An Investigation of a Model of Percentage Depth Dose for Irregularly Shaped Fields

Size: px
Start display at page:

Download "An Investigation of a Model of Percentage Depth Dose for Irregularly Shaped Fields"

Transcription

1 Int. J. Cancer (Radiat. Oncol. Invest): 96, (2001) 2001 Wiley-Liss, Inc. Publication of the International Union Against Cancer An Investigation of a Model of Percentage Depth Dose for Irregularly Shaped Fields Murshed Hossain, Ph.D.,* Ying Xiao, Ph.D., and M. Saiful Huq, Ph.D. Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania SUMMARY A significant component of the total dose delivered to tumor and surrounding tissue during a radiation treatment arises from the scattering of the primary beam. Accounting for this component accurately and efficiently is a necessity. In this study we investigate a method for calculating the phantom-scatter contributions to the total dose by simple summation of scatter dose from a set of individual triangles that span an irregular field. The calculation of phantom scatter is based on a two-parameter model, which is applicable to regions where electron equilibrium is established. The two physical parameters are the dose-averaged linear attenuation coefficient and the beam-hardening coefficient. The advantage of this model is that it is a natural method when an irregular field is shaped by a multi-leaf collimator (MLC). Accuracy is not compromised by the triangulation since the irregular field is defined by the straight edges of the MLC leaves. The model predicts the percent depth dose with acceptable accuracy for any arbitrary shape of fields. We report on results for 6- and 18-MV photon beams and for a number of irregularly shaped fields Wiley-Liss, Inc. Key words: percentage depth dose modeling, phantom scatter, multi-leaf collimator (MLC), irregularly shaped field, photon beam INTRODUCTION A significant component of the absorbed dose at a point in radiation therapy is due to the scattering of primary beam. For example, typical ratios of scatter to primary dose at a 10-cm depth for a cm 2 field are 0.24 and 0.15 for 6- and 18-MV photons, respectively. It is essential to include the correct amount of scattering in any dose calculation. For correction-based algorithms, Clarkson integration is usually performed over the irradiated area to account for the scattered component, which involves look-up tables. This process is time consuming, especially when many repeated calculations are needed for beam optimization. A simple model, which would work within an acceptable limit of error and for a reasonable range of parameters, is highly desirable. Attempts have been made to describe the tissue-phantom ratio in terms of a few measured parameters, which are characteristics of the beam [1,2]. A two-parameter model developed by Bjärngard et al. [1] estimates the scattered component as asd/(ws + d), where a and w are the two parameters and s and d are the field size and depth, respectively. For high-energy photons, where lateral and longitudinal electron equilibrium exists, a and w are related to the attenuation coefficient as a and w [1]. Percentage depth dose (), tissue-phantom ratio (TPR), tissue maximum ratio (TMR), tissue to air ratio (TAR), etc. contain in them the scattering effect and their dependence on depth and field size. They consist of one part, primary fluence (adjusted for inverse square, attenuation, and beamhardening effects), and another part, which represents the effects of scattering. and the other quantities listed above are typically measured for simple square-shaped fields for each therapy machine and modality. This information then forms the basis for future dosimetric calculations. When *Correspondence to: Murshed Hossain, Ph.D., Medical Physics Division, Department of Radiation Oncology, Thomas Jefferson University, 111 South 11 th St., Philadelphia, PA Phone: (215) ; Fax: (215) ; Murshed.Hossain@mail.tju.edu Received 13 March 2000; Revised 6 September 2000; Accepted 6 December 2000 Published online 8 March 2001.

2 Hossain et al.: Model of Percentage Depth Dose 141 calculating or any of the other ratios related to the volume scatter for rectangular fields, an approximate equivalent square is used in the computation. Much research has gone into finding better models for determining the equivalent square [3,4]. For an irregularly shaped field, scattering effects are obtained by performing integration over the given field. Additionally, a multi-leaf collimator (MLC) is often used to conform the field to a given shape. In this case the irregular field can exactly be broken into a set of right triangles. Siddon et al. [5] have shown how one can compute the scattering effects exactly for the case of a right triangular field. Xiao et al. [6] have drawn on the works of Siddon et al. and have expressed the central axis phantom scatter as a function in closed form to be summed over appropriate right triangles spanning the given irregular field. In this work we have considered a number of irregularly shaped fields and computed the for each field using two experimentally measured parameters, namely,, and, the linear attenuation and the beam-hardening coefficients, respectively. We have also measured the s for these shapes and compared them with the results obtained from the model computations. MATERIALS AND METHODS The scatter-to-primary dose ratio for a square field of side s at a depth d is given by Bjärngard et al. [1] as: s,d = asd ws + d, (1) where a and w are the two parameters introduced by Bjärngard et al. [1]. For circular fields of radius r the above equation takes the form: r,d = a 0rd w 0 r + d. (2) The new parameters with the subscript 0 are related to the original parameters as a 0 a/0.561 and w 0 w/ These relations are valid within a 0.3% accuracy [7]. For an irregular field (r,d) can be integrated over all angles on a plane perpendicular to the beam, and an expression for (d) can be obtained: d = 1 r,d d = 1 a0 rd w r + d d. (3) Fig. 1. a: An irregular field of N vertices may be decomposed into 2N right triangles, four of which are shown (taken from Xiao et al. [7]). RT stands for right triangle; the + or signs show whether to add or subtract the specified right triangle. Notice that in triangle 023, RT1 is the large right triangle from which RT2 is subtracted. b: An irregular field (circle) is shaped by a multi-leaf collimator (MLC). Triangles and rectangles are used to decompose the scatter contribution of one leaf, as described in the text. The integration simplifies if the area under consideration can be decomposed into a set of right triangles, as shown in Figure 1 [7]. The sum of any function over the irregular shape is the sum over the number of right triangles with proper signs. For

