Knowledge Discovery and Data Mining

Size: px
Start display at page:

Download "Knowledge Discovery and Data Mining"

Transcription

1 Knowledge Discovery and Data Mining Basis Functions Tom Kelsey School of Computer Science University of St Andrews Tom Kelsey ID BF / 30

2 Housekeeping P1 spec, dates and assessment will be released on Friday Legitimate Concerns: CS students can I cope witht the Maths? Maths students is there too much programming? Other science students both of the above These are problems for me/us We can t offer a course that can t be done by a subset of the student cohort......or is too easy Tom Kelsey ID BF / 30

3 Some recurring ideas I encourage you (particularly for this course) to think of our analysis process as separating signal from noise. Standard statistics models: anova, t-tests, regression etc. Often 2 formal models within each for signal (location model) and noise (dispersion model).. Our stats models for these are chosen in part from theoretical considerations, partly from convenience. There is a big difference between fitting a model with strong a priori theoretical form, and fitting models to data where little is known. Tom Kelsey ID BF / 30

4 Preliminary notation Lowercase bold letters are vectors (a) defaulting to column vectors (i 1) with elements a i ; uppercase bold letters represent matrices A (i j) - elements a ij, rows a i, columns a j. a T is the transpose of a X is typically our data: n rows with entries for p attributes X 1 is the inverse of X (recall Gaussian elimination) y, ŷ typically n observed and predicted response values, respectively. Tom Kelsey ID BF / 30

5 The Linear Regression equation Variations on this regression equation will recur throughout the course: y = Xβ + e where y is a n-element column vector for the response, X is a n p matrix of covariate values, β is a p-element column vector of population parameters, and e is a column vector of errors. How do we calculate the equation for the model prediction at the i-th observation? From our training data we have input values X and responses y. Tom Kelsey ID BF / 30

6 The LRE We use these to identify a suitable ˆβ. At the i-th observation we have ŷ i = x T i ˆβ. In the well-known case of Residual Sum of Squares we choose RSS(β) = (y Xβ) T (y Xβ) To minimise this error, we identify where its derivative is zero: X T (y Xβ) = 0 This has unique solution (if X T X is nonsingular) ˆβ = (X T X) 1 X T y Tom Kelsey ID BF / 30

7 The LRE For test input we can predict the response for this choice of ˆβ. ŷ = X(X T X) 1 X T y The matrix that converts actual responses into predicted responses is known as the projection operator, or hat matrix, or influence matrix, depending on which textbook you read. The residual is ê = y X ˆβ giving an RSS (or SSE) of ê T ê. Tom Kelsey ID BF / 30

8 The LRE Key points: 1 We know how to invert matrices Gaussian elimination so variations on this technique are attractive 2 Matrix inversion is O(p 3 ), so the computational complexity is low 3 We need to watch out for problems like numeric cancellation, though 4 For other definitions of error, the calculations for ˆβ are minimisation problems for which we typically have good algorithms Tom Kelsey ID BF / 30

9 Basis Functions Need-to-knows: 1 polynomial regression as a linear combination of basis functions. 2 why and how curves may be created as a linear combination of basis functions. 3 why and how to construct a univariate piecewise constant basis e.g. a bin smooth. 4 b-spline bases. 5 extension to tensor product b-spline basis functions (multi-dimensional case). Tom Kelsey ID BF / 30

10 Basis functions Functions which are combined to produce more complex functions. Usually simple themselves, but combine to create complex functions. Several common methods may be viewed from the basis function perspective: polynomial regression, splines, (as we will see) regression trees, bin-smoothing, wavelet analysis, fourier analysis + many more. Tom Kelsey ID BF / 30

11 Basis functions to construct a bin smooth Divide the x-region(s) into K regions R j, each having the same number of data points. Basis functions are: { 0 x / R b j (x) = j 1 x R j Now multiply each basis by the average of the outputs in that region. This gives a discontinuous function, but is easy to derive and interpret. Tom Kelsey ID BF / 30

