Clustering. Machine Learning: Jordan Boyd-Graber University of Maryland K -MEANS AND GMM. Machine Learning: Jordan Boyd-Graber UMD Clustering 1 / 1

Size: px
Start display at page:

Download "Clustering. Machine Learning: Jordan Boyd-Graber University of Maryland K -MEANS AND GMM. Machine Learning: Jordan Boyd-Graber UMD Clustering 1 / 1"

Transcription

1 Clustering Machine Learning: Jordan Boyd-Graber University of Maryland K -MEANS AND GMM Machine Learning: Jordan Boyd-Graber UMD Clustering 1 / 1

2 Lecture for Today What is clustering? K-Means Gaussian Mixture Models Machine Learning: Jordan Boyd-Graber UMD Clustering 2 / 1

3 Clustering Classifica(on: what is label of new point? Clustering: how should we group these points? Clustering: or is this the right grouping? Clustering: what about this? Machine Learning: Jordan Boyd-Graber UMD Clustering 3 / 1

4 Clustering Uses: genomics medical imaging social network analysis recommender systems market segmentation voter analysis Machine Learning: Jordan Boyd-Graber UMD Clustering 4 / 1

5 Microarray Gene Expression Data From: Skin layer-specific transcriptional profiles in normal and recessive yellow (Mc1re/Mc1re) mice by April and Barsh in Pigment Cell Research (2006) Machine Learning: Jordan Boyd-Graber UMD Clustering 5 / 1

6 Medical Imaging (MRIs and PET scans) From: Fluorodeoxyglucose positron emission tomography of mild cognitive impairment with clinical follow-up at 3 years by Pardo et al. in Alzheimer s and Dementia (2010) Machine Learning: Jordan Boyd-Graber UMD Clustering 6 / 1

7 Social Networks Machine Learning: Jordan Boyd-Graber UMD Clustering 7 / 1

8 Recommender Systems From: tech.hulu.com/blog/ Machine Learning: Jordan Boyd-Graber UMD Clustering 8 / 1

9 Market Segmentation From: mappinganalytics.com/map/segmentation-maps/segmentation-map.html Machine Learning: Jordan Boyd-Graber UMD Clustering 9 / 1

10 Voter Analysis soccer moms (female, middle aged, married, middle income, white, kids, suburban) Nascar dads (male, middle aged, married, middle income, white, kids, Southern, suburban or rural) security moms (... ) low information voters Ivy League Elites Machine Learning: Jordan Boyd-Graber UMD Clustering 10 / 1

11 Clustering Questions: how do we fit clusters? how many clusters should we use? how should we evaluate model fit? Machine Learning: Jordan Boyd-Graber UMD Clustering 11 / 1

12 K-Means How do we fit the clusters? simplest method: K-means requires: real-valued data idea: pick K initial cluster means associate all points closest to mean k with cluster k use points in cluster k to update mean for that cluster re-associate points closest to new mean for k with cluster k use new points in cluster k to update mean for that cluster... stop when no change between updates Machine Learning: Jordan Boyd-Graber UMD Clustering 12 / 1

13 K-Means Animation at: Machine Learning: Jordan Boyd-Graber UMD Clustering 13 / 1

14 K-Means: Example Data: x 1 x X X1 Machine Learning: Jordan Boyd-Graber UMD Clustering 14 / 1

15 K-Means: Example Pick K centers (randomly): ( 1, 1) and (0,0) X X1 Machine Learning: Jordan Boyd-Graber UMD Clustering 15 / 1

16 K-Means: Example Calculate distance between points and those centers: x 1 x 2 ( 1, 1) (0,0) > centers <- rbind(c(-1,-1),c(0,0)) > dist1 <- apply(x,1,function(x) sqrt(sum((x-centers[1,])^2 > dist2 <- apply(x,1,function(x) sqrt(sum((x-centers[2,])^2 Machine Learning: Jordan Boyd-Graber UMD Clustering 16 / 1

17 K-Means: Example Choose mean with smaller distance: x 1 x 2 ( 1, 1) (0,0) > dists <- cbind(dist1,dist2) > cluster.ind <- apply(dists,1,which.min) Machine Learning: Jordan Boyd-Graber UMD Clustering 17 / 1

