Image Segmentation. Lecture14: Image Segmentation. Sample Segmentation Results. Use of Image Segmentation

Size: px
Start display at page:

Download "Image Segmentation. Lecture14: Image Segmentation. Sample Segmentation Results. Use of Image Segmentation"

Transcription

1 Image Segmentation CSED441:Introduction to Computer Vision (2015S) Lecture14: Image Segmentation What is image segmentation? Process of partitioning an image into multiple homogeneous segments Process of assigning a label to every pixel in an image such that pixels with the same label share certain visual characteristics Compact representation for image data in terms of a set of components Bohyung Han CSE, POSTECH bhhan@postech.ac.kr General framework Tokens: whatever we need to group (pixels, points, surface elements) Bottom up segmentation: Tokens belong together because they are locally coherent Top down segmentation: Tokens belong together because they lie on the same object Some materials for this lecture are the courtesy of Prof. S. Lazebnik in UIUC and Prof. S. Savarese in Michigan. 2 Sample Segmentation Results Use of Image Segmentation Primitives for other tasks Group together similar looking pixels for efficiency of further processing Unsupervised and bottom up process 3 4

2 Use of Image Segmentation High level understanding of object or scene Separate an image into coherent objects or region Semantic segmentation Object detection Use of Image Segmentation Image manipulation (in computer graphics) 5 6 Challenges Challenges Image segmentation is an inherently difficult task due to Subjectivity of problem Weak and inconsistent features Requirement of high level inferences Subjectivity of problem Each person has a different concept of segment in an image. Even a person has different concepts of segment depending on the situation Input image Annotations by human 7 8

3 Challenges Challenges Weak and inconsistent features Requirement of high level inferences Unclear object boundaries Image noises and artifacts Background clutter Recovering missing boundaries Considering scene context Handling repetitive patterns 9 10 Evaluation How to evaluate image segmentation algorithm? We need to construct datasets and evaluation protocols. Datasets Berkeley segmentation dataset Microsoft COCO Evaluation methods Precision and recall of region boundaries Other measures for clustering algorithm evaluation (Adjusted) RAND index Normalized mutual information Datasets and Benchmarks 11 12

4 Berkeley Segmentation Dataset and Benchmark Berkeley Segmentation Dataset and Benchmark BSD300 Original dataset 200 training and 100 testing images 12,000 hand labeled segmentations of 1,000 Corel dataset images from 30 human subjects. Related paper D. Martin and C. Fowlkes and D. Tal and J. Malik. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. ICCV 2001 An example Training image # annotations #1107: 20 segments #1109: 13 segments #1113: 12 segments #1119: 10 segments #1121: 6 segments #1129: 7 segments Berkeley Segmentation Dataset and Benchmark BSD500 An extended version: 200 additional testing images New images were segmented by five different subjects on average. Performance is evaluated by measuring precision/recall on detected boundaries and three additional region based metrics. resources.html Related paper P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image Segmentation. TPAMI Downloads Pre compiled Matlabpackage Source code (for Linux/Mac, 32/64 bits) Pre computed results on the BSD500 and PASCAL VOC 2012 What is Microsoft COCO? Microsoft COCO Common Objects in COntext A new image recognition and segmentation dataset that was released in Summer Resources Paper Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, C. Lawrence Zitnick: Microsoft COCO: Common Objects in Context. ECCV (5) 2014: arxiv link:

5 Characteristics More than 70 categories Object segmentation Recognition in context Multiple objects per image More than 300,000 images More than 2 Million instances Microsoft CoCo Tools Microsoft COCO In Python and Matlab (not yet ready though) Download and set up package Common API in Python and Matlab with minor differences for reading and visualizing COCO Annotation Instance annotation Instances: storing an array of instance object that contains category id and segmentation of an instance Categories: mapping of category id to category name Sentence annotation An array of sentence annotation that describes an image Each image has at least five sentences (few has more than five) Some Example Images Microsoft COCO

6 Superpixel Segmentation Superpixel Segmentation Concept Clustering closely related pixels in the feature space Typically used as a preprocessing step for various tasks Being very simple and fast Famous algorithms SLIC (Simple Linear Iterative Clustering) ERS (Entropy Rate Superpixel Segmentation) R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, SLIC Superpixels Compared to State of the art Superpixel Methods, TPAMI 34(11), 2012 M. Y Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR SLIC Similar to k means clustering except that It limits the search space for distance computation to a region proportional to the superpixel size It employs a weighted distance measure based on color and spatial proximity It provides control over the size and compactness of the superpixels Basic setup # of superpixels: need to be given by human Initial segmentation Regular grid The centers are moved to seed locations corresponding to the lowest gradient position in a 3x3 neighborhood: preventing initial centers from being located at edges Feature space: color+location,,,, Search space SLIC Approximate superpixel size: Each pixel computes the distance to the cluster centers if the pixel is within 2 2 area from the centers. Distance measure Post processing for orphaned pixels Assigned the label of the nearest cluster center using a connected components algorithm 23 24

