Segmentation. Bottom up Segmentation Semantic Segmentation

Size: px
Start display at page:

Download "Segmentation. Bottom up Segmentation Semantic Segmentation"

Transcription

1 Segmentation Bottom up Segmentation Semantic Segmentation

2 Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road, sidewalk,tree,fence,pole,traffic sign,car,pedestrian, bicyclist

3 Object detection Basic idea: slide a window across image and evaluate a (object) face model at every location

4 Object detection Sliding window approach does not scale well Top pedestrian [HOG] detector only 15.3% with 85% FP

5 Ingredients What are the elementary regions for classification? How to spatially integrate the evidence from neighbouring regions? What is the role of geometric features for classification? How to exploit street scene context? Video database 3 daytime one at dusk sequence

6 Semantic Labeling Problem formulation, compute optimal assignment of labels to regions given appearance and geometry features P (L A, G) = P (A, G L) P (L) P (A, G) sky building building columnpole tree signsymbol building tree columnpole building sky car columnpole car building sidewalk sidewalk road L =(l 1,l 2,...l S )

7 Semantic Segmentation Ingredients simultaneous segmentation and recognition choice of elementary regions (pixels, super-pixels, rectangular regions) choice of features to describe the regions (color edge statistics, area/shape/moments ) computation of the likelihoods of features given labels context modeling - spatial co-occurrence between class labels - modeling relative location of object classes - large support regions for training category classifier semantic labeling formulated in MRF/CRF framework

8 Image Labelling Problems In general - Assign a label to each image pixel Geometry Es1ma1on Image Denoising Object Segmenta1on Depth Es1ma1on Sky Building Tree Grass

9 Image Labelling MRF/CRF framework Typical pair-wise MRF probabilistic semantics P (x y) =P (y x)p (x) P (y x) = P (y i x i ) P (x) Prior distribution over labels i S set of labels x = {x 1,...,x n } Commonly used priors for semantic labeling - spatial co-occurrence between class labels - modeling relative location of object classes - large support regions for training category classifier

10 Markov Random Field Framework Typical pair-wise MRF in vision P (x y) =P (y x)p (x) P (y x) = i S P (y i x i ) If data likelihood is independent given the labels and prior is homegenous Ising prior with pairwise non zero potentials, we can write posterior as i S i S j N i P(x y) = 1 exp( log p(y i x i )+ β m x i x j Z m

11 Markov Random Field Framework Typical pair-wise MRF in vision i S i S j N i P(x y) = 1 exp( log p(y i x i )+ β m x i x j ) Z m Can be expressed in terms of an energy function P(x) = 1 Z m exp( E(x,θ) Z m is a partition function important for learning Parameters, not critical for inference Typical energy function E(x) = D(x i ) + V(x i, x j ) i S (i, j) E

12 Toy Problem Binary image denoising Given a noisy image get most likely binary image Set of labels {white, black} Commonly used prior: Isotropic Ising Prior Goal find image x, such that p(x y) is maximized i.e. find image that minimizes energy E(x) E(x) = D(x i ) + V(x i, x j ) V(x i, x j ) = β x i x j, β > 0 i S (i, j) E D(x i ) = log(1 θ) for x i = y i D(x i ) = log(θ) for x i y i

13 Foreground/Background Estimation Rother et al. SIGGRAPH04

14 Foreground/Background Estimation Data term Smoothness term Data term Es1mated using FG / BG colour models Smoothness term where Intensity dependent smoothness

15 Foreground/Background Estimation Data term Smoothness term

16 Foreground/Background Estimation Data term Smoothness term How to solve this optimisation problem?

17 Foreground/Background Estimation Data term Smoothness term How to solve this optimisation problem? Transform into min-cut / max-flow problem Solve it using min-cut / max-flow algorithm Loopy belief propagation, tree-weigted message passing etc Gibbs Sampling, ICM, Simulated Annealing

18 More general multi-label problems MAP of MRF - solve optimal labelling problem Labels semantic categories Nodes: pixels, superpixels, patches etc Toy example: 12 superpixels, 3 labels each available solvers: Kolmogorov PAMI'06, Werner PAMI'07 18

19 MRSC 21 class dataset Class co-occurrence Typically 2-5 classes per image, small scale and viewpoint variatio Context modeling spatial co-occurrence between class labels modeling relative location of object classes Best performing methods are discriminative (CRF framework)