3 142 Hossain et al.: Model of Percentage Depth Dose each of these right triangles, the scatter-to-primary ratio can be obtained by integrating Equation (3). Let us assume that the two short sides of a right triangle are X and Y, and thus the apex angle is arctan(y/x). The integration can be performed in closed form as [7]: X,Y = Q, = a0d arctanh Q 1 Q 2 1 tan w 0 Q 2 1 when Q 1, a 0 d 1 w 0 2 tan when Q = 1, a 0 d arctan 1 Q 1 Q 2 tan w 0 1 Q 2 when Q 1. (4) where the symbol Q d/(w 0 X). Once the scatterto-primary ratio is computed for a given shape, the ratio of at a depth d to that at a reference depth d r can be readily obtained [7]: Fig. 2. ln(dose) versus water-column depth for attenuation coefficient measurement. d,s d r,s = e d 1 d 1 + d,s f + d r 2 e d r (1 d r 1 + d r,s f + d, 2 (5) where f is SSD and s is the field size. Here we have used d r 10 cm. The scatter component can be characterized by two parameters a and w, which in turn can be expressed in terms of the linear attenuation coefficient, as pointed out in the Introduction. As a first step in applying this technique, the attenuation and beam-hardening coefficients for the 6- and 18-MV beams of an Elekta SLi accelerator were measured. This was accomplished by passing a narrow beam (1 cm diameter at 100 cm from the source) through a column of water of various thicknesses. The exit dose was measured using a diode at extended SSD. The data were fitted to the equation I = I 0 exp d 1 d. (6) As shown in Figure 2, the logarithm of the dose was found to closely fit a polynomial d + d 2 (correlation of for both energies). The values of and were found to be cm 1 and cm 2 for 6-MV photons and cm 1 and cm 2 for 18-MV photons, respectively. Using the physical parameters, as discussed above, the model described here can be used to compute for a given field shape. A total of four different shapes of irregular fields and three to four different points of measurement for each were used to check the accuracy of the calculation. The four shapes shown in Figure 3 are identified as Circle, Cross, I, and Irreg. The measurement points are labeled A, B, C, and D. For each point, the shape is translated horizontally such that the central axis of the beam passes through the chosen point. This means that different points of measurement for a given geometric shape effectively represent different field shapes. Each shape is discretized using the Elekta system Multi Leaf Planning System (MLP) for digitizing MLC shape. Entering the shape into the MLP system also defined the MLC leaf positions for the accelerator. The scatter-to-primary ratio is computed for each leaf by considering two right triangles and two rectangles. Figure 1b shows this schematically. The end points of one leaf are marked C and D in Figure 1b. The two right triangles of interest are OAC and OAD, and the point O corresponds to a certain depth on the central axis where the dose is calculated. The scatter component is computed for the rectangles OACE and OADB by using Equation (4) for the triangles OAC and its counterpart OCE and

4 Hossain et al.: Model of Percentage Depth Dose 143 Fig. 3. Four shapes used in this study. a: Circle of 20 cm diameter. b: Cross shape. c: I-shape. d: An arbitrary irregular field. The gross dimension of the shape in d is cm. The points of measurements are labeled A, B, C, and D. OAD and its counterpart ODB, respectively. Then, by subtracting the scatter component for the region OACE from that of the region OADB, the scatter component for the shaded region CDBE is obtained. The scatter-to-primary ratio of a region similar to the one shown shaded in the figure is computed for each leaf. The scatter-to-primary ratio is found by summing over all the leaves using appropriate signs (negative when a leaf crosses the central line perpendicular to the leaves). Then, Equation (5) is used to compute the. This calculated is then compared with the measured for 6- and 18-MV x-rays. A Wellhoffer IC-10 ion chamber (inner dimensions: 3.3 mm length by 6 mm diameter) was used to measure the. The measurements were made in a cm water phantom with a 100-cm SSD. The results of this comparison are given below for both 6- and 18-MV x-rays. RESULTS The model described above is only valid where electron equilibrium is established. Thus, to make a reasonable comparison between the measured and calculated, the depth dose is normalized at a depth where electron equilibrium is established. A depth of 10 cm is chosen for this normalization [7]. Electron contamination at this reference

5 144 Hossain et al.: Model of Percentage Depth Dose Fig. 4. and calculated value of percentage depth dose () for 6-MV photons for the irregularly shaped field (Fig. 3d) at point A. The agreement is better than 1% at all depths greater than 3.5 cm. This is typical among the shapes considered. depth and deeper depths we have considered here are negligible. For 6-MV photons, the agreement between the calculated and measured values is better than 1% for all depths greater than 3.5 cm and better than 2% for all depths greater than 1.0 cm. The same level of accuracy holds for all shapes and points considered. A typical comparison for 6 MV is shown in Figure 4. For 18 MV, the agreement is better than 2% for depths greater than 4.5 cm. Figure 5 shows the best (a) and the worst (b) fit cases for 18-MV photons. The model is not valid in the shallow buildup region and thus departs from the measurements. In Tables 1 and 2, the measured and the difference between it and the model calculation are presented for selected depths for 6- and 18-MV photons, respectively. The results are similar for a number of other dose points, which were included in the study but are not shown here. DISCUSSION Our study provides independent validation of the Bjärngard and Vadash [8] model of describing the beam qualities in terms of attenuation coefficients. The results presented here show that the model Fig. 5. and calculated percentage depth dose () for 18MV photons. a: The best fit (I-shaped field, point A) and (b) the worst fit (cross-shaped field, point C) comparison between the model and the measured data are shown. agrees well with measurements within a couple of percent. Moreover, the method of summing over right triangles used here is a fast and accurate procedure to calculate the scatter components exhibited in, TPR, etc. It makes it possible to compute or any other ratio for any arbitrary shape once and are measured for the given modality (beam and energy) with reasonable accuracy.

