Computational Physics PHYS 420 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

A toolbox of smooths. Simon Wood Mathematical Sciences, University of Bath, U.K.

A toolbox of smooths. Simon Wood Mathematical Sciences, University of Bath, U.K. A toolbo of smooths Simon Wood Mathematical Sciences, University of Bath, U.K. Smooths for semi-parametric GLMs To build adequate semi-parametric GLMs requires that we use functions with appropriate properties.

More information

A Practical Review of Uniform B-Splines

A Practical Review of Uniform B-Splines A Practical Review of Uniform B-Splines Kristin Branson A B-spline is a convenient form for representing complicated, smooth curves. A uniform B-spline of order k is a piecewise order k Bezier curve, and

More information

Statistical Matching using Fractional Imputation

Statistical Matching using Fractional Imputation Statistical Matching using Fractional Imputation Jae-Kwang Kim 1 Iowa State University 1 Joint work with Emily Berg and Taesung Park 1 Introduction 2 Classical Approaches 3 Proposed method 4 Application:

More information

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2 Parametric Surfaces Michael Kazhdan (601.457/657) HB 10.6 -- 10.9, 10.1 FvDFH 11.2 Announcement OpenGL review session: When: Wednesday (10/1) @ 7:00-9:00 PM Where: Olin 05 Cubic Splines Given a collection

More information

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

More information

lecture 10: B-Splines

lecture 10: B-Splines 9 lecture : -Splines -Splines: a basis for splines Throughout our discussion of standard polynomial interpolation, we viewed P n as a linear space of dimension n +, and then expressed the unique interpolating

More information

Last time... Bias-Variance decomposition. This week

Last time... Bias-Variance decomposition. This week Machine learning, pattern recognition and statistical data modelling Lecture 4. Going nonlinear: basis expansions and splines Last time... Coryn Bailer-Jones linear regression methods for high dimensional

More information

AN ADDITIVE BIVARIATE HIERARCHICAL MODEL FOR FUNCTIONAL DATA AND RELATED COMPUTATIONS. A Dissertation ANDREW MIDDLETON REDD

AN ADDITIVE BIVARIATE HIERARCHICAL MODEL FOR FUNCTIONAL DATA AND RELATED COMPUTATIONS. A Dissertation ANDREW MIDDLETON REDD AN ADDITIVE BIVARIATE HIERARCHICAL MODEL FOR FUNCTIONAL DATA AND RELATED COMPUTATIONS A Dissertation by ANDREW MIDDLETON REDD Submitted to the Office of Graduate Studies of Texas A&M University in partial

More information

Natural Quartic Spline

Natural Quartic Spline Natural Quartic Spline Rafael E Banchs INTRODUCTION This report describes the natural quartic spline algorithm developed for the enhanced solution of the Time Harmonic Field Electric Logging problem As

More information

Package svmpath. R topics documented: August 30, Title The SVM Path Algorithm Date Version Author Trevor Hastie

Package svmpath. R topics documented: August 30, Title The SVM Path Algorithm Date Version Author Trevor Hastie Title The SVM Path Algorithm Date 2016-08-29 Version 0.955 Author Package svmpath August 30, 2016 Computes the entire regularization path for the two-class svm classifier with essentially the same cost

More information

Nonparametric and Simulation-Based Tests. Stat OSU, Autumn 2018 Dalpiaz

Nonparametric and Simulation-Based Tests. Stat OSU, Autumn 2018 Dalpiaz Nonparametric and Simulation-Based Tests Stat 3202 @ OSU, Autumn 2018 Dalpiaz 1 What is Parametric Testing? 2 Warmup #1, Two Sample Test for p 1 p 2 Ohio Issue 1, the Drug and Criminal Justice Policies

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

davidr Cornell University

davidr Cornell University 1 NONPARAMETRIC RANDOM EFFECTS MODELS AND LIKELIHOOD RATIO TESTS Oct 11, 2002 David Ruppert Cornell University www.orie.cornell.edu/ davidr (These transparencies and preprints available link to Recent