12 Linear Source: Ty Tong s Nonparametric Kernel Regression Slides Tom Kelsey ID BF / 30

13 Quadratic Source: Ty Tong s Nonparametric Kernel Regression Slides Tom Kelsey ID BF / 30

14 Cubic Source: Ty Tong s Nonparametric Kernel Regression Slides Tom Kelsey ID BF / 30

15 Cubic Spline Source: Ty Tong s Nonparametric Kernel Regression Slides Tom Kelsey ID BF / 30

16 BinSmooth Source: Ty Tong s Nonparametric Kernel Regression Slides Tom Kelsey ID BF / 30

17 Piecewise linear 1 Basis functions are 1 and x. 2 Split the x region into parts divided at c k 3 Specify a linear model for each part 4 Add a continuity constraint 5 Simplify the linear system of equations 6 Solve for the parameters 1 Choose a loss function 2 Define error using the linear regression equation 3 Solve the resulting optimisation problem For RSS, the final stage is just matrix inversion, which is cheap. This procedure generalises! Tom Kelsey ID BF / 30

18 Other basis functions We often want nonlinear models, but also want to keep our linear regression equation. A solution is to use nonlinear basis functions 1, x, x 2, x 3,... for polynomials but search for linear combinations of the model parameters. To do this we turn X into a design matrix with additional columns 1, x i, x 2 i, x3 i,..., and use the linear regression equation to find optimal parameters. As before, we set parameter derivatives to zero, then solve by inverting X T X. Tom Kelsey ID BF / 30

19 Other basis functions This approach gives the best of all worlds, in some sense. By increasing the degree of the polynomial (e.g. 1, x i, x 2 i, x3 i,... x58 i ) we can get an excellent (too good?) fit to the data (i.e the RSS can be made as small as we want). We only have to invert a p + 1 p + 1 matrix, where p is the degree of the polynomial. This is computationally inexpensive. So we get nonlinear models by solving a linear regression problem. But data values have a global influence on the model, and we may not want this. Tom Kelsey ID BF / 30

20 Local regression using basis functions More basis functions, and/or different bases. What makes a good choice of basis function? local" effects outweigh far off data points minimum loss of accuracy due to cancellation easy to calculate straightforward convergence anlysis B-splines (usually) have all these characteristics. For detailed exposition, see Ch 19 of Approximation theory and methods, MJD Powell, CUP Appendix to Ch 5 of HTF Tom Kelsey ID BF / 30

21 A local univariate basis For calculation of a series of b-spline bases (B): B i,j (x) = x δ i B δ i+j 1 i,j 1 (x) + δ i+j x B δ i δ i+j i+1,j 1 (x) (1) δ i+1 Where we start with: B i,1 (x) = { 1 δ i x δ i+1, 0 otherwise. (2) Tom Kelsey ID BF / 30

22 Example b-spline basis B-spline Basis Functions x Source: Tom Kelsey ID BF / 30

23 Example b-spline basis fitted response β^1 β^2 β^3 β^4 β^ x data Source: Tom Kelsey ID BF / 30

24 B-spline discussion B-splines are constructed to be zero on large ranges of x Calculations are relatively easy matrices in the linear regression equation are sparse and have exploitable structure, giving O(n) solution for parameters Curves can be as smooth as desired, giving useful derivative information care is needed for repeated knots, though Overfitting remains a problem For some data, transformations (e.g. log, cube root,...) are used to obtain well-behaved residuals Tom Kelsey ID BF / 30

25 Computational complexity I Choose a model f (x) A linear basis, no knots B linear basis, with knots C nonlinear basis II Choose error measure or loss function L(y, f (x)) (i) RSS (ii) quadratic loss (iii) arbitrary loss Tom Kelsey ID BF / 30

26 Cases A(i) find (X T X) 1 A(ii) find (X T X) 1 A(iii) global optimisation with nonlinear objective B(i) solve a linear system, then find (X T X) 1 B(ii) solve a linear system, then find (X T X) 1 B(iii) global optimisation with nonlinear objective, linear constraints C(i) Quadratic Programming, no constraints C(ii) Quadratic Programming, linear constraints C(iii) global optimisation with nonlinear objective and nonlinear constraints Tom Kelsey ID BF / 30

27 What about more dimensions? The result of multiplying a univariate basis function in one dimension against those of another results in a shape in higher dimensions Two b-spline bases of degree 1 (linear) give tensor products that appear to be pyramids or ramps More curved bases such as 3 rd degree (cubic) b-spline bases will give bump-like tensor products The number of cases grows quickly, since we have to consider each parameter in every dimension w.r.t each other parameter in every other dimension i.e. using tensor products Tom Kelsey ID BF / 30

28 basis value x2 Example b-spline basis x1 Source: Tom Kelsey ID BF / 30

29 basis value x2 Example b-spline basis x1 Source: Tom Kelsey ID BF / 30

30 Need-to-knows: Recap 1 polynomial regression as a linear combination of basis functions. 2 why and how curves may be created as a linear combination of basis functions. 3 why and how to construct a univariate piecewise constant basis e.g. a bin smooth. 4 tensor products for b-spline basis functions in higher dimensions. 5 read the Kondor paper for more mathematical detail (non-examinable!) Tom Kelsey ID BF / 30

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey.