6 Table 1. Comparison between and Calculated Percentage Depth Dose () for 6-MV Photons and for Various Field Shapes* Shape Depth 7cm 10cm 16cm 22cm Hossain et al.: Model of Percentage Depth Dose 145 Circle Pt. A Circle Pt. C I Pt. A I Pt. C Cross Pt. A Cross Pt. B Irreg. Pt. A Irreg. Pt. B *The irregular fields are depicted and labeled in Figure 3. The percentage depth doses are normalized to a depth of 10 cm. The percentage difference is given by 100 (calculated value-measured value)/measured value. Table 2. Comparison between and Calculated Percentage Depth Dose () for 18-MV Photons and for Various Field Shapes* Shape Depth 7cm 10cm 16cm 22cm Circle Pt. A Circle Pt. C I Pt. A I Pt. C Cross Pt. A Cross Pt. B Irreg. Pt. A Irreg. Pt. B *The irregular fields are depicted and labeled in Figure 3. The percentage depth doses are normalized to a depth of 10 cm. REFERENCES 1. Bjärngard BE, Vadash P, Ceberg CP. Quality control of measured x-ray beam data. Med Phys 1997;24: Storchi P, van Gasteren JJ. A table of phantom scatter factors of photon beams as a function of the quality index and field size. Phys Med Biol 1996;41: Venselaar JL, Heukelom S, Jager HN, Mijnheer BJ, van Gasteren JJ, van Kleffens HJ, van der Laarse R, Westermann CF. Is there a need for a revised table of equivalent square fields for the determination of phantom scatter correction factors? Phys Med Biol 1997;42: McDermott PN. The physical basis for empirical rules used to determine equivalent fields for phantom scatter. Med Phys 1998;25: Siddon RL, DeWyngaert JK, Bjärngard BE. Scatter integration with right triangular fields. Med Phys 1985; 12: Xiao Y, Altschuler MD, Bjärngard BE. Quality assurance of central axis dose data for photon beams by means of a functional representation of the tissue phantom ratio. Phys Med Biol 1998;43: Xiao Y, Bjärngard BE, Reiff J. Equivalent fields and scatter integration for photon fields. Phys Med Biol 1999;44: Bjärngard BE, Vadash P. Analysis of central-axis doses for high energy x-rays. Med Phys 1995;22:

A SYSTEM OF DOSIMETRIC CALCULATIONS

A SYSTEM OF DOSIMETRIC CALCULATIONS A SYSTEM OF DOSIMETRIC CALCULATIONS INTRODUCTION Dose calculation based on PDD and TAR have Limitations The dependence of PDD on SSD Not suitable for isocentric techniques TAR and SAR does not depend on

More information

Basic Radiation Oncology Physics

Basic Radiation Oncology Physics Basic Radiation Oncology Physics T. Ganesh, Ph.D., DABR Chief Medical Physicist Fortis Memorial Research Institute Gurgaon Acknowledgment: I gratefully acknowledge the IAEA resources of teaching slides

More information

Machine and Physics Data Guide

Machine and Physics Data Guide WWW..COM Machine and Physics Data Guide STANDARD IMAGING, INC. 3120 Deming Way Middleton, WI 53562-1461 May / 2008 2008 Standard Imaging, Inc. TEL 800.261.4446 TEL 608.831.0025 FAX 608.831.2202 www.standardimaging.com

More information

Disclosure. Outline. Acknowledgments. Ping Xia, Ph.D., Page 1. LINAC and MLC QA for IMRT. Received research support from Siemens Medical Solutions

Disclosure. Outline. Acknowledgments. Ping Xia, Ph.D., Page 1. LINAC and MLC QA for IMRT. Received research support from Siemens Medical Solutions LINAC and MLC QA for IMRT Ping Xia, Ph.D., Department of Radiation Oncology Disclosure Received research support from Siemens Medical Solutions University of California San Francisco Therapy Series (SAM)

More information

A DOSIMETRIC MODEL FOR SMALL-FIELD ELECTRON RADIATION THERAPY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL

A DOSIMETRIC MODEL FOR SMALL-FIELD ELECTRON RADIATION THERAPY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL A DOSIMETRIC MODEL FOR SMALL-FIELD ELECTRON RADIATION THERAPY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF

More information

The MSKCC Approach to IMRT. Outline

The MSKCC Approach to IMRT. Outline The MSKCC Approach to IMRT Spiridon V. Spirou, PhD Department of Medical Physics Memorial Sloan-Kettering Cancer Center New York, NY Outline Optimization Field splitting Delivery Independent verification

More information

FAST, precise. qa software

FAST, precise. qa software qa software FAST, precise Software for accurate and independent verification of monitor units, dose, and overall validity of standard, IMRT, rotational or brachytherapy plans no film, no phantoms, no linac

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Dose calculation algorithms! Correction based! Model based 1 Dose calculation algorithms!

More information

Monte Carlo Simulation for Neptun 10 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters

Monte Carlo Simulation for Neptun 10 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters Monte Carlo Simulation for Neptun 1 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters M.T. Bahreyni Toossi a, M. Momen Nezhad b, S.M. Hashemi a a Medical Physics Research Center,

More information

Dose Distributions. Purpose. Isodose distributions. To familiarize the resident with dose distributions and the factors that affect them

Dose Distributions. Purpose. Isodose distributions. To familiarize the resident with dose distributions and the factors that affect them Dose Distributions George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To familiarize the resident with dose distributions and the factors that affect them

More information

Clinical implementation of photon beam flatness measurements to verify beam quality

Clinical implementation of photon beam flatness measurements to verify beam quality JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 Clinical implementation of photon beam flatness measurements to verify beam quality Simon Goodall, a Nicholas Harding, Jake Simpson,

More information

Assesing multileaf collimator effect on the build-up region using Monte Carlo method

Assesing multileaf collimator effect on the build-up region using Monte Carlo method Pol J Med Phys Eng. 2008;14(3):163-182. PL ISSN 1425-4689 doi: 10.2478/v10013-008-0014-0 website: http://www.pjmpe.waw.pl M. Zarza Moreno 1, 2, N. Teixeira 3, 4, A. P. Jesus 1, 2, G. Mora 1 Assesing multileaf

