Augmenting Data Structures

Size: px
Start display at page:

Download "Augmenting Data Structures"

Transcription

1 Augmenting Data Structures

2 Augmenting Data Structures Let s look at two new problems: Dynamic order statistic Interval search It is unusual to have to design all-new data structures from scratch Typically: store additional information in an already known data structure The augmented data structure can support new operations We need to correctly maintain the new information without loss of efficiency 2/3/08 2

3 Dynamic Order Statistics Def.: the i-th order statistic of a set of n elements, where i {, 2,, n} is the element with the i-th smallest key. We can retrieve an order statistic from an unordered set: Using: RANDOMIZED-SELECT In: O(n) time With red-black trees we can achieve this in O(lgn) Finding the rank of an element takes also O(lgn) 2/3/08 3

4 Order-Statistic-Tree Def.: Order-statistic tree: a red-black tree with additional information stored in each node Node representation: Usual fields: x.key, x.color, x.p, x.left, x.right Additional field: x.size that contains the number of (internal) nodes in the subtree rooted at x (including x itself) For any internal node of the tree: x.size = x.left.size + x.right.size + 2/3/08 4

5 Example: Order Statistic Tree 0 7 key size /3/08 5

6 OS-SELECT Goal: Given an order-statistic-tree, return a pointer to the node containing the i-th smallest key in the subtree rooted at x Idea: x.left.size = the number of nodes that are smaller than x x.rank = x.left.size + in the subtree rooted at x If i = x.rank Done! If i < x.rank: look left If i > x.rank: look right /3/08 6

7 OS-SELECT(x, i). r x.left.size + 2. if i = r 3. then return x 4. elseif i < r compute the rank of x within the subtree rooted at x 5. then return OS-SELECT(x.left, i) 6. else return OS-SELECT(x.right, i - r) Initial call: OS-SELECT(T.root, i) Running time: O(lgn) 2/3/08 7

8 Example: OS-SELECT OS-SELECT(root, 3) 0 7 r = 3 + = 4 OS-SELECT(root, 3) r = + = 2 OS-SELECT( 8, 3) /3/08 8 r = OS-SELECT( 8, ) 9

9 OS-RANK Goal: Given a pointer to a node x in an order-statistic tree, return the rank of x in the linear order determined by an inorder walk of T Its parent plus the left subtree if x is a right child 0 7 x Idea: Add elements in the left subtree Go up the tree and if a right child: add the elements in the left subtree of the parent The elements in the left subtree 9

10 OS-RANK(T, x). r x.left.size + 2. y x 3. while y T.root Add to the rank the elements in its left subtree + for itself Set y as a pointer that will traverse the tree 4. do if y = y.p.right 5. then r r + y.p.left.size + 6. y y.p 7. return r Running time: O(lgn) If a right child add the size of the parent s left subtree + for the parent 0

11 Example: OS-RANK y = T.root r = r = r = r + + = 4 y y r = r = x y = x r = + =

12 Maintaining Subtree Sizes We need to maintain the size field during INSERT and DELETE operations Need to maintain them efficiently Otherwise, might have to recompute all size fields, at a cost of Ω(n) 2/3/08 2

13 Maintaining Size for OS-INSERT Insert in a red-black-tree has two stages. Perform a binary-search tree insert 2. Change node colors to restore red-black-trees properties 3

14 OS-INSERT Idea for maintaining the size field during insert Phase (going down): Increment x.size for each node x on the traversed path from the root to the leaves 0 7 The new node gets a size of Additional cost: O(lgn)

15 OS-INSERT Idea for maintaining the size field during insert Phase 2 (going up): 6 During RB-INSERT-FIXUP there are: O(lgn) changes in node colors At most two rotations Rotations affect the subtree sizes!! 42 9 x 93 2 y LEFT-ROTATE(T, x) y.size = x.size x.size = x.left.size + x.right.size + 42 x 93 9 y Maintain size in: O(lgn) 6 4 5

16 Augmenting a Data Structure. Choose an underlying data structure Red-black trees 2. Determine additional information to maintain x.size 3. Verify that we can maintain additional information for existing data structure operations 4. Develop new operations Shown how to maintain size during modifying operations Developed OS-RANK and OS-SELECT 2/3/08 6

17 Augmenting Red-Black-Trees Theorem: Let f be a field that augments a red-black tree. If the contents of f for a node can be computed using only the information in x, x.left, x.right, x.left.f and x.right.f, we can maintain the values of f in all nodes during insertion and deletion, without affecting their O(lgn) running time. 2/3/08 7

18 Examples. Can we augment a RBT with x.size? Yes: x.size = x.left.size + x.right.size + 2. Can we augment a RBT with x.height? Yes: x.height = + max(x.left.height, x.right.height) 3. Can we augment a RBT with x.rank? No, inserting a new minimum will cause all n rank values to change 2/3/08 8

19 Problem Given an element x in an n-node order statistic tree and a natural number i, how can the i-th successor of x in the linear order of the tree be determined in O(logn) time? Def: successor (x ) = y, such that y.key is the smallest key > x.key Operations on order-statistic trees: OS-RANK(x) OS-SELECT(T, i) Alg.: OS-SUCCESSOR(T, x, i ) r OS-RANK(T, x) s r + i return OS-SELECT(T.root, s) rank(3) = 7 2/3/08 9

