Efficient Algorithms for Graph Bisection of Sparse Planar Graphs. Gerold Jäger University of Halle Germany

Size: px
Start display at page:

Download "Efficient Algorithms for Graph Bisection of Sparse Planar Graphs. Gerold Jäger University of Halle Germany"

Transcription

1 Efficient Algorithms for Graph Bisection of Sparse Planar Graphs Gerold Jäger University of Halle Germany

2 Overview 1 Definition of MINBISECTION 2 Approximation Results 3 Previous Algorithms Notations Simple-Greedy-Algorithm Kernighan-Lin-Algorithm Randomized-Black-Holes-Algorithm

3 Overview 4 New Algorithms Notations Black-Holes-Algorithm Longest-Path-Algorithm 5 Experimental Results First Example Second Example Third Example Fourth Example

4 Definition of MINBISECTION Let G = (V, E) be an undirected and unweighted graph with V = n. A bisection is a partition (A, B) of V with A = n 2. The bisection width is defined as the minimum number of edges between A and B among all possible bisections (A, B). MINBISECTION is the NP-hard problem of finding a bisection with a minimum bisection width.

5 Approximation Results There is a polynomial-time approximation algorithm of MINBISECTION with a factor n/2. This algorithm does not approximate it with a better factor (Saran, Vazirani). The approximation factor can be improved to n log n (Feige, Krautgamer, Nissim). There is a polynomial time algorithm for MINBISECTION of grid graphs (Papadimitriou, Sideri). Another algorithm is able to compute a lower bound for the bisection width and equals it for a random class of graphs (Boppana).

6 Previous Algorithms Notations Let G = (V, E) be a graph and A, B V with A B = and A B = V. For a A denote with I(a) the inner costs, i.e. the number of edges (a, c) E with c A \ {a}. Analogously we define I(b) for b B. For a A denote with O(a) the outer costs, i.e. the number of edges (a, c) E with c B. Analogously we define O(b) for b B. For a A, b B let { 1, if (a, b) E ω(a, b) :=. 0, otherwise For a A, b B let S(a, b) := O(a) I(a) + O(b) I(b) 2ω(a, b).

7 Previous Algorithms Simple-Greedy-Algorithm Input Graph G = (V, E) with V = n. 1 Choose a bisection (A, B), uniformly at random among all possible bisections. 2 Choose a A, b B with S(a, b) > 0. 3 Swap the vertices a and b. 4 Repeat the steps 2 and 3, until there are no a A, b B with S(a, b) > 0. Output Bisection (A, B) with small bisection width. The Simple-Greedy-Algorithm needs O(n 4 ) steps.

8 Previous Algorithms Kernighan-Lin-Algorithm Input Graph G = (V, E) with V = n. 1 Choose a bisection (A, B), uniformly at random among all possible bisections. 2 Copy (A, B) to (A, B ). 3 Choose a A, b B with max. S(a, b) (maybe 0). 4 Swap the vertices a and b. 5 A := A \ {a}, B := B \ {b}. 6 Repeat the steps 3 to 5, until A :=, B :=. 7 Choose the bisection (A, B) as the bisection having min. bisection width among all bisections obtained after step 4. 8 Repeat the steps 2 to 7, until there is no improvement. Output Bisection (A, B) with small bisection width. The Kernighan-Lin-Algorithm needs O(n 5 ) steps.

9 Previous Algorithms Randomized-Black-Holes-Algorithm Input Graph G = (V, E) with V = n. 1 A :=, B :=. 2 Choose uniformly at random an edge between V \ {A B} and A and add the corresponding vertex in V \ {A B} to A. If there is no such edge, choose uniformly at random a vertex among all vertices in V \ {A B} and add it to A. 3 Do step 2 for B. 4 Repeat the steps 2 and 3, until (A, B) is a bisection. Output Bisection (A, B) with small bisection width. The Randomized-Black-Holes-Algorithm needs O(n 3 ) steps.

