3D Video Over Time. Presented on by. Daniel Kubacki

Size: px
Start display at page:

Download "3D Video Over Time. Presented on by. Daniel Kubacki"

Transcription

1 3D Video Over Time Presented on by Daniel Kubacki Co-Advisors: Minh Do & Sanjay Patel This work funded by the Universal Parallel Computing Resource Center

2 2

3 What s the BIG deal? Video Rate Capture Digital Michelangelo Project Camera and/or object do not need to be static Simple Equipment that will be available to the average consumer Marc Levoy, et. al. The digital michelangelo project: 3d scanning of large statues. SIGGRAPH 00, pages , 3

4 AvaScholar Block Diagram Range Image Integration & Segmentation [Do] Computer Vision [Huang] Meshed Surface Reconstruction [Hart] Infrastructure [Patel, Nahrstedt] Each component is an existing collaborative project that can benefit from better parallel programming upcrc.illinois.edu 4

5 Live Demo PMD Technologies 204 x 204 pixel resolution Frame rate up to 60 fps Measures Depth, Intensity, and Amplitude Applications Segmentation and tracking Real time 3D modeling Video relighting Free viewpoint video 5

6 Limitations Resolution Noise Depth

7 Utilize 3D Over Time Registration Assume camera or object to be non-static Requires alignment Integration How to accumulate data? Raw set of points Set of cleaned surface points Set of control points Implicit model 7

8 State of the Art - Registration Iterative Closest Point Point Selection Point Matching Rejection Weighting Optimization 8

9 Point Matching Closest 9

10 Point Matching Projection 10

11 State of the Art - Integration Robust Implicit Moving Least Squares 11

12 Implicit Moving Least Squares Non-Robust version. Can be thought of as placing a weighted plane function at each input point and summing the weighted distances from each plane. Signed Distance Function 12

13 Register to a Model ICP is for point set to point set registration We would like to register a point set to a model Thus, given a model and a new point set Register point set to model Update model 13

14 Register to a Signed Distance Model where is the closest point on the surface with signed distance function 14

15 Advantages Denoising 15

16 MeshLab Visualizations 16

17 Timing Computations to evaluate and are of order. Where N is the number of points to evaluate and M is the number of model points On an i7 laptop core in Matlab this takes 7.2secs for 5000 points. Which is 14ms/pt. 17

18 Making it Fast Bottlenecks Storage/Memory Storing a large number of points 5,000 pts/frame * 20 frames/s * 60 s/min = 6,000,000 pts/min Computation Evaluating IMLS 18

19 Sample IMLS in 3D Grid Advantages Do not need to store points Evaluation of f(x) in constant time with interpolation Grid can be adaptive sampling for non-uniform distribution of 3D points Disadvantages Registrations can not be adjusted given more data More initial computations 19

20 Thoughts on Parallelization Required Computations Preprocess Registration Integration Gather Oriented Binning Opportunities Challenge: do in < 50 ms 20

21 Conclusion Research into real time algorithms that can denoise and increase the resolution of 3D videos are essential for applications beyond simple segmentation and tracking. This work is in conjunction with John Hart s AvaScholar project which aims to utilize 3D video in a real time environment. 21

22 References Stanford University Computer Graphics Laboratory, The Stanford 3d scanning repository, May [Online]. Available: S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, in Third International Conference on 3D Digital Imaging and Modeling (3DIM), Jun [Online]. Available: C. Shen, J. F. O Brien, and J. R. Shewchuk, Interpolating and approximating implicit surfaces from polygon soup, in Proceedings of ACM SIGGRAPH ACM Press, Aug. 2004, pp [Online]. Available: C. Oztireli, G. Guennebaud, and M. Gross, Feature preserving point set surfaces based on non-linear kernel regression, Computer Graphics Forum, vol. 28, no. 2, p , [Online]. Available: R. Kolluri, Provably good moving least squares, ACM Trans. Algorithms, vol. 4, pp. 18:1 18:25, May [Online]. Available: M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, The digital michelangelo project: 3d scanning of large statues, in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ser. SIGGRAPH 00. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp [Online]. Available: 22

3D Models from Range Sensors. Gianpaolo Palma

3D Models from Range Sensors. Gianpaolo Palma 3D Models from Range Sensors Gianpaolo Palma Who Gianpaolo Palma Researcher at Visual Computing Laboratory (ISTI-CNR) Expertise: 3D scanning, Mesh Processing, Computer Graphics E-mail: gianpaolo.palma@isti.cnr.it