20 Interval Trees Useful for representing a set of intervals E.g.: time intervals of various events Each interval i has a i.low and a i.high 20

21 Interval Properties Intervals i and j overlap iff: i.low j.high and j.low i.high i i i i j j j j Intervals i and j do not overlap iff: i.high < j.low or j.high < i.low i j j i 2

22 Interval Trichotomy Any two intervals i and j satisfy the interval trichotomy: exactly one of the following three properties holds: a) i and j overlap, b) i is to the left of j (i.high < j.low) c) i is to the right of j (j.high < i.low) 22

23 Interval Trees Def.: Interval tree = a red-black tree that maintains a dynamic set of elements, each having associated an interval x.int. Operations on interval trees: INTERVAL-INSERT(T, x) INTERVAL-DELETE(T, x) INTERVAL-SEARCH(T, i) 23

24 Designing Interval Trees. Underlying data structure Red-black trees Each node x contains: an interval x.int, and the key: x.int.low An inorder tree walk will list intervals sorted by their low endpoint 2. Additional information x.max = maximum endpoint value in subtree rooted at x 3. Maintaining the information x.max = max Takes O() time x.int.high x.left.max x.right.max 24

25 Designing Interval Trees 4. Develop new operations INTERVAL-SEARCH(T, i): Returns a pointer to an element x in the interval tree T, such that x.int overlaps with i, or NIL otherwise Idea: Check if x.int overlaps with i x.left.max i.low Go left Otherwise, go right [5, 8] 0 [8, 9] 23 [5, 23] 23 [6, 2] 30 [7, 9] 20 low [25, 30] 30 [22, 25] [26, 26] 26 high [0, 3] 3 [6, 0] 0 [9, 20] 20 25

26 Example i = [, 4] [6, 2] 30 x i = [22, 25] x [8, 9] 23 x [25, 30] 30 [5, 8] 0 [5, 23] 23 [7, 9] 20 [26, 26] 26 [0, 3] 3 [6, 0] 0 x = NIL [9, 20] 20 26

27 INTERVAL-SEARCH(T, i). x T.root 2. while x T.nil and i does not overlap x.int 3. do if x.left T.nil and x.left.max i.low 4. then x x.left 5. else x x.right 6. return x 2/3/08 27

28 Theorem At the execution of interval search: if the search goes right, then either: There is an overlap in right subtree, or There is no overlap in either subtree Similar when the search goes left It is safe to always proceed in only one direction 2/3/08 28

29 Theorem Proof: If search goes right: If there is an overlap in right subtree, done If there is no overlap in right show there is no overlap in left Went right because: x.left = T.nil no overlap in left, or x.left.max < i.low no overlap in left i x.left.max i.low 2/3/08 29

30 Theorem - Proof If search goes left: If there is an overlap in left subtree, done If there is no overlap in left, show there is no overlap in right Went left because: i.low x.left.max = j.high for some j in left subtree x.left.max [x.low,x.high] [j.low, j.high] j.high [k.low, k.high] i j i k i.high < j.low j.high < i.low j.low < k.low No overlap! i.high < k.low 30

Augmenting Data Structures. General approach Dynamic order statistics Interval trees

Augmenting Data Structures. General approach Dynamic order statistics Interval trees Augmenting Data Structures General approach Dynamic order statistics Interval trees 1 General Approach In some applications custom data structures will be necessary. In others, a well-known data structure

More information

CSE2331/5331. Topic 7: Balanced search trees. Rotate operation Red-black tree Augmenting data struct. CSE 2331/5331

CSE2331/5331. Topic 7: Balanced search trees. Rotate operation Red-black tree Augmenting data struct. CSE 2331/5331 CSE2331/5331 Topic 7: Balanced search trees Rotate operation Red-black tree Augmenting data struct. Set Operations Maximum Extract-Max Insert Increase-key Search Delete Successor Predecessor Motivation

More information

CS 380 ALGORITHM DESIGN AND ANALYSIS

CS 380 ALGORITHM DESIGN AND ANALYSIS CS 380 ALGORITHM DESIGN AND ANALYSIS Lecture 12: Red-Black Trees Text Reference: Chapters 12, 13 Binary Search Trees (BST): Review Each node in tree T is a object x Contains attributes: Data Pointers to

More information

Algorithms, Spring 2014, CSE, OSU Lecture 5: Red-black trees

Algorithms, Spring 2014, CSE, OSU Lecture 5: Red-black trees 6331 - Algorithms, Spring 2014, CSE, OSU Lecture 5: Red-black trees Instructor: Anastasios Sidiropoulos January 17, 2014 Red-black trees For every node x: x.color : red or black x.k : key x.p : pointer

More information

Algorithms, Spring 2014, CSE, OSU Lecture 4: Binary search trees

Algorithms, Spring 2014, CSE, OSU Lecture 4: Binary search trees 6331 - Algorithms, Spring 2014, CSE, OSU Lecture 4: Binary search trees Instructor: Anastasios Sidiropoulos January 15, 2014 Binary search trees For every node x: x.k : key x.p : pointer to the parent

More information

Binary search trees (BST) Binary search trees (BST)

Binary search trees (BST) Binary search trees (BST) Tree A tree is a structure that represents a parent-child relation on a set of object. An element of a tree is called a node or vertex. The root of a tree is the unique node that does not have a parent

More information

Binary search trees. Binary search trees are data structures based on binary trees that support operations on dynamic sets.

