MA 131 Lecture Notes Chapter 4 Calculus by Stewart

Size: px
Start display at page:

Download "MA 131 Lecture Notes Chapter 4 Calculus by Stewart"

Transcription

1 MA 131 Lecture Notes Chapter 4 Calculus by Stewart 4.1) Maimum and Minimum Values 4.3) How Derivatives Affect the Shape of a Graph A function is increasing if its graph moves up as moves to the right and is decreasing if its graph moves down as moves to the right. The formal definition is as follows: Definition of Increasing and Decreasing Functions A function f is increasing on an interval if for any tow numbers 1 and in the interval, 1 implies f ) f ( ). ( 1 A function f is decreasing on an interval if for any tow numbers 1 and in the interval, 1 implies f ) f ( ). ( 1 We use the derivative of a function to determine where a function is increasing or decreasing. The following information can be used for such a purpose. Test for Increasing and Decreasing Functions Let f be differentiable on the interval (a,b) 1. If f '( ) 0 for all in (a,b), then f is increasing on (a,b).. If f '( ) 0for all in (a,b), then f is decreasing on (a,b). 3. If f '( ) 0 for all in (a,b), then f is constant on (a,b). Draw a picture to see if you can see why this is true. Discuss why we only use open intervals to discuss the properties of increasing or decreasing. Prove that is decreasing on,0) ( and increasing on ( 0, ).

2 Definition of Critical Number If f is defined at c, then c is a critical number of f if f '( c) 0 or if f (c) does not eist (is undefined.) Find all critical numbers of the following functions: f 3 ( ) 1 3 Guidelines for Applying Increasing/Decreasing Test 1. Find the derivative of f.. Locate the critical numbers of f and use these numbers to determine test intervals. Tat is, find all for which f ()=0 or f () is undefined. 3. Test the sign of f () at an arbitrary number in each of the test intervals. 4. Use the test for increasing and decreasing functions to decide whether f() is increasing or decreasing on each interval.

3 Eample: Find the open intervals on which the function is increasing or decreasing. Test Value Sign of f () 1 Test Value Sign of f () 4 Test Value Sign of f ()

4 Be mindful of any discontinuities in f() these isolated values also need to partition your interval when testing for increasing and decreasing. Etrema and the First-Derivative Test Consider a function that is continuous and increasing then at a certain point when =c the function begins to decrease. At this point, the function has achieved a maimum value on that immediate interval. What happens when a continuous function is decreasing and then changes to increasing? This is eactly the focus of this section. When a function changes from increasing to decreasing or vice versa, we call this point a relative etremum (the plural of etremum is etrema.) The relative etrema of a function include the relative minima and relative maima of the function. Definition of Relative Etrema Let f be a function defined at c. 1. f(c) is a relative maimum of f if there eists an interval (a,b) containing c such that f ( c) for all in (a,b).. f(c) is a relative minimum of f if there eists an interval (a,b) containing c such that f ( c) for all in (a,b). Occurrence of Relative Etrema If f has a relative maimum or relative minimum when =c, then c is a critical number of f. That is f (c)=0 or f (c) does not eist. We can use the first derivative test to classify any critical numbers as relative maima or relative minima. First-Derivative Test for Relative Etrema Let f be continuous on the interval (a,b) in which c is the only critical number. If f is differentiable on the interval (ecept possibly at c), then f(c) can be classified as a relative minimum, a relative maimum, or neither, as shown. 1. On the interval (a,b), if f () is negative to the left of =c and positive to the right of =c, then f(c) is a relative minimum. (decreasing then increasing). On the interval (a,b), if f () is positive to the left of =c and negative to the right of =c, then f(c) is a relative maimum. (increasing then decreasing) 3. On the interval (a,b), if f () is negative on both sides of =c, or if f () is positive on both sides of =c, then f(c) is neither a relative minimum or a relative maimum.

5 Eample: Find all relative etremum of f Test value Sign of f () Find the relative etremum of f. f 4 3 ( ) 4 Find the relative etremum of f. 3 3 We use the terms relative etremum to describe the local behavior of a function. To describe the global behavior of the function on an entire interval we can use the terms absolute maimum and absolute minimum.