7 SLIC ERS Some results Entropy Rate Superpixel (ERS) segmentation Formulating clustering as a graph partitioning problem Searching for a graph topology that has K connected components and maximizes the objective function Graph construction: Each vertex represents a pixel. Every vertex has a self loop. Each edge denotes the pairwise similarity between pixels. When an edge is not used to merge two components, we increase the edge weight of the self loop of the associated vertices ERS ERS Objective function Given a graph, Two criteria max subject to and : entropy rate of the random walk on the graph Entropy rate: quantifies the uncertainty of a stochastic process It prefers compact and homogeneous clusters. : balance of superpixel sizes It encourages clusters with similar sizes. Objective function Entropy rate: Stationary distribution max subject to and, log, and,,, :, 1, if if 27 28

8 Objective function Balancing: ERS max subject to and log, where 1,, Prefers superpixels with similar sizes ERS Characteristics of objective function A monotonically increasing submodular function Submodularity:, Monotonicity: for all In general, maximization of submodular functions leads to NP hard problems. Optimization A very simple greedy heuristic 0.5 approximation bound by exploiting matroid structure Matroid,, where is cycle free Performance ERS Nice identification of region boundaries Irregular shape of superpixels Relatively slow Use of Superpixels for Image Segmentation As a preprocessing The number of superpixels is extremely smaller than the number of pixels in an image. Each superpixel is very homogeneous. The features in superpixels are richer than pixels. There is a significant benefit in terms of computational complexity. Examples Superpixel segmentation + mean shift Superpixel segmentation + normalized cut 31 32

9 Demo: Superpixel Segmentaton %% Parameters cluster_size = 61; num_of_clusters = 50; % cluster_size = 43; num_of_clusters = 100; % cluster_size = 29; num_of_clusters = 200; % cluster_size = 20; num_of_clusters = 400; %% SLIC [Y_slic, time_slic, bmap_slic, K_slic, out_slic, out2_slic]... = slic_superpixel(fname, cluster_size); Image Segmentation by Other Methods %% ERS [Y_ers, time_ers, bmap_ers, K_ers, out_ers, out2_ers]... = ers_superpixel(fname, num_of_clusters); Image Segmentation Algorithms Segmentation as grouping k means clustering Mean shift Segmentation as graph partitioning Spectral clustering Normalized cut Segmentation by other methods Boundary detection: Watershed Labeling: Graph cut Main idea Watershed Algorithm Image as a topographic relief: the grey level of a pixel is interpreted as its altitude in the relief. The watershed of a relief correspond to the limits of the adjacent catchment basins of the drops of water. Note: This categorization is not exclusive

10 Watershed Segmentation seg = watershed(bnd_im) Procedure Procedure Choose local minima as region seeds Add neighbors to priority queue, sorted by value Take top priority pixel from queue If all labeled neighbors have same label, assign to pixel Add all non marked neighbors Repeat step 3 until finished Image Gradient Watershed boundaries Results Characteristics Pros Fast (< 1 sec for 512x512 image) Among best methods for hierarchical segmentation Cons Only as good as the soft boundaries Not easy to get variety of regions for multiple segmentations No top down information Usage Preferred algorithm for hierarchical segmentation 39 40

11 Graph Cut Image Representation by Graph Cut A very general tool that can be applied to Representation as a graph Stereo depth reconstruction Texture synthesis Video synthesis Image denoising Foreground/background segmentation A node is created for each pixel. An edge represents the relationship between adjacent pixels. Two special nodes: source () and sink () s General characteristics Formulated using a graph Used for binary labeling problem Solved by energy minimization Large search space # of nodes for labeling: the number of all possible binary segmentations: 2 This is intractable. t Image Representation by Graph Cut Energy Minimization Problem Representation as a graph A node is created for each pixel. An edge represents the relationship between adjacent pixels. Two special nodes: source () and sink () Large search space # of nodes for labeling: the number of all possible binary segmentations: 2 This is intractable. FS Bt Energy function data term smoothness term Data term How similar is each labeled pixel to the foreground or background? Probability that this color belongs to foreground (resp. background) Smoothness term (a.k.a. regularization term) Penalty for having different label Encourage spatially coherent segments Penalty is downweighted if the two pixel colors are very different