Binary search trees. Binary search trees are data structures based on binary trees that support operations on dynamic sets. COMP3600/6466 Algorithms 2018 Lecture 12 1 Binary search trees Reading: Cormen et al, Sections 12.1 to 12.3 Binary search trees are data structures based on binary trees that support operations on dynamic

More information

Search Trees. Undirected graph Directed graph Tree Binary search tree

Search Trees. Undirected graph Directed graph Tree Binary search tree Search Trees Undirected graph Directed graph Tree Binary search tree 1 Binary Search Tree Binary search key property: Let x be a node in a binary search tree. If y is a node in the left subtree of x, then

More information

Binary Search Trees. July 13th, Computer Information Systems. c 2009 Vaidė Narváez

Binary Search Trees. July 13th, Computer Information Systems. c 2009 Vaidė Narváez Binary Search Trees Vaidė Narváez Computer Information Systems July 13th, 2010 Introduction Dynamic set operations: Search, Minimum, Maximum Predecessor, Successor Insert, Delete Time proportional to the

More information

Ensures that no such path is more than twice as long as any other, so that the tree is approximately balanced

Ensures that no such path is more than twice as long as any other, so that the tree is approximately balanced 13 Red-Black Trees A red-black tree (RBT) is a BST with one extra bit of storage per node: color, either RED or BLACK Constraining the node colors on any path from the root to a leaf Ensures that no such

More information

Binary Search Tree. Sorting and Searching in a Dynamic Set. S.V. N. (vishy) Vishwanathan. University of California, Santa Cruz

Binary Search Tree. Sorting and Searching in a Dynamic Set. S.V. N. (vishy) Vishwanathan. University of California, Santa Cruz Binary Search Tree Sorting and Searching in a Dynamic Set S.V. N. (vishy) Vishwanathan University of California, Santa Cruz vishy@ucsc.edu February 29, 2016 S.V. N. Vishwanathan (UCSC) CMPS101 1 / 23 Outline

More information

Red-Black Trees (2) Antonio Carzaniga. April 23, Faculty of Informatics Università della Svizzera italiana Antonio Carzaniga

Red-Black Trees (2) Antonio Carzaniga. April 23, Faculty of Informatics Università della Svizzera italiana Antonio Carzaniga Red-Black Trees (2) Antonio Carzaniga Faculty of Informatics Università della Svizzera italiana April 23, 2013 Recap on Red-Black Trees 2006 Antonio Carzaniga Recap on Red-Black Trees 12 5 18 2 9 15 19

More information

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 3 Graphs CLRS 12-13 Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 57 CLRS 12 Binary Search Trees Binary Search Trees The search tree data structure supports

More information

Binary search trees 3. Binary search trees. Binary search trees 2. Reading: Cormen et al, Sections 12.1 to 12.3

Binary search trees 3. Binary search trees. Binary search trees 2. Reading: Cormen et al, Sections 12.1 to 12.3 Binary search trees Reading: Cormen et al, Sections 12.1 to 12.3 Binary search trees 3 Binary search trees are data structures based on binary trees that support operations on dynamic sets. Each element

More information

CSE2331/5331. Topic 6: Binary Search Tree. Data structure Operations CSE 2331/5331

CSE2331/5331. Topic 6: Binary Search Tree. Data structure Operations CSE 2331/5331 CSE2331/5331 Topic 6: Binary Search Tree Data structure Operations Set Operations Maximum Extract-Max Insert Increase-key We can use priority queue (implemented by heap) Search Delete Successor Predecessor

More information

ץע A. B C D E F G H E, B ( -.) - F I J K ) ( A :. : ע.)..., H, G E (. י : י.)... C,A,, F B ( 2

ץע A. B C D E F G H E, B ( -.) - F I J K ) ( A :. : ע.)..., H, G E (. י : י.)... C,A,, F B ( 2 נת ני ני, 1 עץ E A B C D F G H I J K. E B, ( -.)F- )A( : ע :..)...H,G,E (. י י:.)...C,A,F,B ( 2 עץ E A B C D F G H I J K v : -,w w.v- w-.v :v ע. v- B- 3 ע E A B C D F G H I J K ע - v,1 B ( v-.)? A 4 E

More information

Red-Black Trees (2) Antonio Carzaniga. Faculty of Informatics University of Lugano. April 26, Antonio Carzaniga 1

Red-Black Trees (2) Antonio Carzaniga. Faculty of Informatics University of Lugano. April 26, Antonio Carzaniga 1 Red-lack Trees (2) ntonio arzaniga Faculty of Informatics University of Lugano pril 26, 2012 2006 ntonio arzaniga 1 Recap on Red-lack Trees 12 5 18 2 9 15 19 4 13 17 Red-black-tree property 2. 4. 5. 1.