6 Definition of Absolute Etrema Let f be defined on an interval I containing c. 1. f(c) is an absolute minimum of f on I if f ( c) for every in I.. f(c) is an absolute maimum of f on I if f ( c) for every in I. The absolute minimum and absolute maimum values of a function on an interval are sometimes simply called the minimum and maimum of f on I. Do all functions have absolute maimums and absolute minimums? Under what conditions can we guarantee them? The following theorem answers these questions. Can you eplain why? Etreme Value Theorem If f is continuous on [a,b], then f has both a minimum value and a maimum value on [a,b]. Note it is possible that an etremum (the y-value) can occur at more than one value. Guidelines for Finding Etrema on a Closed To find the etrema of a continuous function f on a closed interval [a,b], use the steps below. 1. Evaluate f at each of its critical numbers in (a,b).. Evaluate f at each endpoint, a and b. 3. The least of these values is the minimum, and the greatest is the maimum. Eample: Find the minimum and maimum values of 5 on [-1,3]. (Note the chart below is for organization purposes and may have more rows than necessary.) Endpoint Endpoint Critical Number Critical Number Function value

7 Find the minimum and maimum values of on the interval [3,5]. Find the absolute maimum and minimum values of ( ) on [ ]. Eample: Coughing forces the trachea (windpipe) to contract, which in turn affects the velocity of the air through the trachea. The velocity of the air during the coughing can be modeled by v k( R r) r, 0 r R, where k is a constant, R is the normal radius of the trachea, and r is the radius during coughing. What radius r will produce the maimum air velocity? Net we begin our discussion about concavity of a graph, that is, the curving upward or curving downward property of a function. Begin by drawing the function ( ) and ( ). Discuss the placement of the tangent line and the second derivative. Definition of Concavity Let f be differentiable on an open interval I. The graph of f is 1. concave upward on I if f is increasing on the interval.. concave downward on I if f is decreasing on the interval.

8 Note: 1. A curve that is concave upward lies above its tangent line.. A curve that is concave downward lies below its tangent line. Test for Concavity Let f be a function whose second derivative eists on an open interval I. 1. If f ()>0 for all in I, then f is concave upward on I.. If f ()<0 for all in I, then f is concave downward on I. Guidelines for Applying Concavity Test 0. Always check domain and any discontinuities. 1. Locate the -values at which f ()=0 and f () does not eist.. Use these -values to determine test intervals. 3. Test the sign of f () in each test interval. Eample: Determine the open interval(s) on which the graph of the function is concave upward or concave downward. 6 3 Test Value Sign of f Eample: Determine the open intervals on which the graph of the function is concave upward or concave downward. f ) 3 ( Definition: Points of Inflection If the graph of a continuous function has a tangent line at a point where its concavity changes from upward to downward (or downward to upward), then the point is a point of inflection. Discuss inflection points of.

9 Property of Points of Inflection If (c,f(c)) is a point of inflection of the graph of f, then either f (c)=0 or f (c) is undefined. Eample: Discuss the concavity of the graph of f and find its points of inflection We can use the second derivative to find the relative maimum and relative minimum of a function. second derivative guide. Second Derivative Test (for finding relative maimums and minimums) Let f (c)=0, and let f eist on an open interval containing c. 1. Let f (c)>0, then f(c) is a relative minimum. Let f (c)<0, then f(c) is a relative maimum 3. If f (c)=0, then the test fails. In such cases, you can use the First Derivative Test to determine whether f(c) is a relative minimum/maimum or neither. Justify the results of the above test. Here is a chart to help you organize the above results. First Derivative Second Derivative f'(c)=0 f' (c)>0 c is a relative minimum f'(c)=0 f' (c)<0 c is a relative maimum f'(c)=0 f' (c)=0 Test is inconclusive Eample: Find the relative etrema of ( ).

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text)

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text) MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of tet) The property of the graph of a function curving upward or downward is defined as the concavity of the graph of a function. Concavity if how

More information

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM 61 LESSON 4-1 ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM Definitions (informal) The absolute maimum (global maimum) of a function is the -value that is greater than or equal to all other -values in the

More information

Section 4.4 Concavity and Points of Inflection

Section 4.4 Concavity and Points of Inflection Section 4.4 Concavit and Points of Inflection In Chapter 3, ou saw that the second derivative of a function has applications in problems involving velocit and acceleration or in general rates-of-change

More information

4 Using The Derivative

4 Using The Derivative 4 Using The Derivative 4.1 Local Maima and Minima * Local Maima and Minima Suppose p is a point in the domain of f : f has a local minimum at p if f (p) is less than or equal to the values of f for points

More information

2.1. Definition: If a < b, then f(a) < f(b) for every a and b in that interval. If a < b, then f(a) > f(b) for every a and b in that interval.

2.1. Definition: If a < b, then f(a) < f(b) for every a and b in that interval. If a < b, then f(a) > f(b) for every a and b in that interval. 1.1 Concepts: 1. f() is INCREASING on an interval: Definition: If a < b, then f(a) < f(b) for every a and b in that interval. A positive slope for the secant line. A positive slope for the tangent line.