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey. Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity Basic non-linear models one input feature: polynomial regression step functions splines smoothing splines local regression. more features: generalized additive models. Polynomial

More information

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines A popular method for moving beyond linearity 2. Basis expansion and regularization 1 Idea: Augment the vector inputs x with additional variables which are transformation of x use linear models in this

More information

Lecture 7: Linear Regression (continued)

Lecture 7: Linear Regression (continued) Lecture 7: Linear Regression (continued) Reading: Chapter 3 STATS 2: Data mining and analysis Jonathan Taylor, 10/8 Slide credits: Sergio Bacallado 1 / 14 Potential issues in linear regression 1. Interactions

More information

Curve fitting using linear models

Curve fitting using linear models Curve fitting using linear models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark September 28, 2012 1 / 12 Outline for today linear models and basis functions polynomial regression

More information

Last time... Bias-Variance decomposition. This week

Last time... Bias-Variance decomposition. This week Machine learning, pattern recognition and statistical data modelling Lecture 4. Going nonlinear: basis expansions and splines Last time... Coryn Bailer-Jones linear regression methods for high dimensional

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

lecture 10: B-Splines

lecture 10: B-Splines 9 lecture : -Splines -Splines: a basis for splines Throughout our discussion of standard polynomial interpolation, we viewed P n as a linear space of dimension n +, and then expressed the unique interpolating

More information

Lecture 16: High-dimensional regression, non-linear regression

Lecture 16: High-dimensional regression, non-linear regression Lecture 16: High-dimensional regression, non-linear regression Reading: Sections 6.4, 7.1 STATS 202: Data mining and analysis November 3, 2017 1 / 17 High-dimensional regression Most of the methods we

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Lecture 17: Smoothing splines, Local Regression, and GAMs

Lecture 17: Smoothing splines, Local Regression, and GAMs Lecture 17: Smoothing splines, Local Regression, and GAMs Reading: Sections 7.5-7 STATS 202: Data mining and analysis November 6, 2017 1 / 24 Cubic splines Define a set of knots ξ 1 < ξ 2 < < ξ K. We want

More information

Lecture 27, April 24, Reading: See class website. Nonparametric regression and kernel smoothing. Structured sparse additive models (GroupSpAM)

Lecture 27, April 24, Reading: See class website. Nonparametric regression and kernel smoothing. Structured sparse additive models (GroupSpAM) School of Computer Science Probabilistic Graphical Models Structured Sparse Additive Models Junming Yin and Eric Xing Lecture 7, April 4, 013 Reading: See class website 1 Outline Nonparametric regression

More information

Computational Physics PHYS 420

Computational Physics PHYS 420 Computational Physics PHYS 420 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

See the course website for important information about collaboration and late policies, as well as where and when to turn in assignments.

See the course website for important information about collaboration and late policies, as well as where and when to turn in assignments. COS Homework # Due Tuesday, February rd See the course website for important information about collaboration and late policies, as well as where and when to turn in assignments. Data files The questions

More information

Fitting to a set of data. Lecture on fitting

Fitting to a set of data. Lecture on fitting Fitting to a set of data Lecture on fitting Linear regression Linear regression Residual is the amount difference between a real data point and a modeled data point Fitting a polynomial to data Could use

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 10 - Classification trees Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey

More information

Assessing the Quality of the Natural Cubic Spline Approximation

Assessing the Quality of the Natural Cubic Spline Approximation Assessing the Quality of the Natural Cubic Spline Approximation AHMET SEZER ANADOLU UNIVERSITY Department of Statisticss Yunus Emre Kampusu Eskisehir TURKEY ahsst12@yahoo.com Abstract: In large samples,