18 K-Means: Example New clusters: X Machine Learning: Jordan Boyd-Graber UMD Clustering 18 / 1 X1

19 K-Means: Example Refit means for each cluster: cluster 1: ( 1.0, 2.2), ( 2.4, 2.2), ( 1.0, 1.9) new mean: ( 1.5, 2.1) cluster 2: (0.4, 1.0), ( 0.5,0.6), ( 0.1, 1.7), (1.2, 3.3), (3.1, 1.6), (1.3, 1.6), (2.0, 0.8) new mean: (1.0,1.2) X X1 Machine Learning: Jordan Boyd-Graber UMD Clustering 19 / 1

20 K-Means: Example Recalculate distances for each cluster: x 1 x 2 ( 1.5, 2.1) (1.0,1.2) Machine Learning: Jordan Boyd-Graber UMD Clustering 20 / 1

21 K-Means: Example Choose mean with smaller distance: x 1 x 2 ( 1.5, 2.1) (1.0,1.2) Machine Learning: Jordan Boyd-Graber UMD Clustering 21 / 1

22 K-Means: Example New clusters: X Machine Learning: Jordan Boyd-Graber UMD Clustering 22 / 1 X1

23 K-Means: Example Refit means for each cluster: cluster 1: (0.4, 1.0), ( 1.0, 2.2), ( 2.4, 2.2), ( 1.0, 1.9) new mean: ( 1.0, 1.8) cluster 2: ( 0.5,0.6), ( 0.1,1.7), (1.2,3.3), (3.1,1.6), (1.3,1.6), (2.0, 0.8) new mean: (1.2,1.6) X X1 Machine Learning: Jordan Boyd-Graber UMD Clustering 23 / 1

24 K-Means: Example Recalculate distances for each cluster: x 1 x 2 ( 1.0, 1.8) (1.2,1.6) Machine Learning: Jordan Boyd-Graber UMD Clustering 24 / 1

25 K-Means: Example Select smallest distance and compare these clusters with previous: Table: New Clusters x 1 x 2 ( 1.0, 1.8) (1.2,1.6) Table: Old Clusters ( 1.5, 2.1) (1.0, 1.2) Machine Learning: Jordan Boyd-Graber UMD Clustering 25 / 1

26 K-Means in Practice R has a function for K-means in the stats package; this is probably already loaded let s use this for the Old Faithful data > library(datasets) > faith.2 <- kmeans(faithful,2) > names(faith.2) > plot(faithful[,1],faithful[,2],col=faith.2$clus + pch=faith.2$cluster,lwd=3) Machine Learning: Jordan Boyd-Graber UMD Clustering 26 / 1

27 wait eruptions Machine Learning: Jordan Boyd-Graber UMD Clustering 27 / 1

28 K-Means in R K-means can be used for image segmentation partition image into multiple segments find boundaries of objects make art Machine Learning: Jordan Boyd-Graber UMD Clustering 28 / 1

29 K-Means Clustering What is our data look like this? x1 x2 Machine Learning: Jordan Boyd-Graber UMD Clustering 29 / 1

30 K-Means Clustering True clustering: x1 x2 Machine Learning: Jordan Boyd-Graber UMD Clustering 30 / 1

31 K-Means Clustering K-means clustering (K = 2): x1 x2 Machine Learning: Jordan Boyd-Graber UMD Clustering 31 / 1

32 Mixture Models K-means associates data with cluster centers. What if we actually modeled the data? real-valued data observation xi in cluster c i have K clusters model each cluster with a Gaussian distribution x i c i = k N(µ k,σ k ) µk is mean vector, Σ k is covariance matrix Machine Learning: Jordan Boyd-Graber UMD Clustering 32 / 1

33 Mixture Models Gaussian mixture model (K = 2): x1 x2 Machine Learning: Jordan Boyd-Graber UMD Clustering 33 / 1

34 Mixture Models Why mixture models? more flexible: can account for clusters with different shapes have data model (will be useful for choosing K ) less sensitive to data scaling Machine Learning: Jordan Boyd-Graber UMD Clustering 34 / 1