20 Semantic Labeling P (L A, G) = P (A, G L) P (L) P (A, G) Appearance is captured using scale invariant features organized in visual vocabulary trees, discrete set of visual words V =(v 1,v 2,...,v S ) Maximize likelihood of the labels using appearance and geometry cues appearance likelihood geometry likelihood argmax L argmin L P (L V, G) = argmax P (V L)P (G L) P (L) L S S E app + g E geom + s E smooth i=1 i=1 (i,j) E

21 Semantic Segmentation Sky Building Tree Road Image Ground Truth Annotation Semantic categories considered- buildings, roads, sky, cars and trees Fully annotated datasets 320 side views dataset 90 frontal views dataset

22 Semantic Segmentation Superpixel Extraction Images sites for semantic labeling - superpixels superpixels obtained from graph based segmentation method of [Felzenszwalb 2004] Features color, texture, location, perspective cues 194 dimensional feature computed for each superpixel of image P.F. Felzenszwalb and D.P. Huttenlocher. Efficient graph-based image segmentation, IJCV 2004 D. Hoiem, A.A. Efros and M. Hebert. Recovering surface layout from an image, IJCV 2007

23 Semantic Segmentation Observation likelihood - P(a i l i ) computed using boosting classifier Boosting classifiers Learn ensemble of weak learners Decision Trees as weak learner Superpixel Feature Spxl. Location High? Yes No Blue? Many Lines? Yes Sky! No Yes No Learn one vs. all boosting classifiers Superpixel semantic label determined by classifier with maximum score Sample decision tree for sky class Two separate models trained 320 side views dataset 90 frontal views dataset Side View Frontal View

24 Example Results Image Ground Truth Labeling Predicted Labeling

25 Nonparametric Methods Figure credit: J. Tighe and S. Lazebnik. Superparsing: Scalable nonparametric parising with superpixels, ECCV 2010

26 References J. Tighe and S. Lazebnik. Superparsing: Scalable nonparametric image parsing with superpixels. ECCV 2010 D. Eigen and R. Fergus. Nonparametric image parsing using adaptive neighbor sets, CVPR 2012 P. Sturgess, L. Ladicky, N. Crook, and P. Torr. Scalable cascade inference for semantic image segmentation. BMVC 2012 G. Singh and J.Kosecka: Nonparametric Scene Parsing with Adaptive Feature Relevance and Scene Context, CVPr 2013

27 Conditional Random Fields MAP of MRF - solve optimal labelling problem Posterior = product of likelihood and prior Sometimes difficult to obtain generative model i S P(x y) = 1 exp( log p(y i x i )+ β m x i x j ) Z m Conditional Random Fields Model the posterior directly i S i S i S j N i j N i P(x y) = 1 exp( f (x i, y)+ g(x,i x j, y)) Z m

28 Conditional Random Fields Seman6c Parsing of Indoors scenes Tree Graph Structure Informa6ve Features using RGB- D

29 Graph Structure: Our choice Minimum Spanning Tree Over 3D 5/5/2013 Semantic Parsing for Priming Object Detection in RGB-D Scenes

30 Potentials: Pairwise CRFs 5/5/2013 Semantic Parsing for Priming Object Detection in RGB-D Scenes

31 Potentials: Pairwise CRFs 5/5/2013 Semantic Parsing for Priming Object Detection in RGB-D Scenes

Undirected Graphical Models. Raul Queiroz Feitosa

Undirected Graphical Models. Raul Queiroz Feitosa Undirected Graphical Models Raul Queiroz Feitosa Pros and Cons Advantages of UGMs over DGMs UGMs are more natural for some domains (e.g. context-dependent entities) Discriminative UGMs (CRF) are better

More information

Combining Appearance and Structure from Motion Features for Road Scene Understanding

Combining Appearance and Structure from Motion Features for Road Scene Understanding STURGESS et al.: COMBINING APPEARANCE AND SFM FEATURES 1 Combining Appearance and Structure from Motion Features for Road Scene Understanding Paul Sturgess paul.sturgess@brookes.ac.uk Karteek Alahari karteek.alahari@brookes.ac.uk

More information

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Image Segmentation continued Graph Based Methods Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Previously Binary segmentation Segmentation by thresholding

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Joint Semantic and Geometric Segmentation of Videos with a Stage Model

Joint Semantic and Geometric Segmentation of Videos with a Stage Model Joint Semantic and Geometric Segmentation of Videos with a Stage Model Buyu Liu ANU and NICTA Canberra, ACT, Australia buyu.liu@anu.edu.au Xuming He NICTA and ANU Canberra, ACT, Australia xuming.he@nicta.com.au