More information

EXTERNAL PHOTON BEAMS: PHYSICAL ASPECTS

EXTERNAL PHOTON BEAMS: PHYSICAL ASPECTS EXTERNAL PHOTON BEAMS: PHYSICAL ASPECTS E.B. PODGORSAK Department of Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada 6.1. INTRODUCTION Radiotherapy procedures fall into two main

More information

Use of Monte Carlo modelling in radiotherapy linac design. David Roberts, PhD Senior Physicist Elekta

Use of Monte Carlo modelling in radiotherapy linac design. David Roberts, PhD Senior Physicist Elekta Use of Monte Carlo modelling in radiotherapy linac design David Roberts, PhD Senior Physicist Elekta Contents Overview of Elekta What we do Where we use Monte Carlo Codes and resources Example : Agility

More information

An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy

An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy Chenyang Xu 1, Siemens Corporate Research, Inc., Princeton, NJ, USA Xiaolei Huang,

More information

IMSURE QA SOFTWARE FAST, PRECISE QA SOFTWARE

IMSURE QA SOFTWARE FAST, PRECISE QA SOFTWARE QA SOFTWARE FAST, PRECISE Software for accurate and independent verification of monitor units, dose, and overall validity of standard, IMRT, VMAT, SRS and brachytherapy plans no film, no phantoms, no linac

More information

10 MV x - ray scatter dose - spread kernel construction using the Bjarngard scatter

10 MV x - ray scatter dose - spread kernel construction using the Bjarngard scatter 10 MV x - ray scatter dose - spread kernel construction using the Bjarngard scatter factor expression Akira Iwasaki School of Allied Medical Sciences, Hirosaki University Research Code No.: 203 Key words:

More information

Preface. Med. Phys. 35(9), , Mechanical QA. Radiation Survey Mechanical tests Light radiation Table, Collimator, Gantry Jaws.

Preface. Med. Phys. 35(9), , Mechanical QA. Radiation Survey Mechanical tests Light radiation Table, Collimator, Gantry Jaws. AAPM-SAM-2012-Das (1) Beam Data Collection and Commissioning for Linear Accelerators: Technical Considerations and Recommendations Preface Indra J. Das, PhD, FAAPM, FACR, FASTRO Department of Radiation

More information

Facility Questionnaire PART I (General Information for 3DCRT and IMRT)

Facility Questionnaire PART I (General Information for 3DCRT and IMRT) Facility Questionnaire PART I (General Information for 3DCRT and IMRT) The following items are required before you can enter cases on any RTOG protocol that requires data submission to the Image-Guided

More information

Investigation of photon beam output factors for conformal radiation therapy Monte Carlo simulations and measurements

Investigation of photon beam output factors for conformal radiation therapy Monte Carlo simulations and measurements INSTITUTE OF PHYSICSPUBLISHING Phys. Med. Biol. 47 (2002) N133 N143 PHYSICS INMEDICINE AND BIOLOGY PII: S0031-9155(02)32395-9 NOTE Investigation of photon beam output factors for conformal radiation therapy

More information

On compensator design for photon beam intensity-modulated conformal therapy

On compensator design for photon beam intensity-modulated conformal therapy On compensator design for photon beam intensity-modulated conformal therapy Steve B. Jiang a) and Komanduri M. Ayyangar Department of Radiation Therapy, Medical College of Ohio, 3000 Arlington Avenue,

More information

THE SIMULATION OF THE 4 MV VARIAN LINAC WITH EXPERIMENTAL VALIDATION

THE SIMULATION OF THE 4 MV VARIAN LINAC WITH EXPERIMENTAL VALIDATION 2007 International Nuclear Atlantic Conference - INAC 2007 Santos, SP, Brazil, September 30 to October 5, 2007 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-02-1 THE SIMULATION OF

More information

Measurement of depth-dose of linear accelerator and simulation by use of Geant4 computer code

Measurement of depth-dose of linear accelerator and simulation by use of Geant4 computer code reports of practical oncology and radiotherapy 1 5 (2 0 1 0) 64 68 available at www.sciencedirect.com journal homepage: http://www.rpor.eu/ Original article Measurement of depth-dose of linear accelerator

More information

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 3, SUMMER 2006

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 3, SUMMER 2006 JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 3, SUMMER 2006 Evaluation of dosimetric effect of leaf position in a radiation field of an 80-leaf multileaf collimator fitted to the LINAC

More information

Monitor Unit (MU) Calculation

Monitor Unit (MU) Calculation Monitor Unit (MU) Calculation Timothy C. Zhu 1, Haibo Lin 1, and JiaJian Shen 2 1 University of Pennsylvania, Philadelphia, PA 2 Mayo Clinic, Phoenix, AZ Introduction Pencil-beam based dose/mu algorithms

More information

Development a simple point source model for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code

Development a simple point source model for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code Iran. J. Radiat. Res., 2006; 4 (1): 7-14 Development a simple point source model for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code. Mesbahi * Department of Medical Physics, Medical School,

More information

Release Notes for Dosimetry Check with Convolution-Superposition Collapsed Cone Algorithm (CC)

Release Notes for Dosimetry Check with Convolution-Superposition Collapsed Cone Algorithm (CC) Dosimetry Check for convolution/superposition collapsed cone (CC), Page 1 of 11 Release Notes for Dosimetry Check with Convolution-Superposition Collapsed Cone Algorithm (CC) File: CCReleaseNotes.doc Date:

More information

MCNP4C3-BASED SIMULATION OF A MEDICAL LINEAR ACCELERATOR

MCNP4C3-BASED SIMULATION OF A MEDICAL LINEAR ACCELERATOR Computational Medical Physics Working Group Workshop II, Sep 3 Oct 3, 7 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (7) MCNP4C3-BASED SIMULATION

More information

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations A. Al-Basheer, G. Sjoden, M. Ghita Computational Medical Physics Team Nuclear & Radiological Engineering University