More information

Surface Registration. Gianpaolo Palma

Surface Registration. Gianpaolo Palma Surface Registration Gianpaolo Palma The problem 3D scanning generates multiple range images Each contain 3D points for different parts of the model in the local coordinates of the scanner Find a rigid

More information

Rigid ICP registration with Kinect

Rigid ICP registration with Kinect Rigid ICP registration with Kinect Students: Yoni Choukroun, Elie Semmel Advisor: Yonathan Aflalo 1 Overview.p.3 Development of the project..p.3 Papers p.4 Project algorithm..p.6 Result of the whole body.p.7

More information

Robust Range Image Registration using a Common Plane

Robust Range Image Registration using a Common Plane VRVis Technical Report 1 Robust Range Image Registration using a Common Plane Joachim Bauer bauer@icg.vrvis.at Konrad Karner karner@vrvis.at Andreas Klaus klaus@vrvis.at Roland Perko University of Technology

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo What are 3D Objects? 3D Object Representations What are 3D objects? The Graphics Process 3D Object Representations Raw

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Visibility Map for Global Illumination in Point Clouds

Visibility Map for Global Illumination in Point Clouds Visibility Map for Global Illumination in Point Clouds R. Goradia 1 A. Kanakanti 1 S. Chandran 1 A. Datta 2 1 Indian Institute of Technology, Bombay Mumbai, India {rhushabh, kanil, sharat}@cse.iitb.ac.in

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo 3 - Reconstruction Acknowledgements: Olga Sorkine-Hornung Geometry Acquisition Pipeline Scanning: results in range images Registration: bring all range images to one coordinate system Stitching/ reconstruction:

More information

3D Photography: Active Ranging, Structured Light, ICP

3D Photography: Active Ranging, Structured Light, ICP 3D Photography: Active Ranging, Structured Light, ICP Kalin Kolev, Marc Pollefeys Spring 2013 http://cvg.ethz.ch/teaching/2013spring/3dphoto/ Schedule (tentative) Feb 18 Feb 25 Mar 4 Mar 11 Mar 18 Mar

More information

Provably Good Moving Least Squares

Provably Good Moving Least Squares Provably Good Moving Least Squares Ravikrishna Kolluri Computer Science Division University of California at Berkeley 1 Problem Definition Given a set of samples on a closed surface build a representation

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Virtual Reality Model of Koumokuten Generated from Measurement

Virtual Reality Model of Koumokuten Generated from Measurement Virtual Reality Model of Koumokuten Generated from Measurement Hiroki UNTEN Graduate School of Information Science and Technology The University of Tokyo unten@cvl.iis.u-tokyo.ac.jp Katsushi IKEUCHI Graduate

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

3D Photography: Stereo

3D Photography: Stereo 3D Photography: Stereo Marc Pollefeys, Torsten Sattler Spring 2016 http://www.cvg.ethz.ch/teaching/3dvision/ 3D Modeling with Depth Sensors Today s class Obtaining depth maps / range images unstructured

More information

Image-space Point Cloud Rendering

Image-space Point Cloud Rendering CGI 2008 Conference Proceedings manuscript No. (will be inserted by the editor) Paul Rosenthal Lars Linsen Image-space Point Cloud Rendering Abstract Point-based rendering approaches have gained a major

More information

Computer Science Applications to Cultural Heritage. 3D Reconstruction

Computer Science Applications to Cultural Heritage. 3D Reconstruction Computer Science Applications to Cultural Heritage 3D Reconstruction Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

Spider: A robust curvature estimator for noisy, irregular meshes

Spider: A robust curvature estimator for noisy, irregular meshes Spider: A robust curvature estimator for noisy, irregular meshes Technical report CSRG-531, Dynamic Graphics Project, Department of Computer Science, University of Toronto, c September 2005 Patricio Simari

More information

A Scale Invariant Surface Curvature Estimator

A Scale Invariant Surface Curvature Estimator A Scale Invariant Surface Curvature stimator John Rugis 1,2 and Reinhard Klette 1 1 CITR, Dep. of Computer Science, The University of Auckland Auckland, New Zealand 2 Dep. of lectrical & Computer ngineering,

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Point-Based Modeling from a Single Image