More information

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity MA123, Chapter 6: Etreme values, Mean Value Theorem, Curve sketching, and Concavit Chapter Goals: Appl the Etreme Value Theorem to find the global etrema for continuous function on closed and bounded interval.

More information

3.5 - Concavity. a concave up. a concave down

3.5 - Concavity. a concave up. a concave down . - Concavity 1. Concave up and concave down For a function f that is differentiable on an interval I, the graph of f is If f is concave up on a, b, then the secant line passing through points 1, f 1 and,

More information

This handout will discuss three kinds of asymptotes: vertical, horizontal, and slant.

This handout will discuss three kinds of asymptotes: vertical, horizontal, and slant. CURVE SKETCHING This is a handout that will help you systematically sketch functions on a coordinate plane. This handout also contains definitions of relevant terms needed for curve sketching. ASYMPTOTES:

More information

Math 295: Exam 3 Name: Caleb M c Whorter Solutions Fall /16/ Minutes

Math 295: Exam 3 Name: Caleb M c Whorter Solutions Fall /16/ Minutes Math 295: Eam 3 Name: Caleb M c Whorter Solutions Fall 2018 11/16/2018 50 Minutes Write your name on the appropriate line on the eam cover sheet. This eam contains 10 pages (including this cover page)

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework.

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework. For Test #3 study these problems, the eamples in your notes, and the homework. I. Absolute Etrema A function, continuous on a closed interval, always has an absolute maimum and absolute minimum. They occur

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

Section 4.1 Max and Min Values

Section 4.1 Max and Min Values Page 1 of 5 Section 4.1 Ma and Min Values Horizontal Tangents: We have looked at graphs and identified horizontal tangents, or places where the slope of the tangent line is zero. Q: For which values does

More information

3.5 - Concavity 1. Concave up and concave down

3.5 - Concavity 1. Concave up and concave down . - Concavit. Concave up and concave down Eample: The graph of f is given below. Determine graphicall the interval on which f is For a function f that is differentiable on an interval I, the graph of f

More information

Sections 4.3, 4.5 & 4.6: Graphing

Sections 4.3, 4.5 & 4.6: Graphing Sections 4.3, 4.5 & 4.6: Graphing In this section, we shall see how facts about f () and f () can be used to supply useful information about the graph of f(). Since there are three sections devoted to

More information

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

Use Derivatives to Sketch the Graph of a Polynomial Function.

Use Derivatives to Sketch the Graph of a Polynomial Function. Applications of Derivatives Curve Sketching (using derivatives): A) Polynomial Functions B) Rational Functions Lesson 5.2 Use Derivatives to Sketch the Graph of a Polynomial Function. Idea: 1) Identify

More information

AB Calculus: Extreme Values of a Function

AB Calculus: Extreme Values of a Function AB Calculus: Extreme Values of a Function Name: Extrema (plural for extremum) are the maximum and minimum values of a function. In the past, you have used your calculator to calculate the maximum and minimum

More information

Section 4.1: Maximum and Minimum Values

Section 4.1: Maximum and Minimum Values Section 4.: Maimum and Minimum Values In this chapter, we shall consider further applications of the derivative. The main application we shall consider is using derivatives to sketch accurate graphs of

More information

THS Step By Step Calculus Chapter 3

THS Step By Step Calculus Chapter 3 Name: Class Period: Throughout this packet there will be blanks you are expected to fill in prior to coming to class. This packet follows your Larson Textbook. Do NOT throw away! Keep in 3 ring-binder

More information

Module 3 Graphing and Optimization

Module 3 Graphing and Optimization Module 3 Graphing and Optimization One of the most important applications of calculus to real-world problems is in the area of optimization. We will utilize the knowledge gained in the previous chapter,

More information

Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9

Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9 Math 201-103-RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9 Critical numbers - Increasing and decreasing intervals - Relative Etrema Given f(), the derivatives f () and f

More information

4.4. Concavity and Curve Sketching. Concavity

4.4. Concavity and Curve Sketching. Concavity 4.4 Concavit and Curve Sketching 267 4.4 Concavit and Curve Sketching f' decreases CONCAVE DOWN 3 f' increases 0 CONCAVE UP FIGURE 4.25 The graph of ƒsd = 3 is concave down on s - q, 0d and concave up

More information

2. Suppose we drew many tangent lines for this second curve. How do the slopes of these tangent lines change as we look from left to right?