More information

Dynalog data tool for IMRT plan verification

Dynalog data tool for IMRT plan verification Dynalog data tool for IMRT plan verification Poster No.: R-0051 Congress: 2014 CSM Type: Scientific Exhibit Authors: V. Sashin; FOOTSCRAY/AU Keywords: Computer applications, Radiation physics, Experimental,

More information

Photon beam dose distributions in 2D

Photon beam dose distributions in 2D Photon beam dose distributions in 2D Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2014 Acknowledgments! Narayan Sahoo PhD! Richard G Lane (Late) PhD 1 Overview! Evaluation

More information

Proton dose calculation algorithms and configuration data

Proton dose calculation algorithms and configuration data Proton dose calculation algorithms and configuration data Barbara Schaffner PTCOG 46 Educational workshop in Wanjie, 20. May 2007 VARIAN Medical Systems Agenda Broad beam algorithms Concept of pencil beam

More information

Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers

Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers Krista Chytyk MSc student Supervisor: Dr. Boyd McCurdy Introduction The objective of cancer radiotherapy

More information

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) ELECTRON DOSE

More information

A secondary monitor unit calculation algorithm using superposition of symmetric, open fields for IMRT plans

A secondary monitor unit calculation algorithm using superposition of symmetric, open fields for IMRT plans Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2013 A secondary monitor unit calculation algorithm using superposition of symmetric, open fields for IMRT plans Adam

More information

Implementation of the EGSnrc / BEAMnrc Monte Carlo code - Application to medical accelerator SATURNE43

Implementation of the EGSnrc / BEAMnrc Monte Carlo code - Application to medical accelerator SATURNE43 International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 6 No. 3 July 2014, pp. 635-641 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Implementation

More information

Grade 9 Math Terminology

Grade 9 Math Terminology Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

More information

Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code

Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code American Journal of Biomedical Engineering 216, 6(4): 124-131 DOI: 1.5923/j.ajbe.21664.3 Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code Ankit Kajaria 1,*, Neeraj Sharma

More information

Verification of dose calculations with a clinical treatment planning system based on a point kernel dose engine

Verification of dose calculations with a clinical treatment planning system based on a point kernel dose engine JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 3, NUMBER 2, SPRING 2002 Verification of dose calculations with a clinical treatment planning system based on a point kernel dose engine Lars Weber*

More information

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti Monte Carlo methods in proton beam radiation therapy Harald Paganetti Introduction: Proton Physics Electromagnetic energy loss of protons Distal distribution Dose [%] 120 100 80 60 40 p e p Ionization

More information

Solving inequalities Expanding brackets and simplifying the result Graphing quadratic functions in simple cases Interpreting real-life graphs, e.g.

Solving inequalities Expanding brackets and simplifying the result Graphing quadratic functions in simple cases Interpreting real-life graphs, e.g. Grade C Descriptors Estimation and division by a number less than 1 Calculating compound interest - no rounding necessary Using a calculator in complex situations Multiplication and division by a number

More information

Correlation of the ALEKS courses Algebra 1 and High School Geometry to the Wyoming Mathematics Content Standards for Grade 11

Correlation of the ALEKS courses Algebra 1 and High School Geometry to the Wyoming Mathematics Content Standards for Grade 11 Correlation of the ALEKS courses Algebra 1 and High School Geometry to the Wyoming Mathematics Content Standards for Grade 11 1: Number Operations and Concepts Students use numbers, number sense, and number

More information

Improvements in Monte Carlo simulation of large electron fields

Improvements in Monte Carlo simulation of large electron fields SLAC-PUB-12908 October 2007 Improvements in Monte Carlo simulation of large electron fields Bruce A Faddegon 1, Joseph Perl 2 and Makoto Asai 2 1 University of California San Francisco Comprehensive Cancer

More information

Calculating percent depth dose with the electron pencilbeam redefinition algorithm

Calculating percent depth dose with the electron pencilbeam redefinition algorithm JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 8, NUMBER 2, SPRING 2007 Calculating percent depth dose with the electron pencilbeam redefinition algorithm Michael J. Price, 1,2,a Kenneth R. Hogstrom,

More information

A graphical user interface for an electron monitor unit calculator using a sector-integration algorithm and exponential curve-fitting method

A graphical user interface for an electron monitor unit calculator using a sector-integration algorithm and exponential curve-fitting method JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 1, WINTER 2006 A graphical user interface for an electron monitor unit calculator using a sector-integration algorithm and exponential curve-fitting

More information

Accuracy of treatment planning calculations for conformal radiotherapy van 't Veld, Aart Adeodatus

Accuracy of treatment planning calculations for conformal radiotherapy van 't Veld, Aart Adeodatus University of Groningen Accuracy of treatment planning calculations for conformal radiotherapy van 't Veld, Aart Adeodatus IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Effects of the difference in tube voltage of the CT scanner on. dose calculation

Effects of the difference in tube voltage of the CT scanner on. dose calculation Effects of the difference in tube voltage of the CT scanner on dose calculation Dong Joo Rhee, Sung-woo Kim, Dong Hyeok Jeong Medical and Radiological Physics Laboratory, Dongnam Institute of Radiological

More information

Artifact Mitigation in High Energy CT via Monte Carlo Simulation

Artifact Mitigation in High Energy CT via Monte Carlo Simulation PIERS ONLINE, VOL. 7, NO. 8, 11 791 Artifact Mitigation in High Energy CT via Monte Carlo Simulation Xuemin Jin and Robert Y. Levine Spectral Sciences, Inc., USA Abstract The high energy (< 15 MeV) incident

More information

Data. ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy

Data. ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy Data ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy The ModuLeaf Mini Multileaf

More information

Time: 3 hour Total Marks: 90

Time: 3 hour Total Marks: 90 Time: 3 hour Total Marks: 90 General Instructions: 1. All questions are compulsory. 2. The question paper consists of 34 questions divided into four sections A, B, C, and D. 3. Section A contains of 8

More information

Determination of primary electron beam parameters in a Siemens Primus Linac using Monte Carlo simulation

Determination of primary electron beam parameters in a Siemens Primus Linac using Monte Carlo simulation Determination of primary electron beam parameters in a Siemens Primus Linac using Monte Carlo simulation Danial Seifi Makrani 1, Hadi Hasanzadeh 2*, Tayyeb Allahverdi Pourfallah 3, Arash Ghasemi 4, Majid

More information

A triangle that has three acute angles Example:

A triangle that has three acute angles Example: 1. acute angle : An angle that measures less than a right angle (90 ). 2. acute triangle : A triangle that has three acute angles 3. angle : A figure formed by two rays that meet at a common endpoint 4.