More information

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2 Parametric Surfaces Michael Kazhdan (601.457/657) HB 10.6 -- 10.9, 10.1 FvDFH 11.2 Announcement OpenGL review session: When: Wednesday (10/1) @ 7:00-9:00 PM Where: Olin 05 Cubic Splines Given a collection

More information

Learning from Data Linear Parameter Models

Learning from Data Linear Parameter Models Learning from Data Linear Parameter Models Copyright David Barber 200-2004. Course lecturer: Amos Storkey a.storkey@ed.ac.uk Course page : http://www.anc.ed.ac.uk/ amos/lfd/ 2 chirps per sec 26 24 22 20

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 4 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 s are functions of different nature where the output parameters are described in terms of the input parameters

More information

Matrices. Chapter Matrix A Mathematical Definition Matrix Dimensions and Notation

Matrices. Chapter Matrix A Mathematical Definition Matrix Dimensions and Notation Chapter 7 Introduction to Matrices This chapter introduces the theory and application of matrices. It is divided into two main sections. Section 7.1 discusses some of the basic properties and operations

More information

Getting Started with MATLAB

Getting Started with MATLAB APPENDIX B Getting Started with MATLAB MATLAB software is a computer program that provides the user with a convenient environment for many types of calculations in particular, those that are related to

More information

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K.

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K. GAMs semi-parametric GLMs Simon Wood Mathematical Sciences, University of Bath, U.K. Generalized linear models, GLM 1. A GLM models a univariate response, y i as g{e(y i )} = X i β where y i Exponential

More information

CPSC 340: Machine Learning and Data Mining. Kernel Trick Fall 2017

CPSC 340: Machine Learning and Data Mining. Kernel Trick Fall 2017 CPSC 340: Machine Learning and Data Mining Kernel Trick Fall 2017 Admin Assignment 3: Due Friday. Midterm: Can view your exam during instructor office hours or after class this week. Digression: the other

More information

Machine Learning. Topic 4: Linear Regression Models

Machine Learning. Topic 4: Linear Regression Models Machine Learning Topic 4: Linear Regression Models (contains ideas and a few images from wikipedia and books by Alpaydin, Duda/Hart/ Stork, and Bishop. Updated Fall 205) Regression Learning Task There

More information

For our example, we will look at the following factors and factor levels.

For our example, we will look at the following factors and factor levels. In order to review the calculations that are used to generate the Analysis of Variance, we will use the statapult example. By adjusting various settings on the statapult, you are able to throw the ball

More information

An introduction to interpolation and splines

An introduction to interpolation and splines An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

More information

Lecture 13: Model selection and regularization

Lecture 13: Model selection and regularization Lecture 13: Model selection and regularization Reading: Sections 6.1-6.2.1 STATS 202: Data mining and analysis October 23, 2017 1 / 17 What do we know so far In linear regression, adding predictors always

More information

CHAPTER 6 Parametric Spline Curves

CHAPTER 6 Parametric Spline Curves CHAPTER 6 Parametric Spline Curves When we introduced splines in Chapter 1 we focused on spline curves, or more precisely, vector valued spline functions. In Chapters 2 and 4 we then established the basic

More information

A-SSE.1.1, A-SSE.1.2-

A-SSE.1.1, A-SSE.1.2- Putnam County Schools Curriculum Map Algebra 1 2016-2017 Module: 4 Quadratic and Exponential Functions Instructional Window: January 9-February 17 Assessment Window: February 20 March 3 MAFS Standards

More information

Topics in Machine Learning

Topics in Machine Learning Topics in Machine Learning Gilad Lerman School of Mathematics University of Minnesota Text/slides stolen from G. James, D. Witten, T. Hastie, R. Tibshirani and A. Ng Machine Learning - Motivation Arthur

More information

PSY 9556B (Feb 5) Latent Growth Modeling

PSY 9556B (Feb 5) Latent Growth Modeling PSY 9556B (Feb 5) Latent Growth Modeling Fixed and random word confusion Simplest LGM knowing how to calculate dfs How many time points needed? Power, sample size Nonlinear growth quadratic Nonlinear growth

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Nonparametric Approaches to Regression

Nonparametric Approaches to Regression Nonparametric Approaches to Regression In traditional nonparametric regression, we assume very little about the functional form of the mean response function. In particular, we assume the model where m(xi)

More information

Lecture 2.2 Cubic Splines

Lecture 2.2 Cubic Splines Lecture. Cubic Splines Cubic Spline The equation for a single parametric cubic spline segment is given by 4 i t Bit t t t i (..) where t and t are the parameter values at the beginning and end of the segment.