2. Suppose we drew many tangent lines for this second curve. How do the slopes of these tangent lines change as we look from left to right? Do now as a warm up: 1. Suppose we drew many tangent lines for this first curve. How do the slopes of these tangent lines change as we look from left to right? 2. Suppose we drew many tangent lines for

More information

Optimization Methods: Optimization using Calculus-Stationary Points 1. Module - 2 Lecture Notes 1

Optimization Methods: Optimization using Calculus-Stationary Points 1. Module - 2 Lecture Notes 1 Optimization Methods: Optimization using Calculus-Stationary Points 1 Module - Lecture Notes 1 Stationary points: Functions of Single and Two Variables Introduction In this session, stationary points of

More information

We can determine this with derivatives: the graph rises where its slope is positive.

We can determine this with derivatives: the graph rises where its slope is positive. Math 1 Derivatives and Graphs Stewart. Increasing and decreasing functions. We will see how to determine the important features of a graph y = f(x) from the derivatives f (x) and f (x), summarizing our

More information

The term Concavity is used to describe the type of curvature the graph displays at any given point.

The term Concavity is used to describe the type of curvature the graph displays at any given point. 4 4 Concavity and the Second Derivative The term Concavity is used to describe the type of curvature the graph displays at any given point. The curve of the graph is called Up at point if the graph is

More information

Unconstrained and Constrained Optimization

Unconstrained and Constrained Optimization Unconstrained and Constrained Optimization Agenda General Ideas of Optimization Interpreting the First Derivative Interpreting the Second Derivative Unconstrained Optimization Constrained Optimization

More information

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is APPLICATIN F DERIVATIVE INTRDUCTIN In this section we eamine some applications in which derivatives are used to represent and interpret the rates at which things change in the world around us. Let S be

More information

AH Properties of Functions.notebook April 19, 2018

AH Properties of Functions.notebook April 19, 2018 Functions Rational functions are of the form where p(x) and q(x) are polynomials. If you can sketch a function without lifting the pencil off the paper, it is continuous. E.g. y = x 2 If there is a break

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) x 3 5x 2 4x + 20.

More information

Section 4.3: Derivatives and the Shapes of Curves

Section 4.3: Derivatives and the Shapes of Curves 1 Section 4.: Derivatives and the Shapes of Curves Practice HW from Stewart Textbook (not to hand in) p. 86 # 1,, 7, 9, 11, 19, 1,, 5 odd The Mean Value Theorem If f is a continuous function on the closed

More information

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) =

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) = Graphing Functions Section. of your tetbook is devoted to reviewing a series of steps that you can use to develop a reasonable graph of a function. Here is my version of a list of things to check. You

More information

Graph Sketching. Review: 1) Interval Notation. Set Notation Interval Notation Set Notation Interval Notation. 2) Solving Inequalities

Graph Sketching. Review: 1) Interval Notation. Set Notation Interval Notation Set Notation Interval Notation. 2) Solving Inequalities Lesson. Graph Sketching Review: ) Interval Notation Set Notation Interval Notation Set Notation Interval Notation a) { R / < < 5} b) I (, 3) ( 3, ) c){ R} d) I (, ] (0, ) e){ R / > 5} f) I [ 3,5) ) Solving

More information

ReviewUsingDerivatives.nb 1. As we have seen, the connection between derivatives of a function and the function itself is given by the following:

ReviewUsingDerivatives.nb 1. As we have seen, the connection between derivatives of a function and the function itself is given by the following: ReviewUsingDerivatives.nb Calculus Review: Using First and Second Derivatives As we have seen, the connection between derivatives of a function and the function itself is given by the following: à If f

More information

Math 111 Lecture Notes

Math 111 Lecture Notes A function f is even if for ever in the domain of f it holds that f( ) = f(). Visuall, an even function is smmetric about the -ais. A function f is odd if for ever in the domain of f it holds that f( )

More information

MAC 2311 Chapter 3 Review Materials (Part 1) Topics Include Max and Min values, Concavity, Curve Sketching (first and second derivative analysis)

MAC 2311 Chapter 3 Review Materials (Part 1) Topics Include Max and Min values, Concavity, Curve Sketching (first and second derivative analysis) MAC Chapter Review Materials (Part ) Topics Include Ma and Min values, Concavit, Curve Sketching (first and second derivative analsis) MULTIPLE CHOICE. Choose the one alternative that best completes the

More information

4.3 Maximum and Minimum Values of a Function

4.3 Maximum and Minimum Values of a Function MA: Prepared b Asst.Prof.Dr. Archara Pacheenburawana 83 4.3 Maimum and Minimum Values of a Function Some of the most important applications of differential calculus are optimization problems, in which

More information

The Extreme Value Theorem (IVT)

The Extreme Value Theorem (IVT) 3.1 3.6 old school 1 Extrema If f(c) f(x) (y values) for all x on an interval, then is the (value) of f(x) (the function) on that interval. If f(c) f(x) (y-values) for all x on an interval, then is the