Point-Based Modeling from a Single Image Point-Based Modeling from a Single Image Pere-Pau Vázquez 1, Jordi Marco 1, and Mateu Sbert 2 1 Dept. LSI - Universitat Politècnica de Catalunya, Spain {ppau jmarco}@lsi.upc.es 2 IIiA, Universitat de Girona,

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

3D Texture Maps from an Articulated Sensor Camera Mesh

3D Texture Maps from an Articulated Sensor Camera Mesh 3D Texture Maps from an Articulated Sensor Camera Mesh Anonymous MIT Student - MIT Media Lab Figure 1: Left: Input into our system, a chair. Center: An articulated 3D mesh scanner. Right: Our result, a

More information

Out of Core continuous LoD-Hierarchies for Large Triangle Meshes

Out of Core continuous LoD-Hierarchies for Large Triangle Meshes Out of Core continuous LoD-Hierarchies for Large Triangle Meshes Hermann Birkholz Research Assistant Albert-Einstein-Str. 21 Germany, 18059, Rostock hb01@informatik.uni-rostock.de ABSTRACT In this paper,

More information

Acquisition and Visualization of Colored 3D Objects

Acquisition and Visualization of Colored 3D Objects Acquisition and Visualization of Colored 3D Objects Kari Pulli Stanford University Stanford, CA, U.S.A kapu@cs.stanford.edu Habib Abi-Rached, Tom Duchamp, Linda G. Shapiro and Werner Stuetzle University

More information

Point based Rendering

Point based Rendering Point based Rendering CS535 Daniel Aliaga Current Standards Traditionally, graphics has worked with triangles as the rendering primitive Triangles are really just the lowest common denominator for surfaces

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Department of Computer Engineering, Middle East Technical University, Ankara, Turkey, TR-06531

Department of Computer Engineering, Middle East Technical University, Ankara, Turkey, TR-06531 INEXPENSIVE AND ROBUST 3D MODEL ACQUISITION SYSTEM FOR THREE-DIMENSIONAL MODELING OF SMALL ARTIFACTS Ulaş Yılmaz, Oğuz Özün, Burçak Otlu, Adem Mulayim, Volkan Atalay {ulas, oguz, burcak, adem, volkan}@ceng.metu.edu.tr

More information

Project Updates Short lecture Volumetric Modeling +2 papers

Project Updates Short lecture Volumetric Modeling +2 papers Volumetric Modeling Schedule (tentative) Feb 20 Feb 27 Mar 5 Introduction Lecture: Geometry, Camera Model, Calibration Lecture: Features, Tracking/Matching Mar 12 Mar 19 Mar 26 Apr 2 Apr 9 Apr 16 Apr 23

More information

Dual-Beam Structured-Light Scanning for 3-D Object Modeling

Dual-Beam Structured-Light Scanning for 3-D Object Modeling Dual-Beam Structured-Light Scanning for 3-D Object Modeling Johnny Park, Guilherme N. DeSouza, and Avinash C. Kak Robot Vision Laboratory, Purdue University 1285 EE Building, West Lafayette, IN. 47907-1285

More information

Combining Photometric Normals and Multi-View Stereo for 3D Reconstruction

Combining Photometric Normals and Multi-View Stereo for 3D Reconstruction Combining Photometric Normals and Multi-View Stereo for 3D Reconstruction ABSTRACT Martin Grochulla MPI Informatik Universität Campus Saarbrücken, Germany mgrochul@mpi-inf.mpg.de In this paper a novel

More information

Ray Tracing Point Set Surfaces

Ray Tracing Point Set Surfaces Ray Tracing Point Set Surfaces Anders Adamson Marc Alexa TU Darmstadt, GRIS Fraunhoferstr. 5, 64283 Darmstadt {aadamson,alexa}@gris.informatik.tu-darmstadt.de Abstract Point set surfaces are a smooth manifold

More information

3D Human Modeling using Virtual Multi-View Stereopsis and Object-Camera Motion Estimation

3D Human Modeling using Virtual Multi-View Stereopsis and Object-Camera Motion Estimation 3D Human Modeling using Virtual Multi-View Stereopsis and Object-Camera Motion Estimation D. Lam*, R. Z. Hong** and G. N. DeSouza*** Abstract This paper presents a method for multi-view 3D modeling of

More information

Light Field Occlusion Removal

Light Field Occlusion Removal Light Field Occlusion Removal Shannon Kao Stanford University kaos@stanford.edu Figure 1: Occlusion removal pipeline. The input image (left) is part of a focal stack representing a light field. Each image