More information

Dosimetric impact of the 160 MLC on head and neck IMRT treatments

Dosimetric impact of the 160 MLC on head and neck IMRT treatments JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014 Dosimetric impact of the 160 MLC on head and neck IMRT treatments Prema Rassiah-Szegedi, a Martin Szegedi, Vikren Sarkar, Seth Streitmatter,

More information

Prentice Hall Mathematics: Course Correlated to: Colorado Model Content Standards and Grade Level Expectations (Grade 6)

Prentice Hall Mathematics: Course Correlated to: Colorado Model Content Standards and Grade Level Expectations (Grade 6) Colorado Model Content Standards and Grade Level Expectations (Grade 6) Standard 1: Students develop number sense and use numbers and number relationships in problemsolving situations and communicate the

More information

Properties of a Circle Diagram Source:

Properties of a Circle Diagram Source: Properties of a Circle Diagram Source: http://www.ricksmath.com/circles.html Definitions: Circumference (c): The perimeter of a circle is called its circumference Diameter (d): Any straight line drawn

More information

Middle School Math Course 3 Correlation of the ALEKS course Middle School Math 3 to the Illinois Assessment Framework for Grade 8

Middle School Math Course 3 Correlation of the ALEKS course Middle School Math 3 to the Illinois Assessment Framework for Grade 8 Middle School Math Course 3 Correlation of the ALEKS course Middle School Math 3 to the Illinois Assessment Framework for Grade 8 State Goal 6: Number Sense 6.8.01: 6.8.02: 6.8.03: 6.8.04: 6.8.05: = ALEKS

More information

CURRICULUM UNIT MAP 1 ST QUARTER

CURRICULUM UNIT MAP 1 ST QUARTER 1 ST QUARTER Unit 1: Pre- Algebra Basics I WEEK 1-2 OBJECTIVES Apply properties for operations to positive rational numbers and integers Write products of like bases in exponential form Identify and use

More information

UNCOMPROMISING QUALITY

UNCOMPROMISING QUALITY ION CHAMBERS UNCOMPROMISING QUALITY Designed with over 30 years of scientific integrity for a broad range of dosimetry measurements in diverse radiation beams Farmer-type Chambers For absolute dosimetry

More information

Iterative regularization in intensity-modulated radiation therapy optimization. Carlsson, F. and Forsgren, A. Med. Phys. 33 (1), January 2006.

Iterative regularization in intensity-modulated radiation therapy optimization. Carlsson, F. and Forsgren, A. Med. Phys. 33 (1), January 2006. Iterative regularization in intensity-modulated radiation therapy optimization Carlsson, F. and Forsgren, A. Med. Phys. 33 (1), January 2006. 2 / 15 Plan 1 2 3 4 3 / 15 to paper The purpose of the paper

More information

PROVIDE A UNIFORM DOSE IN THE SMALL ANIMAL.

PROVIDE A UNIFORM DOSE IN THE SMALL ANIMAL. Considerations in the Use of the RS 2000 X ray Irradiator for Biological Research (Primarily Small Animal, tissue, and cells) and the fallacy of the High KV spectrum. The performance goal for a small animal

More information

NEW METHOD OF COLLECTING OUTPUT FACTORS FOR COMMISSIONING LINEAR ACCELERATORS WITH SPECIAL EMPHASIS

NEW METHOD OF COLLECTING OUTPUT FACTORS FOR COMMISSIONING LINEAR ACCELERATORS WITH SPECIAL EMPHASIS NEW METHOD OF COLLECTING OUTPUT FACTORS FOR COMMISSIONING LINEAR ACCELERATORS WITH SPECIAL EMPHASIS ON SMALL FIELDS AND INTENSITY MODULATED RADIATION THERAPY by Cindy D. Smith A Thesis Submitted to the

More information

Hidenobu Tachibana The Cancer Institute Hospital of JFCR, Radiology Dept. The Cancer Institute of JFCR, Physics Dept.

Hidenobu Tachibana The Cancer Institute Hospital of JFCR, Radiology Dept. The Cancer Institute of JFCR, Physics Dept. 2-D D Dose-CT Mapping in Geant4 Hidenobu Tachibana The Cancer Institute Hospital of JFCR, Radiology Dept. The Cancer Institute of JFCR, Physics Dept. Table of Contents Background & Purpose Materials Methods

More information

Calibration and quality assurance for rounded leaf-end MLC systems

Calibration and quality assurance for rounded leaf-end MLC systems Calibration and quality assurance for rounded leaf-end MLC systems Maria N. Graves, a) Antoinette V. Thompson, b) Mary K. Martel, Daniel L. McShan, and Benedick A. Fraass Department of Radiation Oncology,

More information

Follow this and additional works at:

Follow this and additional works at: The University of Toledo The University of Toledo Digital Repository Theses and Dissertations 2010 Implementation of the Dosimetry Check software package in computing 3D patient exit dose through generation

More information

Summary Of Topics covered in Year 7. Topic All pupils should Most pupils should Some pupils should Learn formal methods for

Summary Of Topics covered in Year 7. Topic All pupils should Most pupils should Some pupils should Learn formal methods for Summary Of Topics covered in Year 7 Topic All pupils should Most pupils should Some pupils should Learn formal methods for Have a understanding of computing multiplication Use the order of basic number