More information

Different binary search trees can represent the same set of values (Fig.2). Vladimir Shelomovskii, Unitech, Papua New Guinea. Binary search tree.

Different binary search trees can represent the same set of values (Fig.2). Vladimir Shelomovskii, Unitech, Papua New Guinea. Binary search tree. 1 Vladimir Shelomovskii, Unitech, Papua New Guinea, CS411 Binary search tree We can represent a binary search tree by a linked data structure in which each node is an object. Each node contains (Fig.1):

More information

Ranking. In an ordered set or a dictionary: Rank of key k is i iff k is the ith smallest key. Example: if s stores these keys 42, 55, 61, then:

Ranking. In an ordered set or a dictionary: Rank of key k is i iff k is the ith smallest key. Example: if s stores these keys 42, 55, 61, then: Ranking In an ordered set or a dictionary: Rank of key k is i iff k is the ith smallest key. Example: if s stores these keys 42, 55, 61, then: s.rank(42) returns 1 s.rank(55) returns 2 s.rank(61) returns

More information

Chapter 13. Michelle Bodnar, Andrew Lohr. April 12, 2016

Chapter 13. Michelle Bodnar, Andrew Lohr. April 12, 2016 Chapter 13 Michelle Bodnar, Andrew Lohr April 1, 016 Exercise 13.1-1 8 4 1 6 10 14 1 3 5 7 9 11 13 15 We shorten IL to so that it can be more easily displayed in the document. The following has black height.

More information

Balanced search trees

Balanced search trees Balanced search trees Ordinary binary search trees have expected height Θ(log n) if items are inserted and deleted in random order, but for other orders the height can be Θ(n). This is undesirable, since

More information

13.4 Deletion in red-black trees

13.4 Deletion in red-black trees The operation of Deletion in a red-black tree is similar to the operation of Insertion on the tree. That is, apply the deletion algorithm for binary search trees to delete a node z; apply node color changes

More information

Announcements. Problem Set 2 is out today! Due Tuesday (Oct 13) More challenging so start early!

Announcements. Problem Set 2 is out today! Due Tuesday (Oct 13) More challenging so start early! CSC263 Week 3 Announcements Problem Set 2 is out today! Due Tuesday (Oct 13) More challenging so start early! NOT This week ADT: Dictionary Data structure: Binary search tree (BST) Balanced BST - AVL tree

More information

Binary Search Trees. Antonio Carzaniga. Faculty of Informatics University of Lugano. October 21, Antonio Carzaniga 1

Binary Search Trees. Antonio Carzaniga. Faculty of Informatics University of Lugano. October 21, Antonio Carzaniga 1 Binary Search Trees Antonio Carzaniga Faculty of Informatics University of Lugano October 21, 2010 2006 Antonio Carzaniga 1 Binary search trees Outline Randomized binary search trees 2006 Antonio Carzaniga

More information

Week 8. BinaryTrees. 1 Binary trees. 2 The notion of binary search tree. 3 Tree traversal. 4 Queries in binary search trees. 5 Insertion.

Week 8. BinaryTrees. 1 Binary trees. 2 The notion of binary search tree. 3 Tree traversal. 4 Queries in binary search trees. 5 Insertion. Week 8 Binarys 1 2 of 3 4 of 5 6 7 General remarks We consider, another important data structure. We learn how to use them, by making efficient queries. And we learn how to build them. Reading from CLRS

More information

Week 8. BinaryTrees. 1 Binary trees. 2 The notion of binary search tree. 3 Tree traversal. 4 Queries in binary search trees. 5 Insertion.

Week 8. BinaryTrees. 1 Binary trees. 2 The notion of binary search tree. 3 Tree traversal. 4 Queries in binary search trees. 5 Insertion. Week 8 Binarys 1 2 3 4 5 6 7 General remarks We consider, another important data structure. We learn how to use them, by making efficient queries. And we learn how to build them. Reading from CLRS for

More information

13.4 Deletion in red-black trees

13.4 Deletion in red-black trees Deletion in a red-black tree is similar to insertion. Apply the deletion algorithm for binary search trees. Apply node color changes and left/right rotations to fix the violations of RBT tree properties.

More information

Algorithms. 演算法 Data Structures (focus on Trees)

Algorithms. 演算法 Data Structures (focus on Trees) 演算法 Data Structures (focus on Trees) Professor Chien-Mo James Li 李建模 Graduate Institute of Electronics Engineering National Taiwan University 1 Dynamic Set Dynamic set is a set of elements that can grow

More information

ECE250: Algorithms and Data Structures Binary Search Trees (Part A)

ECE250: Algorithms and Data Structures Binary Search Trees (Part A) ECE250: Algorithms and Data Structures Binary Search Trees (Part A) Ladan Tahvildari, PEng, SMIEEE Associate Professor Software Technologies Applied Research (STAR) Group Dept. of Elect. & Comp. Eng. University

More information

CSE 502 Class 16. Jeremy Buhler Steve Cole. March A while back, we introduced the idea of collections to put hash tables in context.