More information

Chapter 12: Quadratic and Cubic Graphs

Chapter 12: Quadratic and Cubic Graphs Chapter 12: Quadratic and Cubic Graphs Section 12.1 Quadratic Graphs x 2 + 2 a 2 + 2a - 6 r r 2 x 2 5x + 8 2y 2 + 9y + 2 All the above equations contain a squared number. They are therefore called quadratic

More information

Linear Penalized Spline Model Estimation Using Ranked Set Sampling Technique

Linear Penalized Spline Model Estimation Using Ranked Set Sampling Technique Linear Penalized Spline Model Estimation Using Ranked Set Sampling Technique Al Kadiri M. A. Abstract Benefits of using Ranked Set Sampling (RSS) rather than Simple Random Sampling (SRS) are indeed significant

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Homework 3. (a) The following code imports the data and standardizes the vector u, called U, include("readclassjson.jl")

Homework 3. (a) The following code imports the data and standardizes the vector u, called U, include(readclassjson.jl) EE104, Spring 2017-2018 S. Boyd & S. Lall Homework 3 1. Predicting power demand. Power utilities need to predict the power demanded by consumers. A possible predictor is an auto-regressive (AR) model,

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Machine Learning Problem set 3 Due Tuesday, October 22, in class What and how to turn in? Turn in short written answers to the questions explicitly stated, and when requested to explain or prove.

More information

Package spatialtaildep

Package spatialtaildep Package spatialtaildep Title Estimation of spatial tail dependence models February 20, 2015 Provides functions implementing the pairwise M-estimator for parametric models for stable tail dependence functions

More information

Package msgps. February 20, 2015

Package msgps. February 20, 2015 Type Package Package msgps February 20, 2015 Title Degrees of freedom of elastic net, adaptive lasso and generalized elastic net Version 1.3 Date 2012-5-17 Author Kei Hirose Maintainer Kei Hirose

More information

Consider functions such that then satisfies these properties: So is represented by the cubic polynomials on on and on.

Consider functions such that then satisfies these properties: So is represented by the cubic polynomials on on and on. 1 of 9 3/1/2006 2:28 PM ne previo Next: Trigonometric Interpolation Up: Spline Interpolation Previous: Piecewise Linear Case Cubic Splines A piece-wise technique which is very popular. Recall the philosophy

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Package glassomix. May 30, 2013

Package glassomix. May 30, 2013 Package glassomix May 30, 2013 Type Package Title High dimensional Mixture Graph Models selection Version 1.1 Date 2013-05-22 Author Anani Lotsi and Ernst Wit Maintainer Anani Lotsi Depends

More information

2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves. CS 4620 Lecture 18 2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

More information

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K.

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K. GAMs semi-parametric GLMs Simon Wood Mathematical Sciences, University of Bath, U.K. Generalized linear models, GLM 1. A GLM models a univariate response, y i as g{e(y i )} = X i β where y i Exponential

More information

Bayes Estimators & Ridge Regression

Bayes Estimators & Ridge Regression Bayes Estimators & Ridge Regression Readings ISLR 6 STA 521 Duke University Merlise Clyde October 27, 2017 Model Assume that we have centered (as before) and rescaled X o (original X) so that X j = X o

More information

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines A popular method for moving beyond linearity 2. Basis expansion and regularization 1 Idea: Augment the vector inputs x with additional variables which are transformation of x use linear models in this

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Basis Functions Tom Kelsey School of Computer Science University of St Andrews http://www.cs.st-andrews.ac.uk/~tom/ tom@cs.st-andrews.ac.uk Tom Kelsey ID5059-02-BF 2015-02-04

More information

Simulation Extrapolation

Simulation Extrapolation Simulation Extrapolation mk:@msitstore:c:\progra~1\r\r-26~1.0\library\simex\chtml\simex.chm::/simex.html Page 1 of 3 simex(simex) Simulation Extrapolation Implementation of the SIMEX Algorithm for measurement

More information

Doubly Cyclic Smoothing Splines and Analysis of Seasonal Daily Pattern of CO2 Concentration in Antarctica

Doubly Cyclic Smoothing Splines and Analysis of Seasonal Daily Pattern of CO2 Concentration in Antarctica Boston-Keio Workshop 2016. Doubly Cyclic Smoothing Splines and Analysis of Seasonal Daily Pattern of CO2 Concentration in Antarctica... Mihoko Minami Keio University, Japan August 15, 2016 Joint work with