More information

Central Valley School District Math Curriculum Map Grade 8. August - September

Central Valley School District Math Curriculum Map Grade 8. August - September August - September Decimals Add, subtract, multiply and/or divide decimals without a calculator (straight computation or word problems) Convert between fractions and decimals ( terminating or repeating

More information

Number. Number. Number. Number

Number. Number. Number. Number Order of operations: Brackets Give the order in which operations should be carried out. Indices Divide Multiply Add 1 Subtract 1 What are the first 10 square numbers? The first 10 square numbers are: 1,

More information

KS3 Curriculum Plan Maths - Core Year 7

KS3 Curriculum Plan Maths - Core Year 7 KS3 Curriculum Plan Maths - Core Year 7 Autumn Term 1 Unit 1 - Number skills Unit 2 - Fractions Know and use the priority of operations and laws of arithmetic, Recall multiplication facts up to 10 10,

More information

Validation of GEANT4 Monte Carlo Simulation Code for 6 MV Varian Linac Photon Beam

Validation of GEANT4 Monte Carlo Simulation Code for 6 MV Varian Linac Photon Beam Validation of GEANT4 Monte Carlo Code for 6 MV Varian Linac Photon Beam E. Salama ab*, A.S. Ali c, N. Emad d and A. Radi a a Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt;

More information

Unit Maps: Grade 7 Math

Unit Maps: Grade 7 Math Rational Number Representations and Operations 7.4 Number and operations. The student adds, subtracts, multiplies, and divides rationale numbers while solving problems and justifying solutions. Solving

More information

TYPES OF NUMBER P1 P2 P3 Learning Objective Understand place value in large numbers Add and subtract large numbers (up to 3 digits) Multiply and

TYPES OF NUMBER P1 P2 P3 Learning Objective Understand place value in large numbers Add and subtract large numbers (up to 3 digits) Multiply and TYPES OF NUMBER P1 P2 P3 Understand place value in large numbers Add and subtract large numbers (up to 3 digits) Multiply and divide large numbers (up to 3 by 2) Understand positive and negative integers

More information

CBSE CLASS X MATHS , 1 2p

CBSE CLASS X MATHS , 1 2p CBSE CLASS X MATHS -2013 General Instructions: (i) All questions are compulsory. (ii) The question paper consists of 34 questions divided into four sections A,B,C and D. (iii) Sections A contains 8 questions

More information

Unit Maps: Grade 7 Math

Unit Maps: Grade 7 Math Rational Number Representations and Operations 7.4 Number and operations. The student adds, subtracts, multiplies, and divides rationale numbers while solving problems and justifying solutions. Solving

More information

Acknowledgments. Ping Xia, Ph.D., UCSF. Pam Akazawa, CMD, UCSF. Cynthia Chuang, Ph.D., UCSF

Acknowledgments. Ping Xia, Ph.D., UCSF. Pam Akazawa, CMD, UCSF. Cynthia Chuang, Ph.D., UCSF Page 1 Quality Assurance of IMRT Delivery Systems - Siemens Lynn J. Verhey, Ph.D. Professor and Vice-Chair UCSF Dept. of Radiation Oncology AAPM 22 Annual Meeting, Montreal Acknowledgments Ping Xia, Ph.D.,

More information

Section 7.2 Volume: The Disk Method

Section 7.2 Volume: The Disk Method Section 7. Volume: The Disk Method White Board Challenge Find the volume of the following cylinder: No Calculator 6 ft 1 ft V 3 1 108 339.9 ft 3 White Board Challenge Calculate the volume V of the solid

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Volume: The Disk Method Copyright Cengage Learning. All rights reserved. Objectives Find the volume of a solid of revolution

More information

Math 7 Glossary Terms

Math 7 Glossary Terms Math 7 Glossary Terms Absolute Value Absolute value is the distance, or number of units, a number is from zero. Distance is always a positive value; therefore, absolute value is always a positive value.

More information

Higher Course Year /16

Higher Course Year /16 Higher Course Year 11 2015/16 Main heading Outcomes MathsWatch clip number Number Surds Use surds in calculations Simplify surds Rationalise surds 157 158 Expand brackets with surds Use surds in problems

More information

APS Sixth Grade Math District Benchmark Assessment NM Math Standards Alignment

APS Sixth Grade Math District Benchmark Assessment NM Math Standards Alignment SIXTH GRADE NM STANDARDS Strand: NUMBER AND OPERATIONS Standard: Students will understand numerical concepts and mathematical operations. 5-8 Benchmark N.: Understand numbers, ways of representing numbers,

More information

A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: A Monte Carlo study

A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: A Monte Carlo study A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: A Monte Carlo study Indrin J. Chetty, a) Mihaela Rosu, Neelam Tyagi, Lon H. Marsh, Daniel

More information

Appendix E. Plane Geometry

Appendix E. Plane Geometry Appendix E Plane Geometry A. Circle A circle is defined as a closed plane curve every point of which is equidistant from a fixed point within the curve. Figure E-1. Circle components. 1. Pi In mathematics,

More information

Whole Numbers and Integers. Angles and Bearings

Whole Numbers and Integers. Angles and Bearings Whole Numbers and Integers Multiply two 2-digit whole numbers without a calculator Know the meaning of square number Add and subtract two integers without a calculator Multiply an integer by a single digit

More information

P1 REVISION EXERCISE: 1

P1 REVISION EXERCISE: 1 P1 REVISION EXERCISE: 1 1. Solve the simultaneous equations: x + y = x +y = 11. For what values of p does the equation px +4x +(p 3) = 0 have equal roots? 3. Solve the equation 3 x 1 =7. Give your answer

More information

3DVH : SUN NUCLEAR On The Accuracy Of The corporation Planned Dose Perturbation Algorithm Your Most Valuable QA and Dosimetry Tools *Patent Pending