More information

Learning Spatial Context: Using Stuff to Find Things

Learning Spatial Context: Using Stuff to Find Things Learning Spatial Context: Using Stuff to Find Things Wei-Cheng Su Motivation 2 Leverage contextual information to enhance detection Some context objects are non-rigid and are more naturally classified

More information

Multi-Class Image Labeling with Top-Down Segmentation and Generalized Robust P N Potentials

Multi-Class Image Labeling with Top-Down Segmentation and Generalized Robust P N Potentials FLOROS ET AL.: MULTI-CLASS IMAGE LABELING WITH TOP-DOWN SEGMENTATIONS 1 Multi-Class Image Labeling with Top-Down Segmentation and Generalized Robust P N Potentials Georgios Floros 1 floros@umic.rwth-aachen.de

More information

Semantic segmentation of street scenes by superpixel co-occurrence and 3D geometry

Semantic segmentation of street scenes by superpixel co-occurrence and 3D geometry Semantic segmentation of street scenes by superpixel co-occurrence and 3D geometry B. Micusik and J. Košecka Department of Computer Science George Mason University bmicusik,kosecka@gmu.edu Abstract We

More information

Local cues and global constraints in image understanding

Local cues and global constraints in image understanding Local cues and global constraints in image understanding Olga Barinova Lomonosov Moscow State University *Many slides adopted from the courses of Anton Konushin Image understanding «To see means to know

More information

SuperParsing: Scalable Nonparametric Image Parsing with Superpixels

SuperParsing: Scalable Nonparametric Image Parsing with Superpixels SuperParsing: Scalable Nonparametric Image Parsing with Superpixels Joseph Tighe and Svetlana Lazebnik Dept. of Computer Science, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3175

More information

Acquiring Semantics Induced Topology in Urban Environments

Acquiring Semantics Induced Topology in Urban Environments 2012 IEEE International Conference on Robotics and Automation RiverCentre, Saint Paul, Minnesota, USA May 14-18, 2012 Acquiring Semantics Induced Topology in Urban Environments Gautam Singh and Jana Košecká

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Simultaneous Multi-class Pixel Labeling over Coherent Image Sets

Simultaneous Multi-class Pixel Labeling over Coherent Image Sets Simultaneous Multi-class Pixel Labeling over Coherent Image Sets Paul Rivera Research School of Computer Science Australian National University Canberra, ACT 0200 Stephen Gould Research School of Computer

More information

CRFs for Image Classification

CRFs for Image Classification CRFs for Image Classification Devi Parikh and Dhruv Batra Carnegie Mellon University Pittsburgh, PA 15213 {dparikh,dbatra}@ece.cmu.edu Abstract We use Conditional Random Fields (CRFs) to classify regions

More information

Learning and Recognizing Visual Object Categories Without First Detecting Features

Learning and Recognizing Visual Object Categories Without First Detecting Features Learning and Recognizing Visual Object Categories Without First Detecting Features Daniel Huttenlocher 2007 Joint work with D. Crandall and P. Felzenszwalb Object Category Recognition Generic classes rather

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Fuxin Li Slides and materials from Le Song, Tucker Hermans, Pawan Kumar, Carsten Rother, Peter Orchard, and others Recap:

More information

Scene Grammars, Factor Graphs, and Belief Propagation

Scene Grammars, Factor Graphs, and Belief Propagation Scene Grammars, Factor Graphs, and Belief Propagation Pedro Felzenszwalb Brown University Joint work with Jeroen Chua Probabilistic Scene Grammars General purpose framework for image understanding and

More information

What, Where & How Many? Combining Object Detectors and CRFs

What, Where & How Many? Combining Object Detectors and CRFs What, Where & How Many? Combining Object Detectors and CRFs Lubor Ladicky, Paul Sturgess, Karteek Alahari, Chris Russell, and Philip H.S. Torr Oxford Brookes University http://cms.brookes.ac.uk/research/visiongroup

More information

MRFs and Segmentation with Graph Cuts

MRFs and Segmentation with Graph Cuts 02/24/10 MRFs and Segmentation with Graph Cuts Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class Finish up EM MRFs w ij i Segmentation with Graph Cuts j EM Algorithm: Recap

More information

Scene Grammars, Factor Graphs, and Belief Propagation

Scene Grammars, Factor Graphs, and Belief Propagation Scene Grammars, Factor Graphs, and Belief Propagation Pedro Felzenszwalb Brown University Joint work with Jeroen Chua Probabilistic Scene Grammars General purpose framework for image understanding and

More information

Finding Things: Image Parsing with Regions and Per-Exemplar Detectors

Finding Things: Image Parsing with Regions and Per-Exemplar Detectors 2013 IEEE Conference on Computer Vision and Pattern Recognition Finding Things: Image Parsing with Regions and Per-Exemplar Detectors Joseph Tighe University of North olina at Chapel Hill jtighe@cs.unc.edu

More information

Can Similar Scenes help Surface Layout Estimation?