35 Multivariate Gaussian Multivariate Gaussian distribution for x R d : p(x µ,σ) = (2π) d 2 Σ 1 2 e 1 2 (x µ)t Σ 1 (x µ) µ is vector of means Σ is covariance matrix Credit: Wikipedia Machine Learning: Jordan Boyd-Graber UMD Clustering 35 / 1

36 Multivariate Gaussian pdf when µ = [0,0] and Σ = : p(x) X2 1 2 Machine Learning: Jordan Boyd-Graber UMD Clustering 36 / X

37 Multivariate Gaussian x1 x x1 x2 Machine Learning: Jordan Boyd-Graber UMD Clustering 37 / 1

38 Fitting a Mixture Model Mixture model: observation xi in cluster c i with K clusters model each cluster with a Gaussian distribution x i c i = k N(µ k,σ k ) How do we find c 1,...,c n (clusters) and (µ 1,Σ 1 ),...,(µ K,Σ K ) (cluster centers)? Machine Learning: Jordan Boyd-Graber UMD Clustering 38 / 1

39 Fitting a Mixture Model First, let s simplify the model: covariance matrices have only diagonal elements, σ Σ = 0 σ σ 2 K set σ 2 = 1 = σ2, suppose known K Machine Learning: Jordan Boyd-Graber UMD Clustering 39 / 1

40 Fitting a Mixture Model Next, use a method similar to K-means: start with random cluster centers associate observations to clusters by (log-)likelihood, l(x i c i = k) = d 2 log(2π) 1 d 2 log σ 2 1 d (x k,j i,j µ k,j ) 2 /σ 2 k,j 2 d log(σ k ) 1 2σ 2 k d (x i,j µ k,j ) 2 j=1 j=1 d (x i,j µ k,j ) 2 j=1 refit centers µ1,...,µ K given clusters by µ k,j = 1 n k recluster observations... stop when no change in clusters Machine Learning: Jordan Boyd-Graber UMD Clustering 40 / 1 c i =k x i,j j=1

41 Fitting a Mixture Model clustering with K-means minimize distance d(x i,µ k ) = d (x i,j µ k,j ) 2 j=1 clustering with GMM maximize likelihood d l(x i c i = k) (x i,j µ k,j ) 2 j=1 update means with K-means use average µ k,j = 1 n k c i =k x i,j update means with GMM use average µ k,j = 1 n k c i =k x i,j Machine Learning: Jordan Boyd-Graber UMD Clustering 41 / 1

42 Fitting a Mixture Model OK, now what if Σ = σ σ σ 2 K and σ 2 1,...,σ2 K can take different values? use same algorithm update µk and σ 2 with maximum likelihood estimator, k µ k,j = 1 n k c i =k x i,j σ 2 = 1 (x k,j i,j µ k,j ) 2 n k c i =k Machine Learning: Jordan Boyd-Graber UMD Clustering 42 / 1

43 Fitting a Mixture Model Data: x 1 x X X1 Machine Learning: Jordan Boyd-Graber UMD Clustering 43 / 1

44 Fitting a Mixture Model pick centers and variances, µ1 = [ 1, 1], σ 2 = 1 [1,1], µ 1 = [1,1], σ 2 = [1,1] 1 compute (proportional) log likelihoods, d l(x i c i = k) = log(σ j ) 1 2 j=1 d (x i,j µ k,j ) 2 /σ 2 k,j j=1 x 1 x 2 k = 1 k = Machine Learning: Jordan Boyd-Graber UMD Clustering 44 / 1

45 Fitting a Mixture Model fit new means and variances: µ 1 = [ 1.3, 1.2] σ 2 = [3.1,0.4] 1 µ 2 = [0.9,1.8] σ 2 = [0.2,5.4] 2 compute new distances... Machine Learning: Jordan Boyd-Graber UMD Clustering 45 / 1

46 Fitting a Mixture Model x 1 x 2 k = 1 k = No change, so clusters are final Machine Learning: Jordan Boyd-Graber UMD Clustering 46 / 1

47 Fitting a Mixture Model X X1 Machine Learning: Jordan Boyd-Graber UMD Clustering 47 / 1

48 Limitations of k-means / mixture models k-means is fast and simple, but... What if your data are discrete? What if each data point has more than one cluster? (digits vs. documents) What if you don t know the number of clusters? Machine Learning: Jordan Boyd-Graber UMD Clustering 48 / 1