10 New Algorithms Notations Let G = (V, E) be a graph and A, B V with A B = and A B V. For c V \ {A B} let d 1 (c) be the number of edges (c, a) E with a A. For c V \ {A B} let d 2 (c) be the number of edges (c, b) E with b B.

11 New Algorithms Black-Holes-Algorithm Input Graph G = (V, E) with V = n. 1 A :=, B :=. 2 Choose a vertex c from V \ {A B} with maximum d 1 (c) d 2 (c) and add it to A. If there are two c with the same d 1 (c) d 2 (c), choose the c with the smaller d 1 (c). 3 Choose a vertex c from V \ {A B} with maximum d 2 (c) d 1 (c) and add it to B. If there are two c with the same d 2 (c) d 1 (c), choose the c with the smaller d 1 (c). 4 Repeat the steps 2 and 3, until (A, B) is a bisection. Output Bisection (A, B) with small bisection width. The Black-Holes-Algorithm needs O(n 3 ) steps.

12 New Algorithms Longest-Path-Algorithm Input Graph G = (V, E) with V = n. 1 Choose uniformly at random a vertex z. 2 Z := {z}. 3 List all neighbors of vertices from Z and add it to Z. 4 Repeat step 3, until Z has no neighbors. 5 Choose one of the vertices, added in the last run of step 3, and denote it with x. 6 Repeat steps 2 to 5 with x instead of z. The resulted vertex is denoted with y. 7 X := {x}, Y := {y}. 8 List all neighbors of vertices from X and add each neighbor to X, except for X n 2.

13 New Algorithms Longest-Path-Algorithm 9 Repeat step 8, if X < n 2 and if X has neighbors. 10 List all neighbors of vertices from Y and add each neighbor to Y, except for Y n Repeat step 10, if Y < n 2 and if Y has neighbors. 12 Add the remaining vertices in an arbitrary way, so that X = n 2 and Y = n 2. Output Bisection (A, B) with small bisection width. The Longest-Path-Algorithm needs O(n 3 ) steps.

14 Experimental Results First Example SG-Alg.: 98 (0 s.) KL-Alg.: 88 (153 s.) RBH-Alg.: 69 (37 s.) BH-Alg.: 54 (0 s.) LP-Alg.: 35 (0 s.) LP+SG-Alg. / OPT: 33 (0 s.)

15 Experimental Results Second Example SG-Alg.: 33 (0 s.) KL-Alg.: 31 (21 s.) RBH-Alg.: 39 (3 s.) BH-Alg. / OPT: 13 (0 s.) LP-Alg.: 17 (0 s.) LP+SG-Alg. / OPT: 13 (0 s.)

16 Experimental Results Third Example SG-Alg.: 134 (1 s.) KL-Alg.: 103 (958 s.) RBH-Alg.: 73 (118 s.) BH-Alg.: 41 (0 s.) LP-Alg.: 64 (0 s.) LP+SG-Alg. / OPT: 25 (1 s.)

17 Experimental Results Fourth Example SG-Alg.: 362 (3 s.) KL-Alg.: 291 (5154 s.) RBH-Alg.: 22 (1030 s.) BH-Alg.: 151 (3 s.) LP-Alg.: 12 (1 s.) LP+SG-Alg. / OPT: 11 (4 s.)

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

An Efficient Algorithm for Graph Bisection of Triangularizations

An Efficient Algorithm for Graph Bisection of Triangularizations A Efficiet Algorithm for Graph Bisectio of Triagularizatios Gerold Jäger Departmet of Computer Sciece Washigto Uiversity Campus Box 1045 Oe Brookigs Drive St. Louis, Missouri 63130-4899, USA jaegerg@cse.wustl.edu

More information

An Efficient Algorithm for Graph Bisection of Triangularizations

An Efficient Algorithm for Graph Bisection of Triangularizations Applied Mathematical Scieces, Vol. 1, 2007, o. 25, 1203-1215 A Efficiet Algorithm for Graph Bisectio of Triagularizatios Gerold Jäger Departmet of Computer Sciece Washigto Uiversity Campus Box 1045, Oe