More information

a) y = x 3 + 3x 2 2 b) = UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS

a) y = x 3 + 3x 2 2 b) = UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS We read graphs as we read sentences: left to right. Plainly speaking, as we scan the function from left to right, the function is said to

More information

4.3 Finding Local Extreme Values: First and Second Derivatives

4.3 Finding Local Extreme Values: First and Second Derivatives Arkansas Tech University MATH 2914: Calculus I Dr. Marcel B. Finan 4.3 Finding Local Extreme Values: First and Second Derivatives Recall that a function f(x) is said to be increasing (respectively decreasing)

More information

Section 1.1: Four Ways to Represent a Function

Section 1.1: Four Ways to Represent a Function Section.: Four Ways to Represent a Function. The Definition of a Function Functions are one of the most basic tools in mathematics, so we start by considering the definition of a function and all related

More information

4.3, Math 1410 Name: And now for something completely different... Well, not really.

4.3, Math 1410 Name: And now for something completely different... Well, not really. 4.3, Math 1410 Name: And now for something completely different... Well, not really. How derivatives affect the shape of a graph. Please allow me to offer some explanation as to why the first couple parts

More information

3 Applications of Di erentiation

3 Applications of Di erentiation 9 Applications of Di erentiation This chapter is intended to illustrate some of the applications of di erentiation. The activities of Section. illustrate the relationship between the values of rst and

More information

AP CALCULUS BC 2013 SCORING GUIDELINES

AP CALCULUS BC 2013 SCORING GUIDELINES AP CALCULUS BC 2013 SCORING GUIDELINES Question 4 The figure above shows the graph of f, the derivative of a twice-differentiable function f, on the closed interval 0 x 8. The graph of f has horizontal

More information

Derivatives and Graphs of Functions

Derivatives and Graphs of Functions Derivatives and Graphs of Functions September 8, 2014 2.2 Second Derivatives, Concavity, and Graphs In the previous section, we discussed how our derivatives can be used to obtain useful information about

More information

Relating Graphs of f and f

Relating Graphs of f and f Relating Graphs of f and f Do Now: Answer each of the following questions. 1. When the function, f, is increasing, what does that mean about the derivative, f? 2. When the function, f, is decreasing, what

More information

Curve Sketching and Relative Maxima and Minima. The Goal

Curve Sketching and Relative Maxima and Minima. The Goal Curve Sketching and Relative Maxima and Minima The Goal The purpose of the first derivative sign diagram is to indicate where a function is increasing and decreasing. The purpose of this is to identify

More information

f x How can we determine algebraically where f is concave up and where f is concave down?

f x How can we determine algebraically where f is concave up and where f is concave down? Concavity - 3.5 1. Concave up and concave down Definition For a function f that is differentiable on an interval I, the graph of f is a. If f is concave up on a, b, then the secant line passing through

More information

Graphing. I ll put this information together with some other techniques into a step-by-step graphing procedure. Here it is:

Graphing. I ll put this information together with some other techniques into a step-by-step graphing procedure. Here it is: Graphing 1010005 Calculus provides information which is useful in graphing curves. The first derivative y tells where a curve is increasing and where a curve is decreasing. The second derivative y tells

More information

Section 3.1(part), Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 1190

Section 3.1(part), Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 1190 Section 3.(part), 3.3-3.4 Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 9 9 rel max f (a) = ; slope tangent line = 8 7. slope of tangent line: neg f (a)

More information

Math 1314 Lesson 12 Curve Analysis (Polynomials)

Math 1314 Lesson 12 Curve Analysis (Polynomials) Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales

More information

Unit 2 Functions Analyzing Graphs of Functions (Unit 2.2)

Unit 2 Functions Analyzing Graphs of Functions (Unit 2.2) Unit 2 Functions Analzing Graphs of Functions (Unit 2.2) William (Bill) Finch Mathematics Department Denton High School Introduction Domain/Range Vert Line Zeros Incr/Decr Min/Ma Avg Rate Change Odd/Even

More information

Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra.

Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra. Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales

More information

2.2 Absolute Value Functions

2.2 Absolute Value Functions . Absolute Value Functions 7. Absolute Value Functions There are a few was to describe what is meant b the absolute value of a real number. You ma have been taught that is the distance from the real number

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

Chapter III.C Analysis of The Second Derivative Draft Version 4/19/14 Martin Flashman 2005

Chapter III.C Analysis of The Second Derivative Draft Version 4/19/14 Martin Flashman 2005 Chapter III.C Analysis of The Second Derivative Draft Version 4/19/14 Martin Flashman 2005 In this section we will develop applications of the second derivative that explain more graphical features of

More information

AP Calculus AB Mean Value Theorem (MVT) Unit 4 Packet B. 4. on the interval [ ]

AP Calculus AB Mean Value Theorem (MVT) Unit 4 Packet B. 4. on the interval [ ] WARM-UP: Name For each graph, draw the secant line through the two points on the graph corresponding to the endpoints of the indicated interval. On the indicated interval, draw any tangent lines to the

More information

Exploring AP Calculus With Colorful Calculator Investigations Deedee Stanfield

Exploring AP Calculus With Colorful Calculator Investigations Deedee Stanfield Eploring AP Calculus With Colorful Calculator Investigations Deedee Stanfield dstanfield.oh@oford.k12.al.us Eplore Limits, Derivatives, and Integration through hands-on activities that involve color-enhanced

More information

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Section.: Absolute Value Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

Math 1314 Lesson 12 Curve Analysis (Polynomials)

Math 1314 Lesson 12 Curve Analysis (Polynomials) Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales

More information

1 extrema notebook. November 25, 2012

1 extrema notebook. November 25, 2012 Do now as a warm up: Suppose this graph is a function f, defined on [a,b]. What would you say about the value of f at each of these x values: a, x 1, x 2, x 3, x 4, x 5, x 6, and b? What would you say

More information

To find the intervals on which a given polynomial function is increasing/decreasing using GGB:

To find the intervals on which a given polynomial function is increasing/decreasing using GGB: To find the intervals on which a given polynomial function is increasing/decreasing using GGB: 1. Use GGB to graph the derivative of the function. = ; 2. Find any critical numbers. (Recall that the critical

More information

u u 1 u (c) Distributive property of multiplication over subtraction

u u 1 u (c) Distributive property of multiplication over subtraction ADDITIONAL ANSWERS 89 Additional Answers Eercises P.. ; All real numbers less than or equal to 4 0 4 6. ; All real numbers greater than or equal to and less than 4 0 4 6 7. ; All real numbers less than

More information

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #3 - FALL DR. DAVID BRIDGE

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #3 - FALL DR. DAVID BRIDGE MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #3 - FALL 2007 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use a calculator

More information

1.1 What is Microeconomics?

1.1 What is Microeconomics? 1.1 What is Microeconomics? Economics is the study of allocating limited resources to satisfy unlimited wants. Such a tension implies tradeoffs among competing goals. The analysis can be carried out at

More information

Review Sheet Chapter 3

Review Sheet Chapter 3 Review Sheet Chapter 3 1. Find the value of the derivative (if it exists) of the function at the extremum point (0,0). A) 0 B) 1 C) -1 D) E) 2. Find the value of the derivative (if it exists) of the function

More information

MCS 118 Quiz 1. Fall (5pts) Solve the following equations for x. 7x 2 = 4x x 2 5x = 2

MCS 118 Quiz 1. Fall (5pts) Solve the following equations for x. 7x 2 = 4x x 2 5x = 2 MCS 8 Quiz Fall 6. (5pts) Solve the following equations for. 7 = 4 + 3. (5pts) Solve the following equations for. 3 5 = 3. (5pts) Factor 3 + 35 as much as possible. 4. (5pts) Simplify +. 5. (5pts) Solve

More information

What is the relationship between the real roots of a polynomial equation and the x-intercepts of the corresponding polynomial function?

What is the relationship between the real roots of a polynomial equation and the x-intercepts of the corresponding polynomial function? 3.3 Characteristics of Polnomial Functions in Factored Form INVESTIGATE the Math The graphs of the functions f () 5 1 and g() 5 1 are shown.? GOAL Determine the equation of a polnomial function that describes

More information

Theorem 2(B): Concave DOWNward

Theorem 2(B): Concave DOWNward Montana State University M161: Survey of Calculus 61 Section 4.2 - Applications of the Second Derivative Honeybees This is a population graph for Cyprian honeybees raised in an apiary. The population is

More information

Math Lesson 13 Analyzing Other Types of Functions 1

Math Lesson 13 Analyzing Other Types of Functions 1 Math 1314 Lesson 13 Analyzing Other Types of Functions Asymptotes We will need to identify any vertical or horizontal asymptotes of the graph of a function. A vertical asymptote is a vertical line x= a

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 0C. Lecture Eamples. (8/30/08) Section 14.1, Part 1. Functions of two variables Definition 1 A function f of the two variables and is a rule = f(,) that assigns a number denoted f(,), to each point

More information

Sec.4.1 Increasing and Decreasing Functions

Sec.4.1 Increasing and Decreasing Functions U4L1: Sec.4.1 Increasing and Decreasing Functions A function is increasing on a particular interval if for any, then. Ie: As x increases,. A function is decreasing on a particular interval if for any,

More information

Section MWF 12 1pm SR 117

Section MWF 12 1pm SR 117 Math 1431 Section 1485 MWF 1 1pm SR 117 Dr. Melahat Almus almus@math.uh.edu http://www.math.uh.edu/~almus COURSE WEBSITE: http://www.math.uh.edu/~almus/1431_sp16.html Visit my website regularly for announcements

More information

Why are soda cans shaped the way they are?