Unsupervised Clustering

Unsupervised Clustering Unsupervised Clustering Digging into Data April 21, 2015 Slides adapted from Lauren Hannah Digging into Data Unsupervised Clustering April 21, 2015 1 / 29 Lecture for Today What is clustering? K-Means

More information

Inference and Representation

Inference and Representation Inference and Representation Rachel Hodos New York University Lecture 5, October 6, 2015 Rachel Hodos Lecture 5: Inference and Representation Today: Learning with hidden variables Outline: Unsupervised

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

CS325 Artificial Intelligence Ch. 20 Unsupervised Machine Learning

CS325 Artificial Intelligence Ch. 20 Unsupervised Machine Learning CS325 Artificial Intelligence Cengiz Spring 2013 Unsupervised Learning Missing teacher No labels, y Just input data, x What can you learn with it? Unsupervised Learning Missing teacher No labels, y Just

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/26/17 Jumble of unlabeled images HISTOGRAM blue

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

Speech Recognition Lecture 8: Acoustic Models. Eugene Weinstein Google, NYU Courant Institute Slide Credit: Mehryar Mohri

Speech Recognition Lecture 8: Acoustic Models. Eugene Weinstein Google, NYU Courant Institute Slide Credit: Mehryar Mohri Speech Recognition Lecture 8: Acoustic Models. Eugene Weinstein Google, NYU Courant Institute eugenew@cs.nyu.edu Slide Credit: Mehryar Mohri Speech Recognition Components Acoustic and pronunciation model:

More information

SD 372 Pattern Recognition

SD 372 Pattern Recognition SD 372 Pattern Recognition Lab 2: Model Estimation and Discriminant Functions 1 Purpose This lab examines the areas of statistical model estimation and classifier aggregation. Model estimation will be

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/27/2017 Jumble of unlabeled images HISTOGRAM blue

More information

Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning. Unsupervised Learning. Manfred Huber Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

More information

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD Expectation-Maximization Nuno Vasconcelos ECE Department, UCSD Plan for today last time we started talking about mixture models we introduced the main ideas behind EM to motivate EM, we looked at classification-maximization

More information

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image Histograms h(r k ) = n k Histogram: number of times intensity level rk appears in the image p(r k )= n k /NM normalized histogram also a probability of occurence 1 Histogram of Image Intensities Create

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Clustering and EM Barnabás Póczos & Aarti Singh Contents Clustering K-means Mixture of Gaussians Expectation Maximization Variational Methods 2 Clustering 3 K-

More information

COMS 4771 Clustering. Nakul Verma

COMS 4771 Clustering. Nakul Verma COMS 4771 Clustering Nakul Verma Supervised Learning Data: Supervised learning Assumption: there is a (relatively simple) function such that for most i Learning task: given n examples from the data, find

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Unsupervised learning Daniel Hennes 29.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Supervised learning Regression (linear

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Unsupervised Learning: Kmeans, GMM, EM Readings: Barber 20.1-20.3 Stefan Lee Virginia Tech Tasks Supervised Learning x Classification y Discrete x Regression

More information

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B Clustering in R d Clustering CSE 250B Two common uses of clustering: Vector quantization Find a finite set of representatives that provides good coverage of a complex, possibly infinite, high-dimensional

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

An Introduction to PDF Estimation and Clustering

An Introduction to PDF Estimation and Clustering Sigmedia, Electronic Engineering Dept., Trinity College, Dublin. 1 An Introduction to PDF Estimation and Clustering David Corrigan corrigad@tcd.ie Electrical and Electronic Engineering Dept., University

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Week 9: Data Mining (4/4) March 9, 2017 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These slides

More information

Assignment 2. Unsupervised & Probabilistic Learning. Maneesh Sahani Due: Monday Nov 5, 2018

Assignment 2. Unsupervised & Probabilistic Learning. Maneesh Sahani Due: Monday Nov 5, 2018 Assignment 2 Unsupervised & Probabilistic Learning Maneesh Sahani Due: Monday Nov 5, 2018 Note: Assignments are due at 11:00 AM (the start of lecture) on the date above. he usual College late assignments