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

Primal-Dual Methods for Approximation Algorithms

Primal-Dual Methods for Approximation Algorithms Primal-Dual Methods for Approximation Algorithms Nadia Hardy, April 2004 The following is based on: Approximation Algorithms for NP-Hard Problems. D.Hochbaum, ed. Chapter 4: The primal-dual method for

More information

Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems

Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems Wenxing Zhu, Chuanyin Guo Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, Fuzhou

More information

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order Gerold Jäger joint work with Paul Molitor University Halle-Wittenberg, Germany August 22, 2008 Overview 1 Introduction

More information

Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering

Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering George Karypis and Vipin Kumar Brian Shi CSci 8314 03/09/2017 Outline Introduction Graph Partitioning Problem Multilevel

More information

Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg

Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg Tolerance based Greedy Heuristics for the Asymmetric TSP Gerold Jäger Martin Luther University Halle-Wittenberg Cooperation with Boris Goldengorin DFG Project: Paul Molitor December 21, 200 Overview 1

More information

CSC 373: Algorithm Design and Analysis Lecture 3

CSC 373: Algorithm Design and Analysis Lecture 3 CSC 373: Algorithm Design and Analysis Lecture 3 Allan Borodin January 11, 2013 1 / 13 Lecture 3: Outline Write bigger and get better markers A little more on charging arguments Continue examples of greedy

More information

Solving the Graph Bisection Problem with Imperialist Competitive Algorithm

Solving the Graph Bisection Problem with Imperialist Competitive Algorithm 2 International Conference on System Engineering and Modeling (ICSEM 2) IPCSIT vol. 34 (2) (2) IACSIT Press, Singapore Solving the Graph Bisection Problem with Imperialist Competitive Algorithm Hodais

More information

The complement of PATH is in NL

The complement of PATH is in NL 340 The complement of PATH is in NL Let c be the number of nodes in graph G that are reachable from s We assume that c is provided as an input to M Given G, s, t, and c the machine M operates as follows:

More information

Greedy Approximations

Greedy Approximations CS 787: Advanced Algorithms Instructor: Dieter van Melkebeek Greedy Approximations Approximation algorithms give a solution to a problem in polynomial time, at most a given factor away from the correct

More information

Parameterized graph separation problems

Parameterized graph separation problems Parameterized graph separation problems Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary, dmarx@cs.bme.hu Abstract.

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 29 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/7/2016 Approximation

More information

CSC Linear Programming and Combinatorial Optimization Lecture 12: Semidefinite Programming(SDP) Relaxation

CSC Linear Programming and Combinatorial Optimization Lecture 12: Semidefinite Programming(SDP) Relaxation CSC411 - Linear Programming and Combinatorial Optimization Lecture 1: Semidefinite Programming(SDP) Relaxation Notes taken by Xinwei Gui May 1, 007 Summary: This lecture introduces the semidefinite programming(sdp)

More information

APPROXIMATION ALGORITHMS FOR A GRAPH-CUT PROBLEM WITH APPLICATIONS TO A CLUSTERING PROBLEM IN BIOINFORMATICS

APPROXIMATION ALGORITHMS FOR A GRAPH-CUT PROBLEM WITH APPLICATIONS TO A CLUSTERING PROBLEM IN BIOINFORMATICS APPROXIMATION ALGORITHMS FOR A GRAPH-CUT PROBLEM WITH APPLICATIONS TO A CLUSTERING PROBLEM IN BIOINFORMATICS SALIMUR RASHID CHOUDHURY Bachelor of Science, Islamic University of Technology, 2004 A Thesis

More information

Diploma Thesis. Minimum Stretch Spanning Trees

Diploma Thesis. Minimum Stretch Spanning Trees Diploma Thesis Minimum Stretch Spanning Trees Philipp Boksberger supervised by Prof. Dr. Roger Wattenhofer Fabian Kuhn Institute for Pervasive Computing Distributed Computing Group ETH Zürich, Switzerland

More information

A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection

A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection Kyle Fox Duke University Philip N. Klein Brown University Shay Mozes IDC Herzliya Minimum Graph Bisection Minimum Graph Bisection

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Lecture 14 01/25/11 1 - Again Problem: Steiner Tree. Given an undirected graph G=(V,E) with non-negative edge costs c : E Q + whose vertex set is partitioned into required vertices

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15.