12 Two Terms Solution Data term Approach Defined for each node Smoothness term, if, FG likelihood if, BG likelihood Defined for each edge : visual similarity between two nodes (pixels), and We should minimize energy by cutting the graph into two partitions. Solved by max flow/min cut algorithm Max flow/min cut algorithm Energy optimization is equivalent to graph min cut. Cut: remove edges to disconnect two regions Minimum: minimize sum of cut edge weight F B cut

Lecture 16 Segmentation and Scene understanding

Lecture 16 Segmentation and Scene understanding Lecture 16 Segmentation and Scene understanding Introduction! Mean-shift! Graph-based segmentation! Top-down segmentation! Silvio Savarese Lecture 15 -! 3-Mar-14 Segmentation Silvio Savarese Lecture 15

More information

Superpixel Segmentation using Depth

Superpixel Segmentation using Depth Superpixel Segmentation using Depth Information Superpixel Segmentation using Depth Information David Stutz June 25th, 2014 David Stutz June 25th, 2014 01 Introduction - Table of Contents 1 Introduction

More information

Grouping and Segmentation

Grouping and Segmentation 03/17/15 Grouping and Segmentation Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class Segmentation and grouping Gestalt cues By clustering (mean-shift) By boundaries (watershed)

More information

SCALP: Superpixels with Contour Adherence using Linear Path

SCALP: Superpixels with Contour Adherence using Linear Path SCALP: Superpixels with Contour Adherence using Linear Path Rémi Giraud 1,2 remi.giraud@labri.fr with Vinh-Thong Ta 1 and Nicolas Papadakis 2 1 LaBRI CNRS UMR 5800 - University of Bordeaux, FRANCE PICTURA

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors Segmentation I Goal Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Applications Intelligent

More information

Segmentation & Clustering

Segmentation & Clustering EECS 442 Computer vision Segmentation & Clustering Segmentation in human vision K-mean clustering Mean-shift Graph-cut Reading: Chapters 14 [FP] Some slides of this lectures are courtesy of prof F. Li,

More information

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu Lectures 21 & 22 Segmentation and clustering 1 Schedule Last class We started on segmentation Today Segmentation continued Readings

More information

Compact Watershed and Preemptive SLIC: On improving trade-offs of superpixel segmentation algorithms

Compact Watershed and Preemptive SLIC: On improving trade-offs of superpixel segmentation algorithms To appear in Proc. of International Conference on Pattern Recognition (ICPR), 2014. DOI: not yet available c 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

More information

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1 Outline What are grouping problems in vision? Segmentation & Grouping Wed, Feb 9 Prof. UT-Austin Inspiration from human perception Gestalt properties Bottom-up segmentation via clustering Algorithms: Mode

More information

Image Segmentation. Srikumar Ramalingam School of Computing University of Utah. Slides borrowed from Ross Whitaker

Image Segmentation. Srikumar Ramalingam School of Computing University of Utah. Slides borrowed from Ross Whitaker Image Segmentation Srikumar Ramalingam School of Computing University of Utah Slides borrowed from Ross Whitaker Segmentation Semantic Segmentation Indoor layout estimation What is Segmentation? Partitioning

More information

Segmentation Computer Vision Spring 2018, Lecture 27

Segmentation Computer Vision Spring 2018, Lecture 27 Segmentation http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 218, Lecture 27 Course announcements Homework 7 is due on Sunday 6 th. - Any questions about homework 7? - How many of you have

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 CS 2770: Computer Vision Edges and Segments Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 Edges vs Segments Figure adapted from J. Hays Edges vs Segments Edges More low-level Don t

More information

DEPTH-ADAPTIVE SUPERVOXELS FOR RGB-D VIDEO SEGMENTATION. Alexander Schick. Fraunhofer IOSB Karlsruhe

DEPTH-ADAPTIVE SUPERVOXELS FOR RGB-D VIDEO SEGMENTATION. Alexander Schick. Fraunhofer IOSB Karlsruhe DEPTH-ADAPTIVE SUPERVOXELS FOR RGB-D VIDEO SEGMENTATION David Weikersdorfer Neuroscientific System Theory Technische Universität München Alexander Schick Fraunhofer IOSB Karlsruhe Daniel Cremers Computer

More information

Segmentation and Grouping

Segmentation and Grouping 02/23/10 Segmentation and Grouping Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Last week Clustering EM Today s class More on EM Segmentation and grouping Gestalt cues By boundaries

More information

Content-based Image and Video Retrieval. Image Segmentation

Content-based Image and Video Retrieval. Image Segmentation Content-based Image and Video Retrieval Vorlesung, SS 2011 Image Segmentation 2.5.2011 / 9.5.2011 Image Segmentation One of the key problem in computer vision Identification of homogenous region in the