More information

Cubic Spline Questions

Cubic Spline Questions Cubic Spline Questions. Find natural cubic splines which interpolate the following dataset of, points:.0,.,.,.0, 7.0,.,.0,0.; estimate the value for. Solution: Step : Use the n- cubic spline equations

More information

Remark. Jacobs University Visualization and Computer Graphics Lab : ESM4A - Numerical Methods 331

Remark. Jacobs University Visualization and Computer Graphics Lab : ESM4A - Numerical Methods 331 Remark Reconsidering the motivating example, we observe that the derivatives are typically not given by the problem specification. However, they can be estimated in a pre-processing step. A good estimate

More information

The sspline Package. October 11, 2007

The sspline Package. October 11, 2007 The sspline Package October 11, 2007 Version 0.1-5 Date 2007/10/10 Title Smoothing Splines on the Sphere Author Xianhong Xie Maintainer Xianhong Xie Depends R (>=

More information

An introduction to interpolation and splines

An introduction to interpolation and splines An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

More information

Assignment 2. with (a) (10 pts) naive Gauss elimination, (b) (10 pts) Gauss with partial pivoting

Assignment 2. with (a) (10 pts) naive Gauss elimination, (b) (10 pts) Gauss with partial pivoting Assignment (Be sure to observe the rules about handing in homework). Solve: with (a) ( pts) naive Gauss elimination, (b) ( pts) Gauss with partial pivoting *You need to show all of the steps manually.

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010

THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010 THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL STOR 455 Midterm September 8, INSTRUCTIONS: BOTH THE EXAM AND THE BUBBLE SHEET WILL BE COLLECTED. YOU MUST PRINT YOUR NAME AND SIGN THE HONOR PLEDGE

More information

Generalized Additive Models

Generalized Additive Models :p Texts in Statistical Science Generalized Additive Models An Introduction with R Simon N. Wood Contents Preface XV 1 Linear Models 1 1.1 A simple linear model 2 Simple least squares estimation 3 1.1.1

More information

Math CST 2003 Accuracy

Math CST 2003 Accuracy probability 1 Math CST 2003 Accuracy 0.8 Average Hitrate 0.6 Two-test Consistency 0.4 0.2 Proficiency Standard false negative false positive 2 3 4 5 6 7 Grade probability 1 ELA CST 2003 Accuracy 0.8 Average

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

Lab 5 - Risk Analysis, Robustness, and Power

Lab 5 - Risk Analysis, Robustness, and Power Type equation here.biology 458 Biometry Lab 5 - Risk Analysis, Robustness, and Power I. Risk Analysis The process of statistical hypothesis testing involves estimating the probability of making errors

More information

Lecture 13: Model selection and regularization

Lecture 13: Model selection and regularization Lecture 13: Model selection and regularization Reading: Sections 6.1-6.2.1 STATS 202: Data mining and analysis October 23, 2017 1 / 17 What do we know so far In linear regression, adding predictors always

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal Email: yuppal@ysu.edu Chapter 8: Interval Estimation Population Mean: Known Population Mean: Unknown Margin of Error and the Interval

More information

Chapter 4: Non-Parametric Techniques

Chapter 4: Non-Parametric Techniques Chapter 4: Non-Parametric Techniques Introduction Density Estimation Parzen Windows Kn-Nearest Neighbor Density Estimation K-Nearest Neighbor (KNN) Decision Rule Supervised Learning How to fit a density

More information

Programming Exercise 1: Linear Regression

Programming Exercise 1: Linear Regression Programming Exercise 1: Linear Regression Machine Learning Introduction In this exercise, you will implement linear regression and get to see it work on data. Before starting on this programming exercise,

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE

A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE Geometric Modeling Notes A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview

More information

100 Myung Hwan Na log-hazard function. The discussion section of Abrahamowicz, et al.(1992) contains a good review of many of the papers on the use of

100 Myung Hwan Na log-hazard function. The discussion section of Abrahamowicz, et al.(1992) contains a good review of many of the papers on the use of J. KSIAM Vol.3, No.2, 99-106, 1999 SPLINE HAZARD RATE ESTIMATION USING CENSORED DATA Myung Hwan Na Abstract In this paper, the spline hazard rate model to the randomly censored data is introduced. The