Can Similar Scenes help Surface Layout Estimation? Can Similar Scenes help Surface Layout Estimation? Santosh K. Divvala, Alexei A. Efros, Martial Hebert Robotics Institute, Carnegie Mellon University. {santosh,efros,hebert}@cs.cmu.edu Abstract We describe

More information

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce Object Recognition Computer Vision Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce How many visual object categories are there? Biederman 1987 ANIMALS PLANTS OBJECTS

More information

Modern Object Detection. Most slides from Ali Farhadi

Modern Object Detection. Most slides from Ali Farhadi Modern Object Detection Most slides from Ali Farhadi Comparison of Classifiers assuming x in {0 1} Learning Objective Training Inference Naïve Bayes maximize j i logp + logp ( x y ; θ ) ( y ; θ ) i ij

More information

Graphical Models for Computer Vision

Graphical Models for Computer Vision Graphical Models for Computer Vision Pedro F Felzenszwalb Brown University Joint work with Dan Huttenlocher, Joshua Schwartz, Ross Girshick, David McAllester, Deva Ramanan, Allie Shapiro, John Oberlin

More information

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision Object Recognition Using Pictorial Structures Daniel Huttenlocher Computer Science Department Joint work with Pedro Felzenszwalb, MIT AI Lab In This Talk Object recognition in computer vision Brief definition

More information

Towards Open-Universe Image Parsing with Broad Coverage

Towards Open-Universe Image Parsing with Broad Coverage Towards Open-Universe Image Parsing with Broad Coverage Joseph Tighe University of North olina at Chapel Hill jtighe@cs.unc.edu Svetlana Lazebnik University of Illinois at Urbana-Champaign slazebni@illinois.edu

More information

Multi-Class Segmentation with Relative Location Prior

Multi-Class Segmentation with Relative Location Prior Multi-Class Segmentation with Relative Location Prior Stephen Gould, Jim Rodgers, David Cohen, Gal Elidan, Daphne Koller Department of Computer Science, Stanford University International Journal of Computer

More information

CS 558: Computer Vision 13 th Set of Notes

CS 558: Computer Vision 13 th Set of Notes CS 558: Computer Vision 13 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview Context and Spatial Layout

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

Window based detectors

Window based detectors Window based detectors CS 554 Computer Vision Pinar Duygulu Bilkent University (Source: James Hays, Brown) Today Window-based generic object detection basic pipeline boosting classifiers face detection

More information

Contextual Classification with Functional Max-Margin Markov Networks

Contextual Classification with Functional Max-Margin Markov Networks Contextual Classification with Functional Max-Margin Markov Networks Dan Munoz Nicolas Vandapel Drew Bagnell Martial Hebert Geometry Estimation (Hoiem et al.) Sky Problem 3-D Point Cloud Classification

More information

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts [Yuri Boykov, Olga Veksler, Ramin Zabih, Fast Approximation

More information

Contexts and 3D Scenes

Contexts and 3D Scenes Contexts and 3D Scenes Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project presentation Nov 30 th 3:30 PM 4:45 PM Grading Three senior graders (30%)

More information

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu Lectures 21 & 22 Segmentation and clustering 1 Schedule Last class We started on segmentation Today Segmentation continued Readings

More information

Context Based Object Categorization: A Critical Survey

Context Based Object Categorization: A Critical Survey Context Based Object Categorization: A Critical Survey Carolina Galleguillos 1 Serge Belongie 1,2 1 Computer Science and Engineering, University of California, San Diego 2 Electrical Engineering, California

More information

Sparse Point Cloud Densification by Using Redundant Semantic Information

Sparse Point Cloud Densification by Using Redundant Semantic Information Sparse Point Cloud Densification by Using Redundant Semantic Information Michael Hödlmoser CVL, Vienna University of Technology ken@caa.tuwien.ac.at Branislav Micusik AIT Austrian Institute of Technology