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15. ICS 161 Algorithms Winter 1998 Final Exam Name: ID: 1: out of 15 2: out of 15 3: out of 20 4: out of 15 5: out of 20 6: out of 15 total: out of 100 1. Solve the following recurrences. (Just give the solutions;

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14 23.1 Introduction We spent last week proving that for certain problems,

More information

arxiv: v3 [cs.dm] 12 Jun 2014

arxiv: v3 [cs.dm] 12 Jun 2014 On Maximum Differential Coloring of Planar Graphs M. A. Bekos 1, M. Kaufmann 1, S. Kobourov, S. Veeramoni 1 Wilhelm-Schickard-Institut für Informatik - Universität Tübingen, Germany Department of Computer

More information

arxiv: v1 [cs.dm] 21 Dec 2015

arxiv: v1 [cs.dm] 21 Dec 2015 The Maximum Cardinality Cut Problem is Polynomial in Proper Interval Graphs Arman Boyacı 1, Tinaz Ekim 1, and Mordechai Shalom 1 Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey

More information

Partitioning. Course contents: Readings. Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic. Chapter 7.5.

Partitioning. Course contents: Readings. Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic. Chapter 7.5. Course contents: Partitioning Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic Readings Chapter 7.5 Partitioning 1 Basic Definitions Cell: a logic block used to build larger circuits.

More information

Algorithms, Spring 2014, CSE, OSU Greedy algorithms II. Instructor: Anastasios Sidiropoulos

Algorithms, Spring 2014, CSE, OSU Greedy algorithms II. Instructor: Anastasios Sidiropoulos 6331 - Algorithms, Spring 2014, CSE, OSU Greedy algorithms II Instructor: Anastasios Sidiropoulos Greedy algorithms Fast Easy to implement At every step, the algorithm makes a choice that seems locally

More information

Lecture 2. 1 Introduction. 2 The Set Cover Problem. COMPSCI 632: Approximation Algorithms August 30, 2017

Lecture 2. 1 Introduction. 2 The Set Cover Problem. COMPSCI 632: Approximation Algorithms August 30, 2017 COMPSCI 632: Approximation Algorithms August 30, 2017 Lecturer: Debmalya Panigrahi Lecture 2 Scribe: Nat Kell 1 Introduction In this lecture, we examine a variety of problems for which we give greedy approximation

More information

Lesson 2 7 Graph Partitioning

Lesson 2 7 Graph Partitioning Lesson 2 7 Graph Partitioning The Graph Partitioning Problem Look at the problem from a different angle: Let s multiply a sparse matrix A by a vector X. Recall the duality between matrices and graphs:

More information

Penalized Graph Partitioning for Static and Dynamic Load Balancing

Penalized Graph Partitioning for Static and Dynamic Load Balancing Penalized Graph Partitioning for Static and Dynamic Load Balancing Tim Kiefer, Dirk Habich, Wolfgang Lehner Euro-Par 06, Grenoble, France, 06-08-5 Task Allocation Challenge Application (Workload) = Set

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

Balanced Graph Partitioning

Balanced Graph Partitioning Balanced Graph Partitioning Konstantin Andreev Harald Räce ABSTRACT In this paper we consider the problem of (, ν)-balanced graph partitioning - dividing the vertices of a graph into almost equal size

More information

Algorithms for Euclidean TSP

Algorithms for Euclidean TSP This week, paper [2] by Arora. See the slides for figures. See also http://www.cs.princeton.edu/~arora/pubs/arorageo.ps Algorithms for Introduction This lecture is about the polynomial time approximation