More information

K-Means Clustering 3/3/17

K-Means Clustering 3/3/17 K-Means Clustering 3/3/17 Unsupervised Learning We have a collection of unlabeled data points. We want to find underlying structure in the data. Examples: Identify groups of similar data points. Clustering

More information

Methods for Intelligent Systems

Methods for Intelligent Systems Methods for Intelligent Systems Lecture Notes on Clustering (II) Davide Eynard eynard@elet.polimi.it Department of Electronics and Information Politecnico di Milano Davide Eynard - Lecture Notes on Clustering

More information

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06 Clustering CS294 Practical Machine Learning Junming Yin 10/09/06 Outline Introduction Unsupervised learning What is clustering? Application Dissimilarity (similarity) of objects Clustering algorithm K-means,

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

SGN (4 cr) Chapter 11

SGN (4 cr) Chapter 11 SGN-41006 (4 cr) Chapter 11 Clustering Jussi Tohka & Jari Niemi Department of Signal Processing Tampere University of Technology February 25, 2014 J. Tohka & J. Niemi (TUT-SGN) SGN-41006 (4 cr) Chapter

More information

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Thomas Giraud Simon Chabot October 12, 2013 Contents 1 Discriminant analysis 3 1.1 Main idea................................

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

More information

DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm

DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm DATA MINING LECTURE 7 Hierarchical Clustering, DBSCAN The EM Algorithm CLUSTERING What is a Clustering? In general a grouping of objects such that the objects in a group (cluster) are similar (or related)

More information

IBL and clustering. Relationship of IBL with CBR

IBL and clustering. Relationship of IBL with CBR IBL and clustering Distance based methods IBL and knn Clustering Distance based and hierarchical Probability-based Expectation Maximization (EM) Relationship of IBL with CBR + uses previously processed

More information

Clustering. Shishir K. Shah

Clustering. Shishir K. Shah Clustering Shishir K. Shah Acknowledgement: Notes by Profs. M. Pollefeys, R. Jin, B. Liu, Y. Ukrainitz, B. Sarel, D. Forsyth, M. Shah, K. Grauman, and S. K. Shah Clustering l Clustering is a technique

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

10. MLSP intro. (Clustering: K-means, EM, GMM, etc.)

10. MLSP intro. (Clustering: K-means, EM, GMM, etc.) 10. MLSP intro. (Clustering: K-means, EM, GMM, etc.) Rahil Mahdian 01.04.2016 LSV Lab, Saarland University, Germany What is clustering? Clustering is the classification of objects into different groups,

More information

k-means demo Administrative Machine learning: Unsupervised learning" Assignment 5 out

k-means demo Administrative Machine learning: Unsupervised learning Assignment 5 out Machine learning: Unsupervised learning" David Kauchak cs Spring 0 adapted from: http://www.stanford.edu/class/cs76/handouts/lecture7-clustering.ppt http://www.youtube.com/watch?v=or_-y-eilqo Administrative

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

Introduction to Machine Learning

Introduction to Machine Learning Department of Computer Science, University of Helsinki Autumn 2009, second term Session 8, November 27 th, 2009 1 2 3 Multiplicative Updates for L1-Regularized Linear and Logistic Last time I gave you

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Chapter 6 Continued: Partitioning Methods

Chapter 6 Continued: Partitioning Methods Chapter 6 Continued: Partitioning Methods Partitioning methods fix the number of clusters k and seek the best possible partition for that k. The goal is to choose the partition which gives the optimal

More information

Gaussian Mixture Models For Clustering Data. Soft Clustering and the EM Algorithm

Gaussian Mixture Models For Clustering Data. Soft Clustering and the EM Algorithm Gaussian Mixture Models For Clustering Data Soft Clustering and the EM Algorithm K-Means Clustering Input: Observations: xx ii R dd ii {1,., NN} Number of Clusters: kk Output: Cluster Assignments. Cluster

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

K-means and Hierarchical Clustering

K-means and Hierarchical Clustering K-means and Hierarchical Clustering Xiaohui Xie University of California, Irvine K-means and Hierarchical Clustering p.1/18 Clustering Given n data points X = {x 1, x 2,, x n }. Clustering is the partitioning