CSE 502 Class 16. Jeremy Buhler Steve Cole. March A while back, we introduced the idea of collections to put hash tables in context. CSE 502 Class 16 Jeremy Buhler Steve Cole March 17 2015 Onwards to trees! 1 Collection Types Revisited A while back, we introduced the idea of collections to put hash tables in context. abstract data types

More information

Red-Black Trees. 1 Properties of red-black trees

Red-Black Trees. 1 Properties of red-black trees Red-Black Trees Chapter 12 showed that a binary search tree of height h can support any of the basic dynamic-set operations such as SEARCH, PREDECESSOR, SUCCESSOR, MINI- MUM, MAXIMUM, INSERT, anddelete

More information

Lecture 6: Analysis of Algorithms (CS )

Lecture 6: Analysis of Algorithms (CS ) Lecture 6: Analysis of Algorithms (CS583-002) Amarda Shehu October 08, 2014 1 Outline of Today s Class 2 Traversals Querying Insertion and Deletion Sorting with BSTs 3 Red-black Trees Height of a Red-black

More information

RB-Tree Augmentation. OS-Rank. OS-Select. Augment x with Size(x), where. Size(x) = size of subtree rooted at x Size(NIL) = 0

RB-Tree Augmentation. OS-Rank. OS-Select. Augment x with Size(x), where. Size(x) = size of subtree rooted at x Size(NIL) = 0 RB-Tree Augmentation Augment x with Size(x), where Size(x) = size of subtree rooted at x Size(NIL) = 0 COT 5407 10/6/05 1 OS-Rank OS-RANK(x,y) // Different from text (recursive version) // Find the rank

More information

Algorithms. Red-Black Trees

Algorithms. Red-Black Trees Algorithms Red-Black Trees Red-Black Trees Balanced binary search trees guarantee an O(log n) running time Red-black-tree Binary search tree with an additional attribute for its nodes: color which can

More information

Range Searching and Windowing

Range Searching and Windowing CS 6463 -- Fall 2010 Range Searching and Windowing Carola Wenk 1 Orthogonal range searching Input: n points in d dimensions E.g., representing a database of n records each with d numeric fields Query:

More information

9/24/ Hash functions

9/24/ Hash functions 11.3 Hash functions A good hash function satis es (approximately) the assumption of SUH: each key is equally likely to hash to any of the slots, independently of the other keys We typically have no way

More information

Animations. 01/29/04 Lecture

Animations. 01/29/04 Lecture Animations BST: http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/bst-example.html Rotations: http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/index2.html RB-Trees: http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/redblacktree-example.html

More information

Properties of red-black trees

Properties of red-black trees Red-Black Trees Introduction We have seen that a binary search tree is a useful tool. I.e., if its height is h, then we can implement any basic operation on it in O(h) units of time. The problem: given

More information

2-3 Tree. Outline B-TREE. catch(...){ printf( "Assignment::SolveProblem() AAAA!"); } ADD SLIDES ON DISJOINT SETS

2-3 Tree. Outline B-TREE. catch(...){ printf( Assignment::SolveProblem() AAAA!); } ADD SLIDES ON DISJOINT SETS Outline catch(...){ printf( "Assignment::SolveProblem() AAAA!"); } Balanced Search Trees 2-3 Trees 2-3-4 Trees Slide 4 Why care about advanced implementations? Same entries, different insertion sequence:

More information

Graduate Algorithms CS F-08 Extending Data Structures

Graduate Algorithms CS F-08 Extending Data Structures Graduate Algorithms CS673-2016F-08 Extending Data Structures David Galles Department of Computer Science University of San Francisco 08-0: Dynamic Order Statistics Data structure with following operations:

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 12 - Jan. 29, 2018 CLRS 14-1, 14-2 University of Manitoba 1 / 9 Augmenting AVL trees We want to augment AVL trees to support rank/select

More information

3. Fundamental Data Structures

3. Fundamental Data Structures 3. Fundamental Data Structures CH08-320201: Algorithms and Data Structures 233 Data Structures Definition (recall): A data structure is a way to store and organize data in order to facilitate access and

More information

Search Trees - 2. Venkatanatha Sarma Y. Lecture delivered by: Assistant Professor MSRSAS-Bangalore. M.S Ramaiah School of Advanced Studies - Bangalore

Search Trees - 2. Venkatanatha Sarma Y. Lecture delivered by: Assistant Professor MSRSAS-Bangalore. M.S Ramaiah School of Advanced Studies - Bangalore Search Trees - 2 Lecture delivered by: Venkatanatha Sarma Y Assistant Professor MSRSAS-Bangalore 11 Objectives To introduce, discuss and analyse the different ways to realise balanced Binary Search Trees

More information

Lecture: Analysis of Algorithms (CS )

Lecture: Analysis of Algorithms (CS ) Lecture: Analysis of Algorithms (CS583-002) Amarda Shehu Fall 2017 1 Binary Search Trees Traversals, Querying, Insertion, and Deletion Sorting with BSTs 2 Example: Red-black Trees Height of a Red-black

More information

Augmenting Data Structures

Augmenting Data Structures Augmenting Data Structures [Not in G &T Text. In CLRS chapter 14.] An AVL tree by itself is not very useful. To support more useful queries we need more structure. General Definition: An augmented data

More information

Binary search trees. Support many dynamic-set operations, e.g. Search. Minimum. Maximum. Insert. Delete ...