More information

Spatio-Temporal Fusion of Multiple View Video Rate 3D Surfaces

Spatio-Temporal Fusion of Multiple View Video Rate 3D Surfaces Spatio-Temporal Fusion of Multiple View Video Rate 3D Surfaces Gordon Collins and Adrian Hilton Centre for Speech Vision and Signal Processing University of Surrey A.Hilton@surrey.ac.uk Abstract We consider

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 4. Geometric Registration 4.1 Rigid Registration Range Scanning: Reconstruction Set of raw scans Reconstructed

More information

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones, Frédo Durand, Mathieu Desbrun Computer Science and Artificial Intelligence Laboratory, MIT Computer Science Department, USC Abstract With

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

Mesh from Depth Images Using GR 2 T

Mesh from Depth Images Using GR 2 T Mesh from Depth Images Using GR 2 T Mairead Grogan & Rozenn Dahyot School of Computer Science and Statistics Trinity College Dublin Dublin, Ireland mgrogan@tcd.ie, Rozenn.Dahyot@tcd.ie www.scss.tcd.ie/

More information

Landmark Detection on 3D Face Scans by Facial Model Registration

Landmark Detection on 3D Face Scans by Facial Model Registration Landmark Detection on 3D Face Scans by Facial Model Registration Tristan Whitmarsh 1, Remco C. Veltkamp 2, Michela Spagnuolo 1 Simone Marini 1, Frank ter Haar 2 1 IMATI-CNR, Genoa, Italy 2 Dept. Computer

More information

Object Reconstruction

Object Reconstruction B. Scholz Object Reconstruction 1 / 39 MIN-Fakultät Fachbereich Informatik Object Reconstruction Benjamin Scholz Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich

More information

Mobile Point Fusion. Real-time 3d surface reconstruction out of depth images on a mobile platform

Mobile Point Fusion. Real-time 3d surface reconstruction out of depth images on a mobile platform Mobile Point Fusion Real-time 3d surface reconstruction out of depth images on a mobile platform Aaron Wetzler Presenting: Daniel Ben-Hoda Supervisors: Prof. Ron Kimmel Gal Kamar Yaron Honen Supported

More information

5.2 Surface Registration

5.2 Surface Registration Spring 2018 CSCI 621: Digital Geometry Processing 5.2 Surface Registration Hao Li http://cs621.hao-li.com 1 Acknowledgement Images and Slides are courtesy of Prof. Szymon Rusinkiewicz, Princeton University

More information

REAL-TIME ADAPTIVE POINT SPLATTING FOR NOISY POINT CLOUDS

REAL-TIME ADAPTIVE POINT SPLATTING FOR NOISY POINT CLOUDS REAL-TIME ADAPTIVE POINT SPLATTING FOR NOISY POINT CLOUDS Rosen Diankov*, Ruzena Bajcsy + Dept. of Electrical Engineering and Computer Science University of California, Berkeley rdiankov@cmu.edu*, bajcsy@eecs.berkeley.edu

More information

Geometry Compression of Normal Meshes Using Rate-Distortion Algorithms

Geometry Compression of Normal Meshes Using Rate-Distortion Algorithms Eurographics Symposium on Geometry Processing (2003) L. Kobbelt, P. Schröder, H. Hoppe (Editors) Geometry Compression of Normal Meshes Using Rate-Distortion Algorithms Sridhar Lavu, Hyeokho Choi and Richard

More information

Computing 3D Geometry Directly From Range Images

Computing 3D Geometry Directly From Range Images Computing 3D Geometry Directly From Range Images Sarah F. Frisken and Ronald N. Perry Mitsubishi Electric Research Laboratories Geometry from Range Data A Classic Approach Subject Range images Range surfaces

More information

Programmatic 3D Printing of a Revolving Camera Track to Automatically Capture Dense Images for 3D Scanning of Objects

Programmatic 3D Printing of a Revolving Camera Track to Automatically Capture Dense Images for 3D Scanning of Objects Programmatic 3D Printing of a Revolving Camera Track to Automatically Capture Dense Images for 3D Scanning of Objects Nikolas Lamb, Natasha Kholgade Banerjee, and Sean Banerjee (B) Clarkson University,