More information

Graph based Image Segmentation using improved SLIC Superpixel algorithm

Graph based Image Segmentation using improved SLIC Superpixel algorithm Graph based Image Segmentation using improved SLIC Superpixel algorithm Prasanna Regmi 1, B.J.M. Ravi Kumar 2 1 Computer Science and Systems Engineering, Andhra University, AP, India 2 Computer Science

More information

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class Image Segmentation Announcements Status reports next Thursday ~5min presentations in class Project voting From Sandlot Science Today s Readings Forsyth & Ponce, Chapter 1 (plus lots of optional references

More information

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Image Segmentation continued Graph Based Methods Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Previously Binary segmentation Segmentation by thresholding

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Graph Cuts source S sink T Readings Szeliski, Chapter 11.2 11.5 Stereo results with window search problems in areas of uniform texture Window-based matching

More information

Segmentation in electron microscopy images

Segmentation in electron microscopy images Segmentation in electron microscopy images Aurelien Lucchi, Kevin Smith, Yunpeng Li Bohumil Maco, Graham Knott, Pascal Fua. http://cvlab.epfl.ch/research/medical/neurons/ Outline Automated Approach to

More information

Title: Adaptive Region Merging Segmentation of Airborne Imagery for Roof Condition Assessment. Abstract:

Title: Adaptive Region Merging Segmentation of Airborne Imagery for Roof Condition Assessment. Abstract: Title: Adaptive Region Merging Segmentation of Airborne Imagery for Roof Condition Assessment Abstract: In order to perform residential roof condition assessment with very-high-resolution airborne imagery,

More information

Generating Object Candidates from RGB-D Images and Point Clouds

Generating Object Candidates from RGB-D Images and Point Clouds Generating Object Candidates from RGB-D Images and Point Clouds Helge Wrede 11.05.2017 1 / 36 Outline Introduction Methods Overview The Data RGB-D Images Point Clouds Microsoft Kinect Generating Object

More information

Medial Features for Superpixel Segmentation

Medial Features for Superpixel Segmentation Medial Features for Superpixel Segmentation David Engel Luciano Spinello Rudolph Triebel Roland Siegwart Heinrich H. Bülthoff Cristóbal Curio Max Planck Institute for Biological Cybernetics Spemannstr.

More information

Lecture 13: k-means and mean-shift clustering

Lecture 13: k-means and mean-shift clustering Lecture 13: k-means and mean-shift clustering Juan Carlos Niebles Stanford AI Lab Professor Stanford Vision Lab Lecture 13-1 Recap: Image Segmentation Goal: identify groups of pixels that go together Lecture

More information

Grouping and Segmentation

Grouping and Segmentation Grouping and Segmentation CS 554 Computer Vision Pinar Duygulu Bilkent University (Source:Kristen Grauman ) Goals: Grouping in vision Gather features that belong together Obtain an intermediate representation

More information

Image Processing and Image Analysis VU

Image Processing and Image Analysis VU Image Processing and Image Analysis 052617 VU Yll Haxhimusa yll.haxhimusa@medunwien.ac.at vda.univie.ac.at/teaching/ipa/17w/ Outline What are grouping problems in vision? Inspiration from human perception

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

CS 664 Segmentation. Daniel Huttenlocher

CS 664 Segmentation. Daniel Huttenlocher CS 664 Segmentation Daniel Huttenlocher Grouping Perceptual Organization Structural relationships between tokens Parallelism, symmetry, alignment Similarity of token properties Often strong psychophysical

More information

Boundaries and Sketches

Boundaries and Sketches Boundaries and Sketches Szeliski 4.2 Computer Vision James Hays Many slides from Michael Maire, Jitendra Malek Today s lecture Segmentation vs Boundary Detection Why boundaries / Grouping? Recap: Canny

More information

arxiv: v1 [cs.cv] 14 Sep 2015

arxiv: v1 [cs.cv] 14 Sep 2015 gslicr: SLIC superpixels at over 250Hz Carl Yuheng Ren carl@robots.ox.ac.uk University of Oxford Ian D Reid ian.reid@adelaide.edu.au University of Adelaide September 15, 2015 Victor Adrian Prisacariu victor@robots.ox.ac.uk

More information

CHAPTER 4. ANALYSIS of GRAPH THEORETICAL IMAGE SEGMENTATION METHODS

CHAPTER 4. ANALYSIS of GRAPH THEORETICAL IMAGE SEGMENTATION METHODS CHAPTER 4 ANALYSIS of GRAPH THEORETICAL IMAGE SEGMENTATION METHODS 4.1 Introduction In Graph based methods image is represented by undirected weighted graph where the nodes are pixels or pixel regions.