Binary search trees. Support many dynamic-set operations, e.g. Search. Minimum. Maximum. Insert. Delete ... Binary search trees Support many dynamic-set operations, e.g. Search Minimum Maximum Insert Delete... Can be used as dictionary, priority queue... you name it Running time depends on height of tree: 1

More information

Binary Search Trees. Nearest Neighbor Binary Search Trees Insertion Predecessor and Successor Deletion Algorithms on Trees.

Binary Search Trees. Nearest Neighbor Binary Search Trees Insertion Predecessor and Successor Deletion Algorithms on Trees. Binary Search Trees Nearest Neighbor Binary Search Trees Insertion Predecessor and Successor Deletion Algorithms on Trees Philip Bille Binary Search Trees Nearest Neighbor Binary Search Trees Insertion

More information

Balanced search trees. DS 2017/2018

Balanced search trees. DS 2017/2018 Balanced search trees. DS 2017/2018 Red-black trees Symmetric binary B-tree, Rudolf Bayer, 1972. The balancing is maintained by using a coloring of the nodes. The red-black trees are binary search trees

More information

10/24/ Rotations. 2. // s left subtree s right subtree 3. if // link s parent to elseif == else 11. // put x on s left

10/24/ Rotations. 2. // s left subtree s right subtree 3. if // link s parent to elseif == else 11. // put x on s left 13.2 Rotations MAT-72006 AA+DS, Fall 2013 24-Oct-13 368 LEFT-ROTATE(, ) 1. // set 2. // s left subtree s right subtree 3. if 4. 5. // link s parent to 6. if == 7. 8. elseif == 9. 10. else 11. // put x

More information

Binary Search Trees. Binary Search Trees. Nearest Neighbor. Nearest Neighbor

Binary Search Trees. Binary Search Trees. Nearest Neighbor. Nearest Neighbor Philip Bille Nearest Neighbor Nearest neighbor. Maintain dynamic set S supporting the following operations. Each element has key x.key and satellite data x.data. PREDECESSOR(k): return element with largest

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

We assume uniform hashing (UH):

We assume uniform hashing (UH): We assume uniform hashing (UH): the probe sequence of each key is equally likely to be any of the! permutations of 0,1,, 1 UH generalizes the notion of SUH that produces not just a single number, but a

More information

Binary Trees. Recursive definition. Is this a binary tree?

Binary Trees. Recursive definition. Is this a binary tree? Binary Search Trees Binary Trees Recursive definition 1. An empty tree is a binary tree 2. A node with two child subtrees is a binary tree 3. Only what you get from 1 by a finite number of applications

More information

CS102 Binary Search Trees

CS102 Binary Search Trees CS102 Binary Search Trees Prof Tejada 1 To speed up insertion, removal and search, modify the idea of a Binary Tree to create a Binary Search Tree (BST) Binary Search Trees Binary Search Trees have one

More information

COT 5407: Introduction to Algorithms. Giri Narasimhan. ECS 254A; Phone: x3748

COT 5407: Introduction to Algorithms. Giri Narasimhan. ECS 254A; Phone: x3748 COT 5407: Introduction to Algorithms Giri Narasimhan ECS 254A; Phone: x3748 giri@cis.fiu.edu http://www.cis.fiu.edu/~giri/teach/5407s17.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494 2/2/17

More information

BST Implementation. Data Structures. Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr University of Ain Shams

BST Implementation. Data Structures. Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr University of Ain Shams Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr mahmoud.sakr@cis.asu.edu.eg Cairo, Egypt, October 2012 Binary Search Trees (BST) 1. Hierarchical data structure with a single reference to root

More information

Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu

Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu Department of Computer Science Aalborg University Fall 2007 This Lecture Trees Basics Rooted trees Binary trees Binary tree ADT Tree traversal

More information

CS 171: Introduction to Computer Science II. Binary Search Trees

CS 171: Introduction to Computer Science II. Binary Search Trees CS 171: Introduction to Computer Science II Binary Search Trees Binary Search Trees Symbol table applications BST definitions and terminologies Search and insert Traversal Ordered operations Delete Symbol

More information

Dictionaries. Priority Queues

Dictionaries. Priority Queues Red-Black-Trees.1 Dictionaries Sets and Multisets; Opers: (Ins., Del., Mem.) Sequential sorted or unsorted lists. Linked sorted or unsorted lists. Tries and Hash Tables. Binary Search Trees. Priority Queues

More information

Binary Search Trees, etc.

Binary Search Trees, etc. Chapter 12 Binary Search Trees, etc. Binary Search trees are data structures that support a variety of dynamic set operations, e.g., Search, Minimum, Maximum, Predecessors, Successors, Insert, and Delete.

More information

Binary Search Trees. 1. Inorder tree walk visit the left subtree, the root, and right subtree.