More information

A VARIANT OF POINT-TO-PLANE REGISTRATION INCLUDING CYCLE MINIMIZATION

A VARIANT OF POINT-TO-PLANE REGISTRATION INCLUDING CYCLE MINIMIZATION A VARIANT OF POINT-TO-PLANE REGISTRATION INCLUDING CYCLE MINIMIZATION Carles Matabosch a, Elisabet Batlle a, David Fofi b and Joaquim Salvi a a Institut d Informatica i Aplicacions, University of Girona

More information

Watertight Multi-View Reconstruction Based On Volumetric Graph-Cuts

Watertight Multi-View Reconstruction Based On Volumetric Graph-Cuts Watertight Multi-View Reconstruction Based On Volumetric Graph-Cuts Mario Sormann 1, Christopher Zach 1, Joachim Bauer 1, Konrad Karner 1, and Horst Bishof 2 1 VRVis Research Center, Inffeldgasse 16, 8010

More information

International Journal of Computer Trends and Technology- volume3issue1-2012

International Journal of Computer Trends and Technology- volume3issue1-2012 A Overview of Point-based Rendering Techniques Mandakini Kaushik, Kapil Kumar Nagwanshi Dr. Lokesh Kumar Sharma M.Tech.(CSE) Scholar, Dept. of CSE, Reader, Dept. of CSE, Head, Dept. of CSE, Rungta College

More information

FEATURE-BASED REGISTRATION OF RANGE IMAGES IN DOMESTIC ENVIRONMENTS

FEATURE-BASED REGISTRATION OF RANGE IMAGES IN DOMESTIC ENVIRONMENTS FEATURE-BASED REGISTRATION OF RANGE IMAGES IN DOMESTIC ENVIRONMENTS Michael Wünstel, Thomas Röfer Technologie-Zentrum Informatik (TZI) Universität Bremen Postfach 330 440, D-28334 Bremen {wuenstel, roefer}@informatik.uni-bremen.de

More information

High-resolution Shape Reconstruction from Multiple Range Images based on Simultaneous Estimation of Surface and Motion

High-resolution Shape Reconstruction from Multiple Range Images based on Simultaneous Estimation of Surface and Motion High-resolution Shape Reconstruction from Multiple Range Images based on Simultaneous Estimation of Surface and Motion Yoshihiro Watanabe, Takashi Komuro and Masatoshi Ishikawa Graduate School of Information

More information

Interactive Silhouette Rendering for Point-Based Models

Interactive Silhouette Rendering for Point-Based Models Eurographics Symposium on Point-Based Graphics (2004) M. Alexa, S. Rusinkiewicz, (Editors) Interactive Silhouette Rendering for Point-Based Models Hui Xu Minh X. Nguyen Xiaoru Yuan Baoquan Chen University

More information

A Volumetric Method for Building Complex Models from Range Images

A Volumetric Method for Building Complex Models from Range Images A Volumetric Method for Building Complex Models from Range Images Brian Curless Marc Levoy Computer Graphics Laboratory Stanford University Introduction Goal Given a set of aligned, dense range images,

More information

Complex Models from Range Images. A Volumetric Method for Building. Brian Curless. Marc Levoy. Computer Graphics Laboratory. Stanford University

Complex Models from Range Images. A Volumetric Method for Building. Brian Curless. Marc Levoy. Computer Graphics Laboratory. Stanford University A Volumetric Method for Building Complex Models from Range Images Computer Graphics Laboratory Stanford University Brian Curless Marc Levoy Introduction Goal Given a set of aligned, dense range images,

More information

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones MIT Frédo Durand MIT Mathieu Desbrun USC Figure 1: The dragon model (left) is artificially corrupted by Gaussian noise (σ = 1/5 of the mean

More information

Digital Restoration of the Cultural Heritages

Digital Restoration of the Cultural Heritages Digital Restoration of the Cultural Heritages Abstract Takeshi Oishi, Tomohito Masuda, Katsushi Ikeushi Institute of Industrial Science, University of Tokyo 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 Japan

More information

Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling

Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling Moritz Baecher May 15, 29 1 Introduction Edge-preserving smoothing and super-resolution are classic and important

More information

PHOTOGRAMMETRIC TECHNIQUE FOR TEETH OCCLUSION ANALYSIS IN DENTISTRY

PHOTOGRAMMETRIC TECHNIQUE FOR TEETH OCCLUSION ANALYSIS IN DENTISTRY PHOTOGRAMMETRIC TECHNIQUE FOR TEETH OCCLUSION ANALYSIS IN DENTISTRY V. A. Knyaz a, *, S. Yu. Zheltov a, a State Research Institute of Aviation System (GosNIIAS), 539 Moscow, Russia (knyaz,zhl)@gosniias.ru