More information

Variable Grouping for Energy Minimization

Variable Grouping for Energy Minimization Variable Grouping for Energy Minimization Taesup Kim, Sebastian Nowozin, Pushmeet Kohli, Chang D. Yoo Dept. of Electrical Engineering, KAIST, Daejeon Korea Microsoft Research Cambridge, Cambridge UK kim.ts@kaist.ac.kr,

More information

A Hierarchical Conditional Random Field Model for Labeling and Segmenting Images of Street Scenes

A Hierarchical Conditional Random Field Model for Labeling and Segmenting Images of Street Scenes A Hierarchical Conditional Random Field Model for Labeling and Segmenting Images of Street Scenes Qixing Huang Stanford University huangqx@stanford.edu Mei Han Google Inc. meihan@google.com Bo Wu Google

More information

AUTOMATIC OBJECT EXTRACTION IN SINGLE-CONCEPT VIDEOS. Kuo-Chin Lien and Yu-Chiang Frank Wang

AUTOMATIC OBJECT EXTRACTION IN SINGLE-CONCEPT VIDEOS. Kuo-Chin Lien and Yu-Chiang Frank Wang AUTOMATIC OBJECT EXTRACTION IN SINGLE-CONCEPT VIDEOS Kuo-Chin Lien and Yu-Chiang Frank Wang Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan {iker, ycwang}@citi.sinica.edu.tw

More information

Structured Models in. Dan Huttenlocher. June 2010

Structured Models in. Dan Huttenlocher. June 2010 Structured Models in Computer Vision i Dan Huttenlocher June 2010 Structured Models Problems where output variables are mutually dependent or constrained E.g., spatial or temporal relations Such dependencies

More information

Combining Semantic Scene Priors and Haze Removal for Single Image Depth Estimation

Combining Semantic Scene Priors and Haze Removal for Single Image Depth Estimation Combining Semantic Scene Priors and Haze Removal for Single Image Depth Estimation Ke Wang Enrique Dunn Joseph Tighe Jan-Michael Frahm University of North Carolina at Chapel Hill Chapel Hill, NC, USA {kewang,dunn,jtighe,jmf}@cs.unc.edu

More information

Semantic Parsing for Priming Object Detection in RGB-D Scenes

Semantic Parsing for Priming Object Detection in RGB-D Scenes Semantic Parsing for Priming Object Detection in RGB-D Scenes César Cadena and Jana Košecka Abstract The advancements in robot autonomy and capabilities for carrying out more complex tasks in unstructured

More information

18 October, 2013 MVA ENS Cachan. Lecture 6: Introduction to graphical models Iasonas Kokkinos

18 October, 2013 MVA ENS Cachan. Lecture 6: Introduction to graphical models Iasonas Kokkinos Machine Learning for Computer Vision 1 18 October, 2013 MVA ENS Cachan Lecture 6: Introduction to graphical models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

3D Spatial Layout Propagation in a Video Sequence

3D Spatial Layout Propagation in a Video Sequence 3D Spatial Layout Propagation in a Video Sequence Alejandro Rituerto 1, Roberto Manduchi 2, Ana C. Murillo 1 and J. J. Guerrero 1 arituerto@unizar.es, manduchi@soe.ucsc.edu, acm@unizar.es, and josechu.guerrero@unizar.es

More information

Robust Higher Order Potentials for Enforcing Label Consistency

Robust Higher Order Potentials for Enforcing Label Consistency Robust Higher Order Potentials for Enforcing Label Consistency Pushmeet Kohli Microsoft Research Cambridge pkohli@microsoft.com L ubor Ladický Philip H. S. Torr Oxford Brookes University lladicky,philiptorr}@brookes.ac.uk

More information

Detection III: Analyzing and Debugging Detection Methods

Detection III: Analyzing and Debugging Detection Methods CS 1699: Intro to Computer Vision Detection III: Analyzing and Debugging Detection Methods Prof. Adriana Kovashka University of Pittsburgh November 17, 2015 Today Review: Deformable part models How can

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan Silvio Savarese Stanford University In the 4th International IEEE Workshop on 3D Representation and Recognition

More information

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu Discrete Pixel-Labeling Optimization on MRF 2/37 Many computer vision tasks