More information

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK 1 An analysis of the problem: To get the curve constructed, how many knots are needed? Consider the following case: So, to interpolate (n +1) data points, one needs (n +7) knots,, for a uniform cubic B-spline

More information

Stat 8053, Fall 2013: Additive Models

Stat 8053, Fall 2013: Additive Models Stat 853, Fall 213: Additive Models We will only use the package mgcv for fitting additive and later generalized additive models. The best reference is S. N. Wood (26), Generalized Additive Models, An

More information

APPENDIX AVAILABLE ON THE HEI WEB SITE

APPENDIX AVAILABLE ON THE HEI WEB SITE APPENDIX AVAILABLE ON THE HEI WEB SITE Research Report 167 Assessment and Statistical Modeling of the Relationship Between Remotely Sensed Aerosol Optical Depth and PM2.5 in the Eastern United States Christopher

More information

Multi-label classification using rule-based classifier systems

Multi-label classification using rule-based classifier systems Multi-label classification using rule-based classifier systems Shabnam Nazmi (PhD candidate) Department of electrical and computer engineering North Carolina A&T state university Advisor: Dr. A. Homaifar

More information

BASIC LOESS, PBSPLINE & SPLINE

BASIC LOESS, PBSPLINE & SPLINE CURVES AND SPLINES DATA INTERPOLATION SGPLOT provides various methods for fitting smooth trends to scatterplot data LOESS An extension of LOWESS (Locally Weighted Scatterplot Smoothing), uses locally weighted

More information

The linear mixed model: modeling hierarchical and longitudinal data

The linear mixed model: modeling hierarchical and longitudinal data The linear mixed model: modeling hierarchical and longitudinal data Analysis of Experimental Data AED The linear mixed model: modeling hierarchical and longitudinal data 1 of 44 Contents 1 Modeling Hierarchical

More information

ITSx: Policy Analysis Using Interrupted Time Series

ITSx: Policy Analysis Using Interrupted Time Series ITSx: Policy Analysis Using Interrupted Time Series Week 5 Slides Michael Law, Ph.D. The University of British Columbia COURSE OVERVIEW Layout of the weeks 1. Introduction, setup, data sources 2. Single

More information

Simulation and resampling analysis in R

Simulation and resampling analysis in R Simulation and resampling analysis in R Author: Nicholas G Reich, Jeff Goldsmith, Andrea S Foulkes, Gregory Matthews This material is part of the statsteachr project Made available under the Creative Commons

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Title. Description. Menu. Remarks and examples. stata.com. stata.com. PSS Control Panel

Title. Description. Menu. Remarks and examples. stata.com. stata.com. PSS Control Panel Title stata.com GUI Graphical user interface for power and sample-size analysis Description Menu Remarks and examples Also see Description This entry describes the graphical user interface (GUI) for the

More information

8 Piecewise Polynomial Interpolation

8 Piecewise Polynomial Interpolation Applied Math Notes by R. J. LeVeque 8 Piecewise Polynomial Interpolation 8. Pitfalls of high order interpolation Suppose we know the value of a function at several points on an interval and we wish to

More information

Smoothing and Forecasting Mortality Rates with P-splines. Iain Currie. Data and problem. Plan of talk

Smoothing and Forecasting Mortality Rates with P-splines. Iain Currie. Data and problem. Plan of talk Smoothing and Forecasting Mortality Rates with P-splines Iain Currie Heriot Watt University Data and problem Data: CMI assured lives : 20 to 90 : 1947 to 2002 Problem: forecast table to 2046 London, June

More information

Goals of the Lecture. SOC6078 Advanced Statistics: 9. Generalized Additive Models. Limitations of the Multiple Nonparametric Models (2)

Goals of the Lecture. SOC6078 Advanced Statistics: 9. Generalized Additive Models. Limitations of the Multiple Nonparametric Models (2) SOC6078 Advanced Statistics: 9. Generalized Additive Models Robert Andersen Department of Sociology University of Toronto Goals of the Lecture Introduce Additive Models Explain how they extend from simple

More information