More information

Range Image Registration with Edge Detection in Spherical Coordinates

Range Image Registration with Edge Detection in Spherical Coordinates Range Image Registration with Edge Detection in Spherical Coordinates Olcay Sertel 1 and Cem Ünsalan2 Computer Vision Research Laboratory 1 Department of Computer Engineering 2 Department of Electrical

More information

Registration of Dynamic Range Images

Registration of Dynamic Range Images Registration of Dynamic Range Images Tan-Chi Ho 1,2 Jung-Hong Chuang 1 Wen-Wei Lin 2 Song-Sun Lin 2 1 Department of Computer Science National Chiao-Tung University 2 Department of Applied Mathematics National

More information

Multi-view reconstruction for projector camera systems based on bundle adjustment

Multi-view reconstruction for projector camera systems based on bundle adjustment Multi-view reconstruction for projector camera systems based on bundle adjustment Ryo Furuakwa, Faculty of Information Sciences, Hiroshima City Univ., Japan, ryo-f@hiroshima-cu.ac.jp Kenji Inose, Hiroshi

More information

Improvement and Evaluation of a Time-of-Flight-based Patient Positioning System

Improvement and Evaluation of a Time-of-Flight-based Patient Positioning System Improvement and Evaluation of a Time-of-Flight-based Patient Positioning System Simon Placht, Christian Schaller, Michael Balda, André Adelt, Christian Ulrich, Joachim Hornegger Pattern Recognition Lab,

More information

3D Object Representations. COS 526, Fall 2016 Princeton University

3D Object Representations. COS 526, Fall 2016 Princeton University 3D Object Representations COS 526, Fall 2016 Princeton University 3D Object Representations How do we... Represent 3D objects in a computer? Acquire computer representations of 3D objects? Manipulate computer

More information

3D Studio Production of Animated Actor Models

3D Studio Production of Animated Actor Models 3D Studio Production of Animated Actor Models Adrian Hilton, Michael Kalkavouras and Gordon Collins Centre for Vision, Speech and Signal Processing University of Surrey, Guildford GU27XH, UK a.hilton,m.kalkavouras,g.collins@surrey.ac.uk

More information

Chaplin, Modern Times, 1936

Chaplin, Modern Times, 1936 Chaplin, Modern Times, 1936 [A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set] Multi-view geometry problems Structure: Given projections

More information

Generating 3D Meshes from Range Data

Generating 3D Meshes from Range Data Princeton University COS598B Lectures on 3D Modeling Generating 3D Meshes from Range Data Robert Kalnins Robert Osada Overview Range Images Optical Scanners Error sources and solutions Range Surfaces Mesh

More information

IMAGE DENOISING TO ESTIMATE THE GRADIENT HISTOGRAM PRESERVATION USING VARIOUS ALGORITHMS

IMAGE DENOISING TO ESTIMATE THE GRADIENT HISTOGRAM PRESERVATION USING VARIOUS ALGORITHMS IMAGE DENOISING TO ESTIMATE THE GRADIENT HISTOGRAM PRESERVATION USING VARIOUS ALGORITHMS P.Mahalakshmi 1, J.Muthulakshmi 2, S.Kannadhasan 3 1,2 U.G Student, 3 Assistant Professor, Department of Electronics

More information

Recovering High Dynamic Range Radiance Maps in Matlab

Recovering High Dynamic Range Radiance Maps in Matlab Recovering High Dynamic Range Radiance Maps in Matlab cs060m - Final project Daniel Keller This project comprises an attempt to leverage the built-in numerical tools and rapid-prototyping facilities provided

More information

The Experimental Method Study of Cultural Relic on 3D Digital Design Licheng Zong

The Experimental Method Study of Cultural Relic on 3D Digital Design Licheng Zong 7th International Conference on Social Network, Communication and Education (SNCE 2017) The Experimental Method Study of Cultural Relic on 3D Digital Design Licheng Zong Northwest University, School of

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 15 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

An Evaluation of Interactive and Automated Next Best View Methods in 3D Scanning

An Evaluation of Interactive and Automated Next Best View Methods in 3D Scanning 1 An Evaluation of Interactive and Automated Next Best View Methods in 3D Scanning Grigori D. Pintilie 1 and Wolfgang Stuerzlinger 2 1 York University, Toronto, Canada, gregdp@csail.mit.edu 2 York University,

More information

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa 3D Scanning Qixing Huang Feb. 9 th 2017 Slide Credit: Yasutaka Furukawa Geometry Reconstruction Pipeline This Lecture Depth Sensing ICP for Pair-wise Alignment Next Lecture Global Alignment Pairwise Multiple

More information

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few...