More information

A Framework for Encoding Object-level Image Priors

A Framework for Encoding Object-level Image Priors Microsoft Research Technical Report MSR-TR-2011-99 A Framework for Encoding Object-level Image Priors Jenny Yuen 1 C. Lawrence Zitnick 2 Ce Liu 2 Antonio Torralba 1 {jenny, torralba}@csail.mit.edu {larryz,

More information

Semantic Segmentation with Heterogeneous Sensor Coverages

Semantic Segmentation with Heterogeneous Sensor Coverages Semantic Segmentation with Heterogeneous Sensor Coverages Cesar Cadena and Jana Košecká (a) (b) (c) (d) Fig. 1: Our novel semantic parsing approach can seamlessly integrate evidence from multiple sensors

More information

Lecture 16 Segmentation and Scene understanding

Lecture 16 Segmentation and Scene understanding Lecture 16 Segmentation and Scene understanding Introduction! Mean-shift! Graph-based segmentation! Top-down segmentation! Silvio Savarese Lecture 15 -! 3-Mar-14 Segmentation Silvio Savarese Lecture 15

More information

Computer Vision I - Filtering and Feature detection

Computer Vision I - Filtering and Feature detection Computer Vision I - Filtering and Feature detection Carsten Rother 30/10/2015 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

Beyond Bags of features Spatial information & Shape models

Beyond Bags of features Spatial information & Shape models Beyond Bags of features Spatial information & Shape models Jana Kosecka Many slides adapted from S. Lazebnik, FeiFei Li, Rob Fergus, and Antonio Torralba Detection, recognition (so far )! Bags of features

More information

CollageParsing: Nonparametric scene parsing by adaptive overlapping windows

CollageParsing: Nonparametric scene parsing by adaptive overlapping windows CollageParsing: Nonparametric scene parsing by adaptive overlapping windows Frederick Tung and James J. Little Department of Computer Science, University of British Columbia {ftung,little}@cs.ubc.ca Abstract.

More information

Contexts and 3D Scenes

Contexts and 3D Scenes Contexts and 3D Scenes Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project presentation Dec 1 st 3:30 PM 4:45 PM Goodwin Hall Atrium Grading Three

More information

Part-Based Models for Object Class Recognition Part 2

Part-Based Models for Object Class Recognition Part 2 High Level Computer Vision Part-Based Models for Object Class Recognition Part 2 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de https://www.mpi-inf.mpg.de/hlcv Class of Object

More information

Part-Based Models for Object Class Recognition Part 2

Part-Based Models for Object Class Recognition Part 2 High Level Computer Vision Part-Based Models for Object Class Recognition Part 2 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de https://www.mpi-inf.mpg.de/hlcv Class of Object

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

Unsupervised Patch-based Context from Millions of Images

Unsupervised Patch-based Context from Millions of Images Carnegie Mellon University Research Showcase @ CMU Robotics Institute School of Computer Science 12-2011 Unsupervised Patch-based Context from Millions of Images Santosh K. Divvala Carnegie Mellon University

More information

LEARNING BOUNDARIES WITH COLOR AND DEPTH. Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen

LEARNING BOUNDARIES WITH COLOR AND DEPTH. Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen LEARNING BOUNDARIES WITH COLOR AND DEPTH Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen School of Electrical and Computer Engineering, Cornell University ABSTRACT To enable high-level understanding of a scene,

More information

Computer Vision eine Herausforderung in der Künstlichen Intelligenz

Computer Vision eine Herausforderung in der Künstlichen Intelligenz Computer Vision eine Herausforderung in der Künstlichen Intelligenz Prof. Carsten Rother Computer Vision Lab Dresden Institute of Artificial Intelligence 11/12/2013 Computer Vision a hard case for AI Roadmap

More information

Multi-label image segmentation via max-sum solver

Multi-label image segmentation via max-sum solver Multi-label image segmentation via max-sum solver Banislav Mičušík Pattern Recognition and Image Processing Group, Inst. of Computer Aided Automation, Vienna University of Technology, Austria micusik@prip.tuwien.ac.at

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

Algorithms for Markov Random Fields in Computer Vision

Algorithms for Markov Random Fields in Computer Vision Algorithms for Markov Random Fields in Computer Vision Dan Huttenlocher November, 2003 (Joint work with Pedro Felzenszwalb) Random Field Broadly applicable stochastic model Collection of n sites S Hidden