Why are soda cans shaped the way they are? Why are soda cans shaped the way they are? ... but other cans vary in shape? Our second Midterm Exam will be on Tuesday 11/4 Two times (check your time following these instructions) 6-8 PM at AUST 108,

More information

MAT137 Calculus! Lecture 12

MAT137 Calculus! Lecture 12 MAT137 Calculus! Lecture 12 Today we will study more curve sketching (4.6-4.8) and we will make a review Test 2 will be next Monday, June 26. You can check the course website for further information Next

More information

AP Calculus AB. a.) Midpoint rule with 4 subintervals b.) Trapezoid rule with 4 subintervals

AP Calculus AB. a.) Midpoint rule with 4 subintervals b.) Trapezoid rule with 4 subintervals AP Calculus AB Unit 6 Review Name: Date: Block: Section : RAM and TRAP.) Evaluate using Riemann Sums L 4, R 4 for the following on the interval 8 with four subintervals. 4.) Approimate ( )d using a.) Midpoint

More information

Increasing and Decreasing Functions. MATH 1003 Calculus and Linear Algebra (Lecture 20) Increasing and Decreasing Functions

Increasing and Decreasing Functions. MATH 1003 Calculus and Linear Algebra (Lecture 20) Increasing and Decreasing Functions Increasing and Decreasing Functions MATH 1003 Calculus and Linear Algebra (Lecture 20) Maosheng Xiong Department of Mathematics, HKUST Suppose y = f (x). 1. f (x) is increasing on an interval a < x < b,

More information

Study 4.3 # Class Notes: Prof. G. Battaly, Westchester Community College, NY

Study 4.3 # Class Notes: Prof. G. Battaly, Westchester Community College, NY Goals: 1. Understand critical numbers and how to find them. 2. Understand the difference between relative extrema and absolute extrema. 3. Understand how critical numbers relate to the relative extrema

More information

CONCAVITY AND INFLECTION POINTS

CONCAVITY AND INFLECTION POINTS CONCAVITY AND INFLECTION POINTS Find the Second Derivative of the function, f. Set the Second Derivative equal to zero and solve. Determine whether the Second Derivative is undefined for any x-values.

More information

Math 1314 Lesson 13 Analyzing Other Types of Functions

Math 1314 Lesson 13 Analyzing Other Types of Functions Math 1314 Lesson 13 Analyzing Other Types of Functions Asymptotes We will need to identify any vertical or horizontal asymptotes of the graph of a function. A vertical asymptote is a vertical line x a

More information

STEP Support Programme. Assignment 13

STEP Support Programme. Assignment 13 STEP Support Programme Assignment 13 Warm-up You probably already know that for a graph with gradient dy : if dy > 0 then the graph is increasing ; if dy < 0 then the graph is decreasing. The sign of the

More information

Critical and Inflection Points

Critical and Inflection Points Critical and Inflection Points 1 Finding and Classifying Critical Points A critical point is a point on the graph where the tangent slope is horizontal, (0) or vertical, ( ). or not defined like the minimum

More information

1-1. What you'll Learn About Critical Points/Extreme Values. 1 P a g e

1-1. What you'll Learn About Critical Points/Extreme Values. 1 P a g e CALCULUS: by Rogawski 8) 1 y x 1-1 x Chapter 4.2: Extreme Values What you'll Learn About Critical Points/Extreme Values 12) f(x) 4x - x 1 1 P a g e Determine the extreme values of each function 2 21) f(x)

More information

CHAPTER 4 APPLICATIONS OF DERIVATIVES

CHAPTER 4 APPLICATIONS OF DERIVATIVES CHAPTER 4 APPLICATIONS OF DERIVATIVES 4. EXTREME VALUES OF FUNCTIONS. An asolute minimum at c, an asolute maimum at. Theorem guarantees the eistence of such etreme values ecause h is continuous on [aß

More information

AP Calculus. Extreme Values: Graphically. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163