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few... STEREO VISION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their own

More information

Scanning and Reconstruction for Dynamic Surfaces

Scanning and Reconstruction for Dynamic Surfaces Scanning and Reconstruction for Dynamic Surfaces University of Virginia Computer Science Technical Report CS-2006-25 Kevin Dale, Ewen Cheslack-Postava, Greg Humphreys, and David P. Luebke Abstract We present

More information

Shape Matching. Michael Kazhdan ( /657)

Shape Matching. Michael Kazhdan ( /657) Shape Matching Michael Kazhdan (601.457/657) Overview Intro General Approach Minimum SSD Descriptor Goal Given a database of 3D models, and given a query shape, find the database models that are most similar

More information

Vision based Interpolation of 3D Laser Scans

Vision based Interpolation of 3D Laser Scans Vision based Interpolation of 3D Laser Scans Henrik Andreasson, Achim Lilienthal, Rudolph Triebel AASS, Dept. of Technology, Örebro University, 70182 Örebro, Sweden henrik.andreasson@tech.oru.se Abstract

More information

Marc Levoy. VMware Founders Professor in Computer Science and Professor of Electrical Engineering, Emeritus. Bio. Publications BIO

Marc Levoy. VMware Founders Professor in Computer Science and Professor of Electrical Engineering, Emeritus. Bio. Publications BIO VMware Founders Professor in Computer Science and Professor of Electrical Engineering, Emeritus Bio BIO Levoy's current interests include the science and art of photography, computational photography,

More information

Reconstruction of complete 3D object model from multi-view range images.

Reconstruction of complete 3D object model from multi-view range images. Header for SPIE use Reconstruction of complete 3D object model from multi-view range images. Yi-Ping Hung *, Chu-Song Chen, Ing-Bor Hsieh, Chiou-Shann Fuh Institute of Information Science, Academia Sinica,

More information

Image-Based Rendering

Image-Based Rendering Image-Based Rendering COS 526, Fall 2016 Thomas Funkhouser Acknowledgments: Dan Aliaga, Marc Levoy, Szymon Rusinkiewicz What is Image-Based Rendering? Definition 1: the use of photographic imagery to overcome

More information

Shape and Appearance from Images and Range Data

Shape and Appearance from Images and Range Data SIGGRAPH 2000 Course on 3D Photography Shape and Appearance from Images and Range Data Brian Curless University of Washington Overview Range images vs. point clouds Registration Reconstruction from point

More information

Surround Structured Lighting for Full Object Scanning

Surround Structured Lighting for Full Object Scanning Surround Structured Lighting for Full Object Scanning Douglas Lanman, Daniel Crispell, and Gabriel Taubin Brown University, Dept. of Engineering August 21, 2007 1 Outline Introduction and Related Work

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Introduction to Mobile Robotics Iterative Closest Point Algorithm. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras

Introduction to Mobile Robotics Iterative Closest Point Algorithm. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras Introduction to Mobile Robotics Iterative Closest Point Algorithm Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras 1 Motivation 2 The Problem Given: two corresponding point sets: Wanted: translation

More information

Algorithm research of 3D point cloud registration based on iterative closest point 1

Algorithm research of 3D point cloud registration based on iterative closest point 1 Acta Technica 62, No. 3B/2017, 189 196 c 2017 Institute of Thermomechanics CAS, v.v.i. Algorithm research of 3D point cloud registration based on iterative closest point 1 Qian Gao 2, Yujian Wang 2,3,

More information

Hermite Curves. Hermite curves. Interpolation versus approximation Hermite curve interpolates the control points Piecewise cubic polynomials

Hermite Curves. Hermite curves. Interpolation versus approximation Hermite curve interpolates the control points Piecewise cubic polynomials Hermite Curves Hermite curves Interpolation versus approximation Hermite curve interpolates the control points Piecewise cubic polynomials Focus on one segment T1 P0 Q(t) T0 Control points of Bezier curve