More information

Machine Learning Department School of Computer Science Carnegie Mellon University. K- Means + GMMs

Machine Learning Department School of Computer Science Carnegie Mellon University. K- Means + GMMs 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University K- Means + GMMs Clustering Readings: Murphy 25.5 Bishop 12.1, 12.3 HTF 14.3.0 Mitchell

More information

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A. 205-206 Pietro Guccione, PhD DEI - DIPARTIMENTO DI INGEGNERIA ELETTRICA E DELL INFORMAZIONE POLITECNICO DI BARI

More information

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 10: Learning with Partially Observed Data Theo Rekatsinas 1 Partially Observed GMs Speech recognition 2 Partially Observed GMs Evolution 3 Partially Observed

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Image Segmentation Some material for these slides comes from https://www.csd.uwo.ca/courses/cs4487a/

More information

Lecture 8: The EM algorithm

Lecture 8: The EM algorithm 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 8: The EM algorithm Lecturer: Manuela M. Veloso, Eric P. Xing Scribes: Huiting Liu, Yifan Yang 1 Introduction Previous lecture discusses

More information

Clustering. Introduction to Data Science University of Colorado Boulder SLIDES ADAPTED FROM LAUREN HANNAH

Clustering. Introduction to Data Science University of Colorado Boulder SLIDES ADAPTED FROM LAUREN HANNAH Clustering Introduction to Data Science University of Colorado Boulder SLIDES ADAPTED FROM LAUREN HANNAH Introduction to Data Science Boulder Clustering 1 of 9 Clustering Lab Review of k-means Work through

More information

Segmentation: Clustering, Graph Cut and EM

Segmentation: Clustering, Graph Cut and EM Segmentation: Clustering, Graph Cut and EM Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

CS Introduction to Data Mining Instructor: Abdullah Mueen

CS Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 8: ADVANCED CLUSTERING (FUZZY AND CO -CLUSTERING) Review: Basic Cluster Analysis Methods (Chap. 10) Cluster Analysis: Basic Concepts

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

Distance Measures for Gene Expression (and other high-dimensional) Data

Distance Measures for Gene Expression (and other high-dimensional) Data Distance Measures for Gene Expression (and other high-dimensional) Data Utah State University Spring 04 STAT 5570: Statistical Bioinformatics Notes. References Chapter of Bioconductor Monograph (course

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 04/06/2015 Reading: Chapter 14.3: Hastie, Tibshirani, Friedman. Additional resources: Center Based Clustering: A Foundational Perspective. Awasthi,

More information

9881 Project Deliverable #1

9881 Project Deliverable #1 Memorial University of Newfoundland Pattern Recognition Lecture 3 May 9, 2006 http://www.engr.mun.ca/~charlesr Office Hours: Tuesdays & Thursdays 8:30-9:30 PM EN-3026 9881 Project Deliverable #1 Report

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup Random Variables: Y i =(Y i1,...,y ip ) 0 =(Y i,obs, Y i,miss ) 0 R i =(R i1,...,r ip ) 0 ( 1

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

Logis&c Regression. Aar$ Singh & Barnabas Poczos. Machine Learning / Jan 28, 2014

Logis&c Regression. Aar$ Singh & Barnabas Poczos. Machine Learning / Jan 28, 2014 Logis&c Regression Aar$ Singh & Barnabas Poczos Machine Learning 10-701/15-781 Jan 28, 2014 Linear Regression & Linear Classifica&on Weight Height Linear fit Linear decision boundary 2 Naïve Bayes Recap

More information

Fall 09, Homework 5

Fall 09, Homework 5 5-38 Fall 09, Homework 5 Due: Wednesday, November 8th, beginning of the class You can work in a group of up to two people. This group does not need to be the same group as for the other homeworks. You

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Cluster Analysis. Jia Li Department of Statistics Penn State University. Summer School in Statistics for Astronomers IV June 9-14, 2008

Cluster Analysis. Jia Li Department of Statistics Penn State University. Summer School in Statistics for Astronomers IV June 9-14, 2008 Cluster Analysis Jia Li Department of Statistics Penn State University Summer School in Statistics for Astronomers IV June 9-1, 8 1 Clustering A basic tool in data mining/pattern recognition: Divide a