More information

Classifying a specific image region using convolutional nets with an ROI mask as input

Classifying a specific image region using convolutional nets with an ROI mask as input Classifying a specific image region using convolutional nets with an ROI mask as input 1 Sagi Eppel Abstract Convolutional neural nets (CNN) are the leading computer vision method for classifying images.

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

CS 2750: Machine Learning. Clustering. Prof. Adriana Kovashka University of Pittsburgh January 17, 2017

CS 2750: Machine Learning. Clustering. Prof. Adriana Kovashka University of Pittsburgh January 17, 2017 CS 2750: Machine Learning Clustering Prof. Adriana Kovashka University of Pittsburgh January 17, 2017 What is clustering? Grouping items that belong together (i.e. have similar features) Unsupervised:

More information

Image Analysis Image Segmentation (Basic Methods)

Image Analysis Image Segmentation (Basic Methods) Image Analysis Image Segmentation (Basic Methods) Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Computer Vision course

More information

Resolution-independent superpixels based on convex constrained meshes without small angles

Resolution-independent superpixels based on convex constrained meshes without small angles 1 2 Resolution-independent superpixels based on convex constrained meshes without small angles 3 4 5 6 7 Jeremy Forsythe 1,2, Vitaliy Kurlin 3, Andrew Fitzgibbon 4 1 Vienna University of Technology, Favoritenstr.

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Session 11 Segmentation And Clustering Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Segmentation and Grouping April 19 th, 2018

Segmentation and Grouping April 19 th, 2018 Segmentation and Grouping April 19 th, 2018 Yong Jae Lee UC Davis Features and filters Transforming and describing images; textures, edges 2 Grouping and fitting [fig from Shi et al] Clustering, segmentation,

More information

Segmentation by Clustering. Segmentation by Clustering Reading: Chapter 14 (skip 14.5) General ideas

Segmentation by Clustering. Segmentation by Clustering Reading: Chapter 14 (skip 14.5) General ideas Reading: Chapter 14 (skip 14.5) Data reduction - obtain a compact representation for interesting image data in terms of a set of components Find components that belong together (form clusters) Frame differencing

More information

Segmentation by Clustering Reading: Chapter 14 (skip 14.5)

Segmentation by Clustering Reading: Chapter 14 (skip 14.5) Segmentation by Clustering Reading: Chapter 14 (skip 14.5) Data reduction - obtain a compact representation for interesting image data in terms of a set of components Find components that belong together

More information

Cluster Sensing Superpixel and Grouping

Cluster Sensing Superpixel and Grouping Cluster Sensing Superpixel and Grouping Rui Li Lu Fang Abstract Superpixel algorithms have shown significant potential in computer vision applications since they can be used to accelerate other computationally

More information

Dr. Ulas Bagci

Dr. Ulas Bagci CAP5415-Computer Vision Lecture 11-Image Segmentation (BASICS): Thresholding, Region Growing, Clustering Dr. Ulas Bagci bagci@ucf.edu 1 Image Segmentation Aim: to partition an image into a collection of

More information

The goals of segmentation

The goals of segmentation Image segmentation The goals of segmentation Group together similar-looking pixels for efficiency of further processing Bottom-up process Unsupervised superpixels X. Ren and J. Malik. Learning a classification

More information

CSSE463: Image Recognition Day 21

CSSE463: Image Recognition Day 21 CSSE463: Image Recognition Day 21 Sunset detector due. Foundations of Image Recognition completed This wee: K-means: a method of Image segmentation Questions? An image to segment Segmentation The process

More information

Fast Edge Detection Using Structured Forests

Fast Edge Detection Using Structured Forests Fast Edge Detection Using Structured Forests Piotr Dollár, C. Lawrence Zitnick [1] Zhihao Li (zhihaol@andrew.cmu.edu) Computer Science Department Carnegie Mellon University Table of contents 1. Introduction

More information

Segmentation and Grouping April 21 st, 2015

Segmentation and Grouping April 21 st, 2015 Segmentation and Grouping April 21 st, 2015 Yong Jae Lee UC Davis Announcements PS0 grades are up on SmartSite Please put name on answer sheet 2 Features and filters Transforming and describing images;

More information

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah Image Segmentation Ross Whitaker SCI Institute, School of Computing University of Utah What is Segmentation? Partitioning images/volumes into meaningful pieces Partitioning problem Labels Isolating a specific