AP Calculus. Extreme Values: Graphically. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163 Slide 1 / 163 Slide 2 / 163 AP Calculus Analyzing Functions Using Derivatives 2015-11-04 www.njctl.org Slide 3 / 163 Table of Contents click on the topic to go to that section Slide 4 / 163 Extreme Values

More information

Calculus & Its Applications Larry J. Goldstein David Lay Nakhle I. Asmar David I. Schneider Thirteenth Edition

Calculus & Its Applications Larry J. Goldstein David Lay Nakhle I. Asmar David I. Schneider Thirteenth Edition Calculus & Its Applications Larr J. Goldstein David La Nakhle I. Asmar David I. Schneider Thirteenth Edition Pearson Education Limited Edinburgh Gate Harlow Esse CM20 2JE England and Associated Companies

More information

3 Limits Involving Infinity: Asymptotes LIMITS INVOLVING INFINITY. 226 Chapter 3 Additional Applications of the Derivative

3 Limits Involving Infinity: Asymptotes LIMITS INVOLVING INFINITY. 226 Chapter 3 Additional Applications of the Derivative 226 Chapter 3 Additional Applications of the Derivative 52. Given the function f() 2 3 3 2 2 7, complete the following steps: (a) Graph using [, ] b [, ] and [, ] b [ 2, 2]2. (b) Fill in the following

More information

Math : Differentiation

Math : Differentiation EP-Program - Strisuksa School - Roi-et Math : Differentiation Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 00 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou. Differentiation

More information

Math 1314 Lesson 13 Analyzing Other Types of Functions

Math 1314 Lesson 13 Analyzing Other Types of Functions Math 1314 Lesson 13 Analyzing Other Types of Functions Asymptotes We will need to identify any vertical or horizontal asymptotes of the graph of a function. A vertical asymptote is a vertical line x =

More information

Review Guide for MAT220 Final Exam Part I. Thursday December 6 th during regular class time.

Review Guide for MAT220 Final Exam Part I. Thursday December 6 th during regular class time. Review Guide for MAT0 Final Exam Part I. Thursday December 6 th during regular class time. Part is worth 50% of your Final Exam grade. YOUR Syllabus approved calculator can be used on this part of the

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

Section 2.5: Continuity

Section 2.5: Continuity Section 2.5: Continuity 1. The Definition of Continuity We start with a naive definition of continuity. Definition 1.1. We say a function f() is continuous if we can draw its graph without lifting out

More information

1. A only. 2. B only. 3. both of them correct

1. A only. 2. B only. 3. both of them correct Version PREVIEW HW 10 hoffman (575) 1 This print-out should have 10 questions. Multiple-choice questions ma continue on the net column or page find all choices before answering. CalCe01b 001 10.0 points

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

7. If. (b) Does lim f(x) exist? Explain. 8. If. Is f(x) continuous at x = 1? Explain. 11. Let 3x 2 2x +4 if x< 1 9x if 1 x<2 3x 4 if x 2

7. If. (b) Does lim f(x) exist? Explain. 8. If. Is f(x) continuous at x = 1? Explain. 11. Let 3x 2 2x +4 if x< 1 9x if 1 x<2 3x 4 if x 2 1 Continuity 1. Use the definition of continuity to show that the function { 2 for 2 3 for >2 is not continuous at =2. 2. The function f() is defined by { 2 for 1 3 for >1 (b) Find f() and f(). + (c) Is

More information

MAT Business Calculus - Quick Notes

MAT Business Calculus - Quick Notes MAT 136 - Business Calculus - Quick Notes Last Updated: 4/3/16 Chapter 2 Applications of Differentiation Section 2.1 Using First Derivatives to Find Maximum and Minimum Values and Sketch Graphs THE FIRST-DERIVATIVE

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching Roberto s Notes on Differential Calculus Chapter 8: Graphical analsis Section 5 Graph sketching What ou need to know alread: How to compute and interpret limits How to perform first and second derivative

More information

Curve Sketching. Calculus U Y2]0x1[5e OK`uJtAaR OSVoufRtIwnaRrre] ]LMLLCr.^ J TAulJlu BrXitgqhItTsq LrfeJsdeKrnv\eydE. Name ID: 1

Curve Sketching. Calculus U Y2]0x1[5e OK`uJtAaR OSVoufRtIwnaRrre] ]LMLLCr.^ J TAulJlu BrXitgqhItTsq LrfeJsdeKrnv\eydE. Name ID: 1 Calculus U Y]01[5e OK`uJtAaR OSVoufRtIwnaRrre] ]LMLLCr.^ J TAulJlu BrXitgqhItTsq LrfeJsdeKrnv\edE. Curve Sketching Name ID: 1 Date Period For each problem, find the: and intercepts, asmptotes, -coordinates

More information