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

Hidden Markov Models. Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi

Hidden Markov Models. Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi Hidden Markov Models Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi Sequential Data Time-series: Stock market, weather, speech, video Ordered: Text, genes Sequential

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Clustering gene expression data

Clustering gene expression data Clustering gene expression data 1 How Gene Expression Data Looks Entries of the Raw Data matrix: Ratio values Absolute values Row = gene s expression pattern Column = experiment/condition s profile genes

More information

Fisher vector image representation

Fisher vector image representation Fisher vector image representation Jakob Verbeek January 13, 2012 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.11.12.php Fisher vector representation Alternative to bag-of-words image representation

More information

Exploratory data analysis for microarrays

Exploratory data analysis for microarrays Exploratory data analysis for microarrays Jörg Rahnenführer Computational Biology and Applied Algorithmics Max Planck Institute for Informatics D-66123 Saarbrücken Germany NGFN - Courses in Practical DNA

More information

Expectation Maximization!

Expectation Maximization! Expectation Maximization! adapted from: Doug Downey and Bryan Pardo, Northwestern University and http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt Steps in Clustering Select Features

More information

Clustering analysis of gene expression data

Clustering analysis of gene expression data Clustering analysis of gene expression data Chapter 11 in Jonathan Pevsner, Bioinformatics and Functional Genomics, 3 rd edition (Chapter 9 in 2 nd edition) Human T cell expression data The matrix contains

More information

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2 So far in the course Clustering Subhransu Maji : Machine Learning 2 April 2015 7 April 2015 Supervised learning: learning with a teacher You had training data which was (feature, label) pairs and the goal

More information

732A54/TDDE31 Big Data Analytics

732A54/TDDE31 Big Data Analytics 732A54/TDDE31 Big Data Analytics Lecture 10: Machine Learning with MapReduce Jose M. Peña IDA, Linköping University, Sweden 1/27 Contents MapReduce Framework Machine Learning with MapReduce Neural Networks

More information

High throughput Data Analysis 2. Cluster Analysis

High throughput Data Analysis 2. Cluster Analysis High throughput Data Analysis 2 Cluster Analysis Overview Why clustering? Hierarchical clustering K means clustering Issues with above two Other methods Quality of clustering results Introduction WHY DO

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning Unsupervised Learning Clustering and the EM Algorithm Susanna Ricco Supervised Learning Given data in the form < x, y >, y is the target to learn. Good news: Easy to tell if our algorithm is giving the

More information

Clustering and The Expectation-Maximization Algorithm

Clustering and The Expectation-Maximization Algorithm Clustering and The Expectation-Maximization Algorithm Unsupervised Learning Marek Petrik 3/7 Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications

More information

Clustering k-mean clustering

Clustering k-mean clustering Clustering k-mean clustering Genome 373 Genomic Informatics Elhanan Borenstein The clustering problem: partition genes into distinct sets with high homogeneity and high separation Clustering (unsupervised)

More information

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015 Clustering Subhransu Maji CMPSCI 689: Machine Learning 2 April 2015 7 April 2015 So far in the course Supervised learning: learning with a teacher You had training data which was (feature, label) pairs

More information

Mixture Models and EM

Mixture Models and EM Table of Content Chapter 9 Mixture Models and EM -means Clustering Gaussian Mixture Models (GMM) Expectation Maximiation (EM) for Mixture Parameter Estimation Introduction Mixture models allows Complex

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

Radial Basis Function Networks: Algorithms

Radial Basis Function Networks: Algorithms Radial Basis Function Networks: Algorithms Neural Computation : Lecture 14 John A. Bullinaria, 2015 1. The RBF Mapping 2. The RBF Network Architecture 3. Computational Power of RBF Networks 4. Training

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Machine Learning Lecture 3 Probability Density Estimation II 19.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Exam dates We re in the process

More information

Pit Pattern Classification of Zoom-Endoscopic Colon Images using D

Pit Pattern Classification of Zoom-Endoscopic Colon Images using D Pit Pattern Classification of Zoom-Endoscopic Colon Images using DCT and FFT Leonhard Brunauer Hannes Payer Robert Resch Department of Computer Science University of Salzburg February 1, 2007 Outline 1

More information