Binary Search Trees. 1. Inorder tree walk visit the left subtree, the root, and right subtree. Binary Search Trees Search trees are data structures that support many dynamic set operations including Search, Minimum, Maximum, Predecessor, Successor, Insert, and Delete. Thus, a search tree can be

More information

Lecture 7. Binary Search Trees and Red-Black Trees

Lecture 7. Binary Search Trees and Red-Black Trees Lecture Binary Search Trees and Red-Black Trees Announcements HW released! (Due Friday) Today: binary search trees Brief foray into data structures! See CS 166 for more! What are binary search trees? You

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

Practical session No. 6. AVL Tree

Practical session No. 6. AVL Tree Practical session No. 6 AVL Trees Height- Balance Property AVL Tree AVL Interface AVL Height For every internal node v of a tree T, the height of the children nodes of v differ by at most 1. Any binary

More information

CHAPTER 14. Augmenting Data Structures

CHAPTER 14. Augmenting Data Structures CHAPTER 14 Augmenting Data Structures 13.1 properties of red-black trees A red-black tree is a binary search tree with one extra bit of storage per node: its color, which can be either RED or BLACK. By

More information

Binary Search Trees. What is a Binary Search Tree?

Binary Search Trees. What is a Binary Search Tree? Binary Search Trees What is a Binary Search Tree? A binary tree where each node is an object Each node has a key value, left child, and right child (might be empty) Each node satisfies the binary search

More information

Search Trees: BSTs and B-Trees

Search Trees: BSTs and B-Trees 3//13 Search Trees: BSTs and B-Trees Administrative David Kauchak cs302 Spring 13 Proof by contradiction Number guessing game I m thinking of a number between 1 and n You are trying to guess the answer

More information

Binary Trees

Binary Trees Binary Trees 4-7-2005 Opening Discussion What did we talk about last class? Do you have any code to show? Do you have any questions about the assignment? What is a Tree? You are all familiar with what

More information

CS60020: Foundations of Algorithm Design and Machine Learning. Sourangshu Bhattacharya

CS60020: Foundations of Algorithm Design and Machine Learning. Sourangshu Bhattacharya CS60020: Foundations of Algorithm Design and Machine Learning Sourangshu Bhattacharya Special Types of Trees Def: Full binary tree = a binary tree in which each node is either a leaf or has degree exactly

More information

The Heap Data Structure

The Heap Data Structure The Heap Data Structure Def: A heap is a nearly complete binary tree with the following two properties: Structural property: all levels are full, except possibly the last one, which is filled from left

More information

Lecture 14: Binary Search Trees (2)

Lecture 14: Binary Search Trees (2) cs2010: algorithms and data structures Lecture 14: Binary earch Trees (2) Vasileios Koutavas chool of omputer cience and tatistics Trinity ollege Dublin lgorithms OBT DGWIK KVIN WYN 3.2 BINY T lgorithms

More information

Practical session No. 6. AVL Tree

Practical session No. 6. AVL Tree Practical session No. 6 AVL Trees Height- Balance Property AVL Tree AVL Interface AVL Height For every internal node v of a tree T, the height of the children nodes of v differ by at most 1. Any binary

More information

CS 758/858: Algorithms

CS 758/858: Algorithms CS 758/858: Algorithms http://www.cs.unh.edu/~ruml/cs758 1 handout: slides Wheeler Ruml (UNH) Class 7, CS 758 1 / 16 BST Deletion Single Child Immed. Succ. Deep Succ. Break Wheeler Ruml (UNH) Class 7,

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Binary Search Trees CLRS 12.2, 12.3, 13.2, read problem 13-3 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures

More information

March 20/2003 Jayakanth Srinivasan,

March 20/2003 Jayakanth Srinivasan, Definition : A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Definition : In a multigraph G = (V, E) two or

More information

CMPS 2200 Fall 2017 Red-black trees Carola Wenk

CMPS 2200 Fall 2017 Red-black trees Carola Wenk CMPS 2200 Fall 2017 Red-black trees Carola Wenk Slides courtesy of Charles Leiserson with changes by Carola Wenk 9/13/17 CMPS 2200 Intro. to Algorithms 1 Dynamic Set A dynamic set, or dictionary, is a

More information

Computational Geometry

Computational Geometry Range trees Range queries Database queries salary G. Ometer born: Aug 16, 1954 salary: $3,500 A database query may ask for all employees with age between a 1 and a 2, and salary between s 1 and s 2 19,500,000

More information

Data Structures Week #6. Special Trees

Data Structures Week #6. Special Trees Data Structures Week #6 Special Trees Outline Adelson-Velskii-Landis (AVL) Trees Splay Trees B-Trees October 5, 2018 Borahan Tümer, Ph.D. 2 AVL Trees October 5, 2018 Borahan Tümer, Ph.D. 3 Motivation for

More information

Splay Trees. Programming II - Elixir Version. Johan Montelius. Spring Term 2018

Splay Trees. Programming II - Elixir Version. Johan Montelius. Spring Term 2018 Splay Trees Programming II - Elixir Version Johan Montelius Spring Term 2018 Introduction A splay tree is an ordered binary tree with the advantage that the last key we looked for is found in the root

More information

CS F-08 Extending Data Structures 1

CS F-08 Extending Data Structures 1 S673-20F-08 Extending Data Structures 1 08-0: Dynamic Order Statistics Data structure with following operations: Insert / Remove / FindΘ(lgn) Find nth smallest element Find the rank of any element (is