More information

Recap from Monday. Visualizing Networks Caffe overview Slides are now online

Recap from Monday. Visualizing Networks Caffe overview Slides are now online Recap from Monday Visualizing Networks Caffe overview Slides are now online Today Edges and Regions, GPB Fast Edge Detection Using Structured Forests Zhihao Li Holistically-Nested Edge Detection Yuxin

More information

Segmentation & Grouping Kristen Grauman UT Austin. Announcements

Segmentation & Grouping Kristen Grauman UT Austin. Announcements Segmentation & Grouping Kristen Grauman UT Austin Tues Feb 7 A0 on Canvas Announcements No office hours today TA office hours this week as usual Guest lecture Thursday by Suyog Jain Interactive segmentation

More information

Discrete-Continuous Gradient Orientation Estimation for Faster Image Segmentation

Discrete-Continuous Gradient Orientation Estimation for Faster Image Segmentation Discrete-Continuous Gradient Orientation Estimation for Faster Image Segmentation Michael Donoser and Dieter Schmalstieg Institute for Computer Graphics and Vision Graz University of Technology {donoser,schmalstieg}@icg.tugraz.at

More information

SMURFS: Superpixels from Multi-scale Refinement of Super-regions

SMURFS: Superpixels from Multi-scale Refinement of Super-regions LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS 1 SMURFS: Superpixels from Multi-scale Refinement of Super-regions Imanol Luengo 1 imanol.luengo@nottingham.ac.uk Mark Basham 2 mark.basham@diamond.ac.uk Andrew

More information

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation CS 4495 Computer Vision Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing Administrivia PS 4: Out but I was a bit late so due date pushed back to Oct 29. OpenCV now has real SIFT

More information

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification DIGITAL IMAGE ANALYSIS Image Classification: Object-based Classification Image classification Quantitative analysis used to automate the identification of features Spectral pattern recognition Unsupervised

More information

Object-Based Classification & ecognition. Zutao Ouyang 11/17/2015

Object-Based Classification & ecognition. Zutao Ouyang 11/17/2015 Object-Based Classification & ecognition Zutao Ouyang 11/17/2015 What is Object-Based Classification The object based image analysis approach delineates segments of homogeneous image areas (i.e., objects)

More information

SCALP: Superpixels with Contour Adherence using Linear Path

SCALP: Superpixels with Contour Adherence using Linear Path : Superpixels with Contour Adherence using Linear Path Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis To cite this version: Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis. : Superpixels with Contour Adherence

More information

Saliency Detection in Aerial Imagery

Saliency Detection in Aerial Imagery Saliency Detection in Aerial Imagery using Multi-scale SLIC Segmentation Samir Sahli 1, Daniel A. Lavigne 2 and Yunlong Sheng 1 1- COPL, Image Science group, Laval University, Quebec, Canada 2- Defence

More information

Figure 1: Workflow of object-based classification

Figure 1: Workflow of object-based classification Technical Specifications Object Analyst Object Analyst is an add-on package for Geomatica that provides tools for segmentation, classification, and feature extraction. Object Analyst includes an all-in-one

More information

Segmentation. Separate image into coherent regions

Segmentation. Separate image into coherent regions Segmentation II Segmentation Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Interactive

More information

EE 701 ROBOT VISION. Segmentation

EE 701 ROBOT VISION. Segmentation EE 701 ROBOT VISION Regions and Image Segmentation Histogram-based Segmentation Automatic Thresholding K-means Clustering Spatial Coherence Merging and Splitting Graph Theoretic Segmentation Region Growing

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Grid-Based Genetic Algorithm Approach to Colour Image Segmentation

Grid-Based Genetic Algorithm Approach to Colour Image Segmentation Grid-Based Genetic Algorithm Approach to Colour Image Segmentation Marco Gallotta Keri Woods Supervised by Audrey Mbogho Image Segmentation Identifying and extracting distinct, homogeneous regions from

More information

Operators-Based on Second Derivative double derivative Laplacian operator Laplacian Operator Laplacian Of Gaussian (LOG) Operator LOG

Operators-Based on Second Derivative double derivative Laplacian operator Laplacian Operator Laplacian Of Gaussian (LOG) Operator LOG Operators-Based on Second Derivative The principle of edge detection based on double derivative is to detect only those points as edge points which possess local maxima in the gradient values. Laplacian

More information

Superpixel Segmentation using Linear Spectral Clustering

Superpixel Segmentation using Linear Spectral Clustering Superpixel Segmentation using Linear Spectral Clustering Zhengqin Li Jiansheng Chen Department of Electronic Engineering, Tsinghua University, Beijing, China li-zq12@mails.tsinghua.edu.cn jschenthu@mail.tsinghua.edu.cn

More information

EIKONAL-BASED VERTICES GROWING AND ITERATIVE SEEDING FOR EFFICIENT GRAPH-BASED SEGMENTATION. P. Buyssens, M. Toutain, A. Elmoataz, O.