More information

Perspective Accurate Splatting

Perspective Accurate Splatting Perspective Accurate Splatting Matthias Zwicker Massachusetts Institute of Technology Jussi Räsänen Hybrid Graphics, Helsinki University of Technology Mario Botsch TU Aachen Carsten Dachsbacher Universität

More information

CS233: The Shape of Data Handout # 3 Geometric and Topological Data Analysis Stanford University Wednesday, 9 May 2018

CS233: The Shape of Data Handout # 3 Geometric and Topological Data Analysis Stanford University Wednesday, 9 May 2018 CS233: The Shape of Data Handout # 3 Geometric and Topological Data Analysis Stanford University Wednesday, 9 May 2018 Homework #3 v4: Shape correspondences, shape matching, multi-way alignments. [100

More information

Image or Object? Is this real?

Image or Object? Is this real? Image or Object? Michael F. Cohen Microsoft Is this real? Photo by Patrick Jennings (patrick@synaptic.bc.ca), Copyright 1995, 96, 97 Whistler B. C. Canada Modeling, Rendering, and Lighting 1 A mental model?

More information

ENGN D Photography / Spring 2018 / SYLLABUS

ENGN D Photography / Spring 2018 / SYLLABUS ENGN 2502 3D Photography / Spring 2018 / SYLLABUS Description of the proposed course Over the last decade digital photography has entered the mainstream with inexpensive, miniaturized cameras routinely

More information

The Ball-Pivoting Algorithm for Surface Reconstruction

The Ball-Pivoting Algorithm for Surface Reconstruction The Ball-Pivoting Algorithm for Surface Reconstruction 1. Briefly summarize the paper s contributions. Does it address a new problem? Does it present a new approach? Does it show new types of results?

More information

3D Object Representation. Michael Kazhdan ( /657)

3D Object Representation. Michael Kazhdan ( /657) 3D Object Representation Michael Kazhdan (601.457/657) 3D Objects How can this object be represented in a computer? 3D Objects This one? H&B Figure 10.46 3D Objects This one? H&B Figure 9.9 3D Objects

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

Efficient 3D Shape Acquisition and Registration Using Hybrid Scanning Data

Efficient 3D Shape Acquisition and Registration Using Hybrid Scanning Data Efficient 3D Shape Acquisition and Registration Using Hybrid Scanning Data Hongwei Zheng, Dietmar Saupe, Markus Roth, Andreas Böhler and Peter Opuchlik Computer and Information Science, University of Konstanz,

More information

Exploiting Mirrors in Interactive Reconstruction with Structured Light

Exploiting Mirrors in Interactive Reconstruction with Structured Light Exploiting Mirrors in Interactive Reconstruction with Structured Light Emric Epstein, Martin Granger-Piché, and Pierre Poulin LIGUM Dép. I.R.O., Université de Montréal Abstract This paper describes how

More information

Progressive Encoding and Compression of Surfaces Generated from Point Cloud Data

Progressive Encoding and Compression of Surfaces Generated from Point Cloud Data Progressive Encoding and Compression of Surfaces Generated from Point Cloud Data J. Smith, G. Petrova, S. Schaefer Texas A&M University, USA Abstract We present a new algorithm for compressing surfaces

More information

Impostors and pseudo-instancing for GPU crowd rendering

Impostors and pseudo-instancing for GPU crowd rendering Impostors and pseudo-instancing for GPU crowd rendering Erik Millan ITESM CEM Isaac Rudomin ITESM CEM Figure 1: Rendering of a 1, 048, 576 character crowd. Abstract Animated crowds are effective to increase

More information

Comparison between Various Edge Detection Methods on Satellite Image

Comparison between Various Edge Detection Methods on Satellite Image Comparison between Various Edge Detection Methods on Satellite Image H.S. Bhadauria 1, Annapurna Singh 2, Anuj Kumar 3 Govind Ballabh Pant Engineering College ( Pauri garhwal),computer Science and Engineering

More information

Extraction and remeshing of ellipsoidal representations from mesh data

Extraction and remeshing of ellipsoidal representations from mesh data Extraction and remeshing of ellipsoidal representations from mesh data Patricio D. Simari Karan Singh Dynamic Graphics Project Department of Computer Science University of Toronto Abstract Dense 3D polygon

More information