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

Grade 7 Mathematics Performance Level Descriptors

Grade 7 Mathematics Performance Level Descriptors Limited A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 7 Mathematics. A student at this level has an emerging ability to work with expressions

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Structured System Theory

Structured System Theory Appendix C Structured System Theory Linear systems are often studied from an algebraic perspective, based on the rank of certain matrices. While such tests are easy to derive from the mathematical model,

More information

Voluntary State Curriculum Algebra II

Voluntary State Curriculum Algebra II Algebra II Goal 1: Integration into Broader Knowledge The student will develop, analyze, communicate, and apply models to real-world situations using the language of mathematics and appropriate technology.

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA II. 3 rd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA II. 3 rd Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA II 3 rd Nine Weeks, 2016-2017 1 OVERVIEW Algebra II Content Review Notes are designed by the High School Mathematics Steering Committee as a resource

More information

Generalised Mean Averaging Interpolation by Discrete Cubic Splines

Generalised Mean Averaging Interpolation by Discrete Cubic Splines Publ. RIMS, Kyoto Univ. 30 (1994), 89-95 Generalised Mean Averaging Interpolation by Discrete Cubic Splines By Manjulata SHRIVASTAVA* Abstract The aim of this work is to introduce for a discrete function,

More information

Splines and penalized regression

Splines and penalized regression Splines and penalized regression November 23 Introduction We are discussing ways to estimate the regression function f, where E(y x) = f(x) One approach is of course to assume that f has a certain shape,

More information

Economics Nonparametric Econometrics

Economics Nonparametric Econometrics Economics 217 - Nonparametric Econometrics Topics covered in this lecture Introduction to the nonparametric model The role of bandwidth Choice of smoothing function R commands for nonparametric models

More information

2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves. CS 4620 Lecture 18 2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

More information

Rational Bezier Surface

Rational Bezier Surface Rational Bezier Surface The perspective projection of a 4-dimensional polynomial Bezier surface, S w n ( u, v) B i n i 0 m j 0, u ( ) B j m, v ( ) P w ij ME525x NURBS Curve and Surface Modeling Page 97

More information

2D Spline Curves. CS 4620 Lecture 13

2D Spline Curves. CS 4620 Lecture 13 2D Spline Curves CS 4620 Lecture 13 2008 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes [Boeing] that is, without discontinuities So far we can make things with corners

More information

MS in Applied Statistics: Study Guide for the Data Science concentration Comprehensive Examination. 1. MAT 456 Applied Regression Analysis

MS in Applied Statistics: Study Guide for the Data Science concentration Comprehensive Examination. 1. MAT 456 Applied Regression Analysis MS in Applied Statistics: Study Guide for the Data Science concentration Comprehensive Examination. The Part II comprehensive examination is a three-hour closed-book exam that is offered on the second

More information

Latent Curve Models. A Structural Equation Perspective WILEY- INTERSCIENΠKENNETH A. BOLLEN

Latent Curve Models. A Structural Equation Perspective WILEY- INTERSCIENΠKENNETH A. BOLLEN Latent Curve Models A Structural Equation Perspective KENNETH A. BOLLEN University of North Carolina Department of Sociology Chapel Hill, North Carolina PATRICK J. CURRAN University of North Carolina Department

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

3 Nonlinear Regression

3 Nonlinear Regression CSC 4 / CSC D / CSC C 3 Sometimes linear models are not sufficient to capture the real-world phenomena, and thus nonlinear models are necessary. In regression, all such models will have the same basic

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties.