EIKONAL-BASED VERTICES GROWING AND ITERATIVE SEEDING FOR EFFICIENT GRAPH-BASED SEGMENTATION. P. Buyssens, M. Toutain, A. Elmoataz, O. EIKONAL-BASED VERTICES GROWING AND ITERATIVE SEEDING FOR EFFICIENT GRAPH-BASED SEGMENTATION P. Buyssens, M. Toutain, A. Elmoataz, O. Lézoray GREYC (UMR 6072) - CNRS, Université de Caen Basse-Normandie,

More information

Robot localization method based on visual features and their geometric relationship

Robot localization method based on visual features and their geometric relationship , pp.46-50 http://dx.doi.org/10.14257/astl.2015.85.11 Robot localization method based on visual features and their geometric relationship Sangyun Lee 1, Changkyung Eem 2, and Hyunki Hong 3 1 Department

More information

Image Analysis Lecture Segmentation. Idar Dyrdal

Image Analysis Lecture Segmentation. Idar Dyrdal Image Analysis Lecture 9.1 - Segmentation Idar Dyrdal Segmentation Image segmentation is the process of partitioning a digital image into multiple parts The goal is to divide the image into meaningful

More information

Supervised texture detection in images

Supervised texture detection in images Supervised texture detection in images Branislav Mičušík and Allan Hanbury Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation, Vienna University of Technology Favoritenstraße

More information

CS4670 / 5670: Computer Vision Noah Snavely

CS4670 / 5670: Computer Vision Noah Snavely { { 11/26/2013 CS4670 / 5670: Computer Vision Noah Snavely Graph-Based Image Segmentation Stereo as a minimization problem match cost Want each pixel to find a good match in the other image smoothness

More information

Learning the Ecological Statistics of Perceptual Organization

Learning the Ecological Statistics of Perceptual Organization Learning the Ecological Statistics of Perceptual Organization Charless Fowlkes work with David Martin, Xiaofeng Ren and Jitendra Malik at University of California at Berkeley 1 How do ideas from perceptual

More information

Image Segmentation Based on Watershed and Edge Detection Techniques

Image Segmentation Based on Watershed and Edge Detection Techniques 0 The International Arab Journal of Information Technology, Vol., No., April 00 Image Segmentation Based on Watershed and Edge Detection Techniques Nassir Salman Computer Science Department, Zarqa Private

More information

Combinatorial optimization and its applications in image Processing. Filip Malmberg

Combinatorial optimization and its applications in image Processing. Filip Malmberg Combinatorial optimization and its applications in image Processing Filip Malmberg Part 1: Optimization in image processing Optimization in image processing Many image processing problems can be formulated

More information

A Benchmark for Interactive Image Segmentation Algorithms

A Benchmark for Interactive Image Segmentation Algorithms A Benchmark for Interactive Image Segmentation Algorithms Yibiao Zhao 1,3, Xiaohan Nie 2,3, Yanbiao Duan 2,3, Yaping Huang 1, Siwei Luo 1 1 Beijing Jiaotong University, 2 Beijing Institute of Technology,

More information

Image Segmentation continued Graph Based Methods

Image Segmentation continued Graph Based Methods Image Segmentation continued Graph Based Methods Previously Images as graphs Fully-connected graph node (vertex) for every pixel link between every pair of pixels, p,q affinity weight w pq for each link

More information

Interactive segmentation, Combinatorial optimization. Filip Malmberg

Interactive segmentation, Combinatorial optimization. Filip Malmberg Interactive segmentation, Combinatorial optimization Filip Malmberg But first... Implementing graph-based algorithms Even if we have formulated an algorithm on a general graphs, we do not neccesarily have

More information

Depth SEEDS: Recovering Incomplete Depth Data using Superpixels

Depth SEEDS: Recovering Incomplete Depth Data using Superpixels Depth SEEDS: Recovering Incomplete Depth Data using Superpixels Michael Van den Bergh 1 1 ETH Zurich Zurich, Switzerland vamichae@vision.ee.ethz.ch Daniel Carton 2 2 TU München Munich, Germany carton@lsr.ei.tum.de

More information

Structured Models in. Dan Huttenlocher. June 2010

Structured Models in. Dan Huttenlocher. June 2010 Structured Models in Computer Vision i Dan Huttenlocher June 2010 Structured Models Problems where output variables are mutually dependent or constrained E.g., spatial or temporal relations Such dependencies