3DVH : SUN NUCLEAR On The Accuracy Of The corporation Planned Dose Perturbation Algorithm Your Most Valuable QA and Dosimetry Tools *Patent Pending 3DVH : On The Accuracy Of The Planned Dose Perturbation Algorithm SUN NUCLEAR corporation Your Most Valuable QA and Dosimetry Tools *Patent Pending introduction State-of-the-art IMRT QA of static gantry

More information

Qalitätssicherung an Multileafkollimatoren. Dr. Lutz Müller Würzburg jan 2004

Qalitätssicherung an Multileafkollimatoren. Dr. Lutz Müller Würzburg jan 2004 Qalitätssicherung an Multileafkollimatoren Dr. Lutz Müller Würzburg jan 2004 IMRT Verification - present Target Volume Constraints Inverse Planning Algorithm Fluence Map Leaf Sequencer Leaf & Gantry sequence

More information

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 angle An angle is formed by two rays with a common end point. Houghton Mifflin Co. 3 Grade 5 Unit

More information

YEAR 7 SCHEME OF WORK - EXTENSION

YEAR 7 SCHEME OF WORK - EXTENSION YEAR 7 SCHEME OF WORK - EXTENSION Autumn Term 1 Number Skills Spring Term 1 Angles and Shape Summer Term 1 Multiplicative Reasoning Analysing and displaying data Decimals Perimeter, Area and Volume Half

More information

PITSCO Math Individualized Prescriptive Lessons (IPLs)

PITSCO Math Individualized Prescriptive Lessons (IPLs) Orientation Integers 10-10 Orientation I 20-10 Speaking Math Define common math vocabulary. Explore the four basic operations and their solutions. Form equations and expressions. 20-20 Place Value Define

More information

A software tool for the quantitative evaluation of 3D dose calculation algorithms

A software tool for the quantitative evaluation of 3D dose calculation algorithms A software tool for the quantitative evaluation of 3D dose calculation algorithms William B. Harms, Sr., Daniel A. Low, John W. Wong, a) and James A. Purdy Washington University School of Medicine, Mallinckrodt

More information

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms.

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms. Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms. D.Leone, A.Häußler Intitute for Nuclear Waste Disposal, Karlsruhe Institute for Technology,

More information

Middle School Math Course 2

Middle School Math Course 2 Middle School Math Course 2 Correlation of the ALEKS course Middle School Math Course 2 to the Indiana Academic Standards for Mathematics Grade 7 (2014) 1: NUMBER SENSE = ALEKS course topic that addresses

More information

Montana City School GRADE 5

Montana City School GRADE 5 Montana City School GRADE 5 Montana Standard 1: Students engage in the mathematical processes of problem solving and reasoning, estimation, communication, connections and applications, and using appropriate

More information

Year 9 Autumn Term Topics Covered Calculations Special Numbers Manipulating Algebraic Expressions Fractions Decimals, Fractions and Rounding

Year 9 Autumn Term Topics Covered Calculations Special Numbers Manipulating Algebraic Expressions Fractions Decimals, Fractions and Rounding Year 9 Autumn Term Topics Covered Note: grades given are our own internal 'Sprowston' grades used as a guide for the purpose of tracking students' progress Calculations Grade 3 Add, subtract, multiply

More information

Calibration of Video Cameras to the Coordinate System of a Radiation Therapy Treatment Machine

Calibration of Video Cameras to the Coordinate System of a Radiation Therapy Treatment Machine Calibration of Video Cameras to the Coordinate System of a Radiation Therapy Treatment Machine Scott W. Hadley, L. Scott Johnson, and Charles A. Pelizzari University of Chicago The Department of Radiation

More information

Suggesting a new design for multileaf collimator leaves based on Monte Carlo simulation of two commercial systems

Suggesting a new design for multileaf collimator leaves based on Monte Carlo simulation of two commercial systems JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 11, NUMBER 3, Summer 2010 Suggesting a new design for multileaf collimator leaves based on Monte Carlo simulation of two commercial systems Sanaz Hariri,

More information

Tomotherapy Physics. Machine Twinning and Quality Assurance. Emilie Soisson, MS

Tomotherapy Physics. Machine Twinning and Quality Assurance. Emilie Soisson, MS Tomotherapy Physics Machine Twinning and Quality Assurance Emilie Soisson, MS Tomotherapy at UW- Madison Treating for nearly 5 years Up to ~45 patients a day on 2 tomo units Units twinned to facilitate

More information

CAMI KEYS. TOPIC 1.1 Whole numbers to to to to to

CAMI KEYS. TOPIC 1.1 Whole numbers to to to to to TOPIC 1.1 Whole numbers GRADE 9_CAPS Curriculum 1. Numbers, operations and relationships CONTENT Properties of numbers Describing the real number system by recognizing, defining and distinguishing properties

More information

Year 10 Mathematics Scheme of Work. Higher and Foundation

Year 10 Mathematics Scheme of Work. Higher and Foundation Year 10 Mathematics Scheme of Work Higher and Foundation Tiers Sets 1 and 2 will do the Higher specification. Sets 3 and 4 will do the Higher specification but with a focus on the topics that overlap Higher

More information

Calculating bounds in area and volume questions Manipulating complex indices, including surds Solving simultaneous equations - one linear and one

Calculating bounds in area and volume questions Manipulating complex indices, including surds Solving simultaneous equations - one linear and one Calculating bounds in area and volume questions Manipulating complex indices, including surds Solving simultaneous equations - one linear and one quadratic Using equation of a circle and finding points

More information

Prentice Hall Mathematics: Course Correlated to: Colorado Model Content Standards and Grade Level Expectations (Grade 8)

Prentice Hall Mathematics: Course Correlated to: Colorado Model Content Standards and Grade Level Expectations (Grade 8) Colorado Model Content Standards and Grade Level Expectations (Grade 8) Standard 1: Students develop number sense and use numbers and number relationships in problemsolving situations and communicate the

More information