More information

Balanced Trees Part Two

Balanced Trees Part Two Balanced Trees Part Two Outline for Today Recap from Last Time Review of B-trees, 2-3-4 trees, and red/black trees. Order Statistic Trees BSTs with indexing. Augmented Binary Search Trees Building new

More information

BINARY SEARCH TREES TODAY BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING. Binary Search Tree (BST) Binary search trees

BINARY SEARCH TREES TODAY BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING. Binary Search Tree (BST) Binary search trees BB 202 - LOIT TODY DPT. OF OPUT NININ BTs Ordered operations Deletion BINY T cknowledgement: The course slides are adapted from the slides prepared by. edgewick and K. Wayne of Princeton University. Binary

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

CH 8. HEAPS AND PRIORITY QUEUES

CH 8. HEAPS AND PRIORITY QUEUES CH 8. HEAPS AND PRIORITY QUEUES ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY

More information

BINARY SEARCH TREES BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING

BINARY SEARCH TREES BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING cknowledgement: The course slides are adapted from the slides prepared by. edgewick and K. Wayne of Princeton University. BB 202 - LGOIT DPT. OF OPUT NGINING BINY T BTs Ordered operations Deletion TODY

More information

CH. 8 PRIORITY QUEUES AND HEAPS

CH. 8 PRIORITY QUEUES AND HEAPS CH. 8 PRIORITY QUEUES AND HEAPS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY

More information

(2,4) Trees. 2/22/2006 (2,4) Trees 1

(2,4) Trees. 2/22/2006 (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2/22/2006 (2,4) Trees 1 Outline and Reading Multi-way search tree ( 10.4.1) Definition Search (2,4) tree ( 10.4.2) Definition Search Insertion Deletion Comparison of dictionary

More information

CSCI 136 Data Structures & Advanced Programming. Lecture 25 Fall 2018 Instructor: B 2

CSCI 136 Data Structures & Advanced Programming. Lecture 25 Fall 2018 Instructor: B 2 CSCI 136 Data Structures & Advanced Programming Lecture 25 Fall 2018 Instructor: B 2 Last Time Binary search trees (Ch 14) The locate method Further Implementation 2 Today s Outline Binary search trees

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Searching Red-Black and Other Dynamically BalancedTrees PLSD210 Searching - Re-visited Binary tree O(log n) if it stays balanced Simple binary tree good for static collections

More information

Algorithms. Deleting from Red-Black Trees B-Trees

Algorithms. Deleting from Red-Black Trees B-Trees Algorithms Deleting from Red-Black Trees B-Trees Recall the rules for BST deletion 1. If vertex to be deleted is a leaf, just delete it. 2. If vertex to be deleted has just one child, replace it with that

More information

Lecture 5: Scheduling and Binary Search Trees

Lecture 5: Scheduling and Binary Search Trees Lecture 5: Scheduling and Binary Search Trees Lecture Overview Runway reservation system Definition How to solve with lists Binary Search Trees Readings Operations CLRS Chapter 10, 12.1-3 Runway Reservation

More information

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min Binary Search Trees FRIDAY ALGORITHMS Sorted Arrays Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min 6 10 11 17 2 0 6 Running Time O(1) O(lg n) O(1) O(1)

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

CMSC351 - Fall 2014, Homework #2

CMSC351 - Fall 2014, Homework #2 CMSC351 - Fall 2014, Homework #2 Due: October 8th at the start of class Name: Section: Grades depend on neatness and clarity. Write your answers with enough detail about your approach and concepts used,

More information

CMSC 441: Algorithms. Hillol Kargupta, Professor.

CMSC 441: Algorithms. Hillol Kargupta, Professor. CMSC 441: Algorithms Hillol Kargupta, Professor http://www.cs.umbc.edu/~hillol/ hillol@gl.umbc.edu Today s Topics Binary Search Trees Red-Black Trees Binary Search Tree Binary tree Satisfies binary-search-tree

More information

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents Section 5.5 Binary Tree A binary tree is a rooted tree in which each vertex has at most two children and each child is designated as being a left child or a right child. Thus, in a binary tree, each vertex

More information

Data Structures and Algorithms. Werner Nutt

Data Structures and Algorithms. Werner Nutt Data Structures and Algorithms Werner Nutt nutt@inf.unibz.it http://www.inf.unibz/it/~nutt Part 6 Academic Year 2011-2012 1 Acknowledgements & Copyright Notice These slides are built on top of slides developed

More information

COMP251: Red-black trees

COMP251: Red-black trees COMP251: Red-black trees Jérôme Waldispühl School of Computer Science McGill University Based on (Cormen et al., 2002) Based on slides from D. Plaisted (UNC) The running Rme of inserrons in BST trees with

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 11: Binary Search Trees MOUNA KACEM mouna@cs.wisc.edu Fall 2018 General Overview of Data Structures 2 Introduction to trees 3 Tree: Important non-linear data structure

More information

Stores a collection of elements each with an associated key value

Stores a collection of elements each with an associated key value CH9. PRIORITY QUEUES ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 201) PRIORITY QUEUES Stores a collection

More information