More information

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee Mesh segmentation Florent Lafarge Inria Sophia Antipolis - Mediterranee Outline What is mesh segmentation? M = {V,E,F} is a mesh S is either V, E or F (usually F) A Segmentation is a set of sub-meshes

More information

Superpixels Generating from the Pixel-based K-Means Clustering

Superpixels Generating from the Pixel-based K-Means Clustering Superpixels Generating from the Pixel-based K-Means Clustering Shang-Chia Wei, Tso-Jung Yen Institute of Statistical Science Academia Sinica Taipei, Taiwan 11529, R.O.C. wsc@stat.sinica.edu.tw, tjyen@stat.sinica.edu.tw

More information

Segmentation (continued)

Segmentation (continued) Segmentation (continued) Lecture 05 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr Mubarak Shah Professor, University of Central Florida The Robotics

More information

Segmentation. Bottom Up Segmentation

Segmentation. Bottom Up Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Bottom Up Segmentation 1 Segmentation as clustering Depending on what we choose as the feature space, we can group pixels in different ways. Grouping

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

An Alternative Graph Cut Algorithm for Morphological Edge Detection

An Alternative Graph Cut Algorithm for Morphological Edge Detection American Journal of Applied Sciences 9 (7): 1107-1112, 2012 ISSN 1546-9239 2012 Science Publications An Alternative Graph Cut Algorithm for Morphological Edge Detection P. Radhakrishnan Department of Computer

More information

Image Segmentation. Computer Vision Jia-Bin Huang, Virginia Tech. Many slides from D. Hoiem

Image Segmentation. Computer Vision Jia-Bin Huang, Virginia Tech. Many slides from D. Hoiem Image Segmentation Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs HW 3 due 11:59 PM, Oct 25 (Wed) Final project proposal due Oct 30 (Mon) Title Problem Tentative

More information

Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration

Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration 1 Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration Sharon Alpert, Meirav Galun, Achi Brandt, and Ronen Basri Member, IEEE Abstract We present a bottom-up aggregation approach

More information

Amodal and Panoptic Segmentation. Stephanie Liu, Andrew Zhou

Amodal and Panoptic Segmentation. Stephanie Liu, Andrew Zhou Amodal and Panoptic Segmentation Stephanie Liu, Andrew Zhou This lecture: 1. 2. 3. 4. Semantic Amodal Segmentation Cityscapes Dataset ADE20K Dataset Panoptic Segmentation Semantic Amodal Segmentation Yan

More information

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2 So far in the course Clustering Subhransu Maji : Machine Learning 2 April 2015 7 April 2015 Supervised learning: learning with a teacher You had training data which was (feature, label) pairs and the goal

More information

2D image segmentation based on spatial coherence

2D image segmentation based on spatial coherence 2D image segmentation based on spatial coherence Václav Hlaváč Czech Technical University in Prague Center for Machine Perception (bridging groups of the) Czech Institute of Informatics, Robotics and Cybernetics

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Bioimage Informatics

Bioimage Informatics Bioimage Informatics Lecture 14, Spring 2012 Bioimage Data Analysis (IV) Image Segmentation (part 3) Lecture 14 March 07, 2012 1 Outline Review: intensity thresholding based image segmentation Morphological

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

What is Computer Vision?

What is Computer Vision? Perceptual Grouping in Computer Vision Gérard Medioni University of Southern California What is Computer Vision? Computer Vision Attempt to emulate Human Visual System Perceive visual stimuli with cameras

More information

Edge and Texture. CS 554 Computer Vision Pinar Duygulu Bilkent University

Edge and Texture. CS 554 Computer Vision Pinar Duygulu Bilkent University Edge and Texture CS 554 Computer Vision Pinar Duygulu Bilkent University Filters for features Previously, thinking of filtering as a way to remove or reduce noise Now, consider how filters will allow us

More information

SUPERPIXELS: THE END OF PIXELS IN OBIA. A COMPARISON OF STATE-OF-THE- ART SUPERPIXEL METHODS FOR REMOTE SENSING DATA

SUPERPIXELS: THE END OF PIXELS IN OBIA. A COMPARISON OF STATE-OF-THE- ART SUPERPIXEL METHODS FOR REMOTE SENSING DATA SUPERPIXELS: THE END OF PIXELS IN OBIA. A COMPARISON OF STATE-OF-THE- ART SUPERPIXEL METHODS FOR REMOTE SENSING DATA O. Csillik * Department of Geoinformatics Z_GIS, University of Salzburg, 5020, Salzburg,

More information