More information

GLASS OBJECT SEGMENTATION BY LABEL TRANSFER ON JOINT DEPTH AND APPEARANCE MANIFOLDS. Tao Wang, Xuming He, Nick Barnes

GLASS OBJECT SEGMENTATION BY LABEL TRANSFER ON JOINT DEPTH AND APPEARANCE MANIFOLDS. Tao Wang, Xuming He, Nick Barnes GLASS OBJECT SEGMENTATION BY LABEL TRANSFER ON JOINT DEPTH AND APPEARANCE MANIFOLDS Tao Wang, Xuming He, Nick Barnes NICTA & Australian National University, Canberra, ACT, Australia ABSTRACT feature manifold

More information

Parsing World s Skylines using Shape-Constrained MRFs

Parsing World s Skylines using Shape-Constrained MRFs Parsing World s Skylines using Shape-Constrained MRFs Rashmi Tonge CVIT, IIIT Hyderabad Subhransu Maji Toyota Technological Institute at Chicago C. V. Jawahar CVIT, IIIT Hyderabad Abstract We propose an

More information

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research)

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) Joint Inference in Image Databases via Dense Correspondence Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) My work Throughout the year (and my PhD thesis): Temporal Video Analysis

More information

Geometric Context from Videos

Geometric Context from Videos 2013 IEEE Conference on Computer Vision and Pattern Recognition Geometric Context from Videos S. Hussain Raza Matthias Grundmann Irfan Essa Georgia Institute of Technology, Atlanta, GA, USA http://www.cc.gatech.edu/cpl/projects/videogeometriccontext

More information

Context Based Object Categorization: A Critical Survey

Context Based Object Categorization: A Critical Survey Context Based Object Categorization: A Critical Survey Carolina Galleguillos a Serge Belongie a,b a University of California San Diego, Department of Computer Science and Engineering, La Jolla, CA 92093

More information

ELL 788 Computational Perception & Cognition July November 2015

ELL 788 Computational Perception & Cognition July November 2015 ELL 788 Computational Perception & Cognition July November 2015 Module 6 Role of context in object detection Objects and cognition Ambiguous objects Unfavorable viewing condition Context helps in object

More information

Data-driven Depth Inference from a Single Still Image

Data-driven Depth Inference from a Single Still Image Data-driven Depth Inference from a Single Still Image Kyunghee Kim Computer Science Department Stanford University kyunghee.kim@stanford.edu Abstract Given an indoor image, how to recover its depth information

More information

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients ThreeDimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients Authors: Zhile Ren, Erik B. Sudderth Presented by: Shannon Kao, Max Wang October 19, 2016 Introduction Given an

More information

PatchMatchGraph: Building a Graph of Dense Patch Correspondences for Label Transfer

PatchMatchGraph: Building a Graph of Dense Patch Correspondences for Label Transfer PatchMatchGraph: Building a Graph of Dense Patch Correspondences for Label Transfer Stephen Gould and Yuhang Zhang Research School of Computer Science, ANU, Australia {stephen.gould,yuhang.zhang}@anu.edu.au

More information

Supervised Label Transfer for Semantic Segmentation of Street Scenes

Supervised Label Transfer for Semantic Segmentation of Street Scenes Supervised Label Transfer for Semantic Segmentation of Street Scenes Honghui Zhang 1, Jianxiong Xiao 2, and Long Quan 1 1 The Hong Kong University of Science and Technology {honghui,quan}@cse.ust.hk 2

More information

Large-Scale Traffic Sign Recognition based on Local Features and Color Segmentation

Large-Scale Traffic Sign Recognition based on Local Features and Color Segmentation Large-Scale Traffic Sign Recognition based on Local Features and Color Segmentation M. Blauth, E. Kraft, F. Hirschenberger, M. Böhm Fraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1,

More information

OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE

OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE Wenju He, Marc Jäger, and Olaf Hellwich Berlin University of Technology FR3-1, Franklinstr. 28, 10587 Berlin, Germany {wenjuhe, jaeger,

More information

Robust Method to Compute Mutual-Spatial Feature for Image Parsing Problem

Robust Method to Compute Mutual-Spatial Feature for Image Parsing Problem Robust Method to Compute Mutual-Spatial Feature for Image Parsing Problem Thi Ly Vu and Chong Ho Lee School of Information and Communication Engineering, Inha University, Incheon 402-751 Email: vuthily.tin2@gmail.com,

More information

Spatially Constrained Location Prior for Scene Parsing

Spatially Constrained Location Prior for Scene Parsing Spatially Constrained Location Prior for Scene Parsing Ligang Zhang, Brijesh Verma, David Stockwell, Sujan Chowdhury Centre for Intelligent Systems School of Engineering and Technology, Central Queensland