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties. Standard 1: Number Sense and Computation Students simplify and compare expressions. They use rational exponents and simplify square roots. IM1.1.1 Compare real number expressions. IM1.1.2 Simplify square

More information

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Implementation: Real machine learning schemes Decision trees Classification

More information

Louis Fourrier Fabien Gaie Thomas Rolf

Louis Fourrier Fabien Gaie Thomas Rolf CS 229 Stay Alert! The Ford Challenge Louis Fourrier Fabien Gaie Thomas Rolf Louis Fourrier Fabien Gaie Thomas Rolf 1. Problem description a. Goal Our final project is a recent Kaggle competition submitted

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces

MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces David L. Finn Today, we want to exam interpolation and data fitting problems for surface patches. Our general method is the same,

More information

Nonparametric Risk Attribution for Factor Models of Portfolios. October 3, 2017 Kellie Ottoboni

Nonparametric Risk Attribution for Factor Models of Portfolios. October 3, 2017 Kellie Ottoboni Nonparametric Risk Attribution for Factor Models of Portfolios October 3, 2017 Kellie Ottoboni Outline The problem Page 3 Additive model of returns Page 7 Euler s formula for risk decomposition Page 11

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Montana Instructional Alignment HPS Critical Competencies Mathematics Honors Pre-Calculus

Montana Instructional Alignment HPS Critical Competencies Mathematics Honors Pre-Calculus Content Standards Content Standard 1 - Number Sense and Operations Content Standard 2 - Data Analysis A student, applying reasoning and problem solving, will use number sense and operations to represent

More information

Generalized Additive Model

Generalized Additive Model Generalized Additive Model by Huimin Liu Department of Mathematics and Statistics University of Minnesota Duluth, Duluth, MN 55812 December 2008 Table of Contents Abstract... 2 Chapter 1 Introduction 1.1

More information

Least-Squares Fitting of Data with B-Spline Curves

Least-Squares Fitting of Data with B-Spline Curves Least-Squares Fitting of Data with B-Spline Curves David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

1D Regression. i.i.d. with mean 0. Univariate Linear Regression: fit by least squares. Minimize: to get. The set of all possible functions is...

1D Regression. i.i.d. with mean 0. Univariate Linear Regression: fit by least squares. Minimize: to get. The set of all possible functions is... 1D Regression i.i.d. with mean 0. Univariate Linear Regression: fit by least squares. Minimize: to get. The set of all possible functions is... 1 Non-linear problems What if the underlying function is

More information

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120 Whitman-Hanson Regional High School provides all students with a high- quality education in order to develop reflective, concerned citizens and contributing members of the global community. Course Number

More information

Concept of Curve Fitting Difference with Interpolation

Concept of Curve Fitting Difference with Interpolation Curve Fitting Content Concept of Curve Fitting Difference with Interpolation Estimation of Linear Parameters by Least Squares Curve Fitting by Polynomial Least Squares Estimation of Non-linear Parameters

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

More information

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Regression

More information

Lecture VIII. Global Approximation Methods: I

Lecture VIII. Global Approximation Methods: I Lecture VIII Global Approximation Methods: I Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Global Methods p. 1 /29 Global function approximation Global methods: function

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Archbold Area Schools Math Curriculum Map

Archbold Area Schools Math Curriculum Map Math 8 August - May Mathematical Processes Formulate a problem or mathematical model in response to a specific need or situation, determine information required to solve the problem, choose method for

More information

A Practical Review of Uniform B-Splines

A Practical Review of Uniform B-Splines A Practical Review of Uniform B-Splines Kristin Branson A B-spline is a convenient form for representing complicated, smooth curves. A uniform B-spline of order k is a piecewise order k Bezier curve, and

More information

Doubly Cyclic Smoothing Splines and Analysis of Seasonal Daily Pattern of CO2 Concentration in Antarctica

Doubly Cyclic Smoothing Splines and Analysis of Seasonal Daily Pattern of CO2 Concentration in Antarctica Boston-Keio Workshop 2016. Doubly Cyclic Smoothing Splines and Analysis of Seasonal Daily Pattern of CO2 Concentration in Antarctica... Mihoko Minami Keio University, Japan August 15, 2016 Joint work with

More information

CSE446: Linear Regression. Spring 2017

CSE446: Linear Regression. Spring 2017 CSE446: Linear Regression Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Prediction of continuous variables Billionaire says: Wait, that s not what I meant! You say: Chill

More information

LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave.

LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave. LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave. http://en.wikipedia.org/wiki/local_regression Local regression

More information

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium Curve and Surface Fitting with Splines PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium CLARENDON PRESS OXFORD 1995 - Preface List of Figures List of Tables

More information

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones What is machine learning? Data interpretation describing relationship between predictors and responses

More information

Section 4 Matching Estimator

Section 4 Matching Estimator Section 4 Matching Estimator Matching Estimators Key Idea: The matching method compares the outcomes of program participants with those of matched nonparticipants, where matches are chosen on the basis

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

Hypercubes. (Chapter Nine)

Hypercubes. (Chapter Nine) Hypercubes (Chapter Nine) Mesh Shortcomings: Due to its simplicity and regular structure, the mesh is attractive, both theoretically and practically. A problem with the mesh is that movement of data is

More information

MATHEMATICS Grade 7 Advanced Standard: Number, Number Sense and Operations

MATHEMATICS Grade 7 Advanced Standard: Number, Number Sense and Operations Standard: Number, Number Sense and Operations Number and Number Systems A. Use scientific notation to express large numbers and numbers less than one. 1. Use scientific notation to express large numbers

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

Spline Models. Introduction to CS and NCS. Regression splines. Smoothing splines

Spline Models. Introduction to CS and NCS. Regression splines. Smoothing splines Spline Models Introduction to CS and NCS Regression splines Smoothing splines 3 Cubic Splines a knots: a< 1 < 2 < < m

More information

UNIT 1: NUMBER LINES, INTERVALS, AND SETS

UNIT 1: NUMBER LINES, INTERVALS, AND SETS ALGEBRA II CURRICULUM OUTLINE 2011-2012 OVERVIEW: 1. Numbers, Lines, Intervals and Sets 2. Algebraic Manipulation: Rational Expressions and Exponents 3. Radicals and Radical Equations 4. Function Basics

More information

Erasing Haar Coefficients

Erasing Haar Coefficients Recap Haar simple and fast wavelet transform Limitations not smooth enough: blocky How to improve? classical approach: basis functions Lifting: transforms 1 Erasing Haar Coefficients 2 Page 1 Classical

More information

Statistical Modeling with Spline Functions Methodology and Theory

Statistical Modeling with Spline Functions Methodology and Theory This is page 1 Printer: Opaque this Statistical Modeling with Spline Functions Methodology and Theory Mark H Hansen University of California at Los Angeles Jianhua Z Huang University of Pennsylvania Charles

More information

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will Lectures Recent advances in Metamodel of Optimal Prognosis Thomas Most & Johannes Will presented at the Weimar Optimization and Stochastic Days 2010 Source: www.dynardo.de/en/library Recent advances in

More information

That s why the AHS Academy website was created! Unfortunately, it is somewhat useless at the moment. There are no videos or practice problems

That s why the AHS Academy website was created! Unfortunately, it is somewhat useless at the moment. There are no videos or practice problems https://sites.google.com/a/austinisd.org/ahs-academy/ Many maroons visit the Kahn Academy website for assistance with academic topics, or for extra practice. Sometimes, however, topics available from Kahn

More information

Interpolation & Polynomial Approximation. Cubic Spline Interpolation II

Interpolation & Polynomial Approximation. Cubic Spline Interpolation II Interpolation & Polynomial Approximation Cubic Spline Interpolation II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

COMP3421. Global Lighting Part 2: Radiosity

COMP3421. Global Lighting Part 2: Radiosity COMP3421 Global Lighting Part 2: Radiosity Recap: Global Lighting The lighting equation we looked at earlier only handled direct lighting from sources: We added an ambient fudge term to account for all

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Minnesota Academic Standards for Mathematics 2007

Minnesota Academic Standards for Mathematics 2007 An Alignment of Minnesota for Mathematics 2007 to the Pearson Integrated High School Mathematics 2014 to Pearson Integrated High School Mathematics Common Core Table of Contents Chapter 1... 1 Chapter

More information

Generalized Additive Models

Generalized Additive Models :p Texts in Statistical Science Generalized Additive Models An Introduction with R Simon N. Wood Contents Preface XV 1 Linear Models 1 1.1 A simple linear model 2 Simple least squares estimation 3 1.1.1

More information

Equations and Functions, Variables and Expressions

Equations and Functions, Variables and Expressions Equations and Functions, Variables and Expressions Equations and functions are ubiquitous components of mathematical language. Success in mathematics beyond basic arithmetic depends on having a solid working

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

Going nonparametric: Nearest neighbor methods for regression and classification

Going nonparametric: Nearest neighbor methods for regression and classification Going nonparametric: Nearest neighbor methods for regression and classification STAT/CSE 46: Machine Learning Emily Fox University of Washington May 3, 208 Locality sensitive hashing for approximate NN

More information