More information

Automatic Photo Popup

Automatic Photo Popup Automatic Photo Popup Derek Hoiem Alexei A. Efros Martial Hebert Carnegie Mellon University What Is Automatic Photo Popup Introduction Creating 3D models from images is a complex process Time-consuming

More information

Semantic Video Segmentation From Occlusion Relations Within a Convex Optimization Framework

Semantic Video Segmentation From Occlusion Relations Within a Convex Optimization Framework Semantic Video Segmentation From Occlusion Relations Within a Convex Optimization Framework Brian Taylor, Alper Ayvaci, Avinash Ravichandran, and Stefano Soatto University of California, Los Angeles Honda

More information

Joint 2D-3D Temporally Consistent Semantic Segmentation of Street Scenes

Joint 2D-3D Temporally Consistent Semantic Segmentation of Street Scenes Joint 2D-3D Temporally Consistent Semantic Segmentation of Street Scenes Georgios Floros and Bastian Leibe UMIC Research Centre RWTH Aachen University, Germany {floros,leibe}@umic.rwth-aachen.de Abstract

More information

Object recognition (part 1)

Object recognition (part 1) Recognition Object recognition (part 1) CSE P 576 Larry Zitnick (larryz@microsoft.com) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski Chapter 14 Recognition What do we mean by object

More information

Belief propagation and MRF s

Belief propagation and MRF s Belief propagation and MRF s Bill Freeman 6.869 March 7, 2011 1 1 Undirected graphical models A set of nodes joined by undirected edges. The graph makes conditional independencies explicit: If two nodes

More information

Detecting Changes in Images of Street Scenes

Detecting Changes in Images of Street Scenes Detecting Changes in Images of Street Scenes Jana Košecka George Mason University, Fairfax, VA, USA Abstract. In this paper we propose an novel algorithm for detecting changes in street scenes when the

More information

Nonparametric Semantic Segmentation for 3D Street Scenes

Nonparametric Semantic Segmentation for 3D Street Scenes 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 2013. Tokyo, Japan Nonparametric Semantic Segmentation for 3D Street Scenes Hu He and Ben Upcroft Abstract

More information

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C. D-Separation Say: A, B, and C are non-intersecting subsets of nodes in a directed graph. A path from A to B is blocked by C if it contains a node such that either a) the arrows on the path meet either

More information

Detection of Man-made Structures in Natural Images

Detection of Man-made Structures in Natural Images Detection of Man-made Structures in Natural Images Tim Rees December 17, 2004 Abstract Object detection in images is a very active research topic in many disciplines. Probabilistic methods have been applied

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan yuxiang@umich.edu Silvio Savarese Stanford University ssilvio@stanford.edu Abstract We propose a novel framework

More information

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin Learning Deep Structured Models for Semantic Segmentation Guosheng Lin Semantic Segmentation Outline Exploring Context with Deep Structured Models Guosheng Lin, Chunhua Shen, Ian Reid, Anton van dan Hengel;

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Part-Based Models for Object Class Recognition Part 3

Part-Based Models for Object Class Recognition Part 3 High Level Computer Vision! Part-Based Models for Object Class Recognition Part 3 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de! http://www.d2.mpi-inf.mpg.de/cv ! State-of-the-Art

More information

Conditional Random Fields for Object Recognition

Conditional Random Fields for Object Recognition Conditional Random Fields for Object Recognition Ariadna Quattoni Michael Collins Trevor Darrell MIT Computer Science and Artificial Intelligence Laboratory Cambridge, MA 02139 {ariadna, mcollins, trevor}@csail.mit.edu

More information

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Adding spatial information Forming vocabularies from pairs of nearby features doublets

More information

Region-based Segmentation and Object Detection

Region-based Segmentation and Object Detection Region-based Segmentation and Object Detection Stephen Gould Tianshi Gao Daphne Koller Presented at NIPS 2009 Discussion and Slides by Eric Wang April 23, 2010 Outline Introduction Model Overview Model

More information

Neighbourhood-consensus message passing and its potentials in image processing applications

Neighbourhood-consensus message passing and its potentials in image processing applications Neighbourhood-consensus message passing and its potentials in image processing applications Tijana Ružić a, Aleksandra Pižurica a and Wilfried Philips a a Ghent University, TELIN-IPI-IBBT, Sint-Pietersnieuwstraat

More information