More information

Research Collection. An O(n^4) time algorithm to compute the bisection width of solid grid graphs. Report. ETH Library

Research Collection. An O(n^4) time algorithm to compute the bisection width of solid grid graphs. Report. ETH Library Research Collection Report An O(n^4) time algorithm to compute the bisection width of solid grid graphs Author(s): Feldmann, Andreas Emil; Widmayer, Peter Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006935587

More information

CMPSCI 311: Introduction to Algorithms Practice Final Exam

CMPSCI 311: Introduction to Algorithms Practice Final Exam CMPSCI 311: Introduction to Algorithms Practice Final Exam Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more detail including

More information

Greedy algorithms Or Do the right thing

Greedy algorithms Or Do the right thing Greedy algorithms Or Do the right thing March 1, 2005 1 Greedy Algorithm Basic idea: When solving a problem do locally the right thing. Problem: Usually does not work. VertexCover (Optimization Version)

More information

Graph Isomorphism. Algorithms and networks

Graph Isomorphism. Algorithms and networks Graph Isomorphism Algorithms and networks Today Graph isomorphism: definition Complexity: isomorphism completeness The refinement heuristic Isomorphism for trees Rooted trees Unrooted trees Graph Isomorphism

More information

1 Unweighted Set Cover

1 Unweighted Set Cover Comp 60: Advanced Algorithms Tufts University, Spring 018 Prof. Lenore Cowen Scribe: Yuelin Liu Lecture 7: Approximation Algorithms: Set Cover and Max Cut 1 Unweighted Set Cover 1.1 Formulations There

More information

Reachability in K 3,3 -free and K 5 -free Graphs is in Unambiguous Logspace

Reachability in K 3,3 -free and K 5 -free Graphs is in Unambiguous Logspace CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2014, Article 2, pages 1 29 http://cjtcs.cs.uchicago.edu/ Reachability in K 3,3 -free and K 5 -free Graphs is in Unambiguous Logspace Thomas Thierauf Fabian

More information

The geometric generalized minimum spanning tree problem with grid clustering

The geometric generalized minimum spanning tree problem with grid clustering 4OR (2006) 4:319 329 DOI 10.1007/s10288-006-0012-6 REGULAR PAPER The geometric generalized minimum spanning tree problem with grid clustering Corinne Feremans Alexander Grigoriev René Sitters Received:

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

Unit 5A: Circuit Partitioning

Unit 5A: Circuit Partitioning Course contents: Unit 5A: Circuit Partitioning Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic Simulated annealing based partitioning algorithm Readings Chapter 7.5 Unit 5A 1 Course

More information

Preclass Warmup. ESE535: Electronic Design Automation. Motivation (1) Today. Bisection Width. Motivation (2)

Preclass Warmup. ESE535: Electronic Design Automation. Motivation (1) Today. Bisection Width. Motivation (2) ESE535: Electronic Design Automation Preclass Warmup What cut size were you able to achieve? Day 4: January 28, 25 Partitioning (Intro, KLFM) 2 Partitioning why important Today Can be used as tool at many

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 03/02/17

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 03/02/17 CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) HW#3 Due at the beginning of class Thursday 03/02/17 1. Consider a model of a nonbipartite undirected graph in which

More information

Introduction to Parallel & Distributed Computing Parallel Graph Algorithms

Introduction to Parallel & Distributed Computing Parallel Graph Algorithms Introduction to Parallel & Distributed Computing Parallel Graph Algorithms Lecture 16, Spring 2014 Instructor: 罗国杰 gluo@pku.edu.cn In This Lecture Parallel formulations of some important and fundamental

More information

Datenstrukturen & Algorithmen Solution of Sheet 11 FS 14

Datenstrukturen & Algorithmen Solution of Sheet 11 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 14th May

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

More information

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 02/26/15

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 02/26/15 CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) HW#3 Due at the beginning of class Thursday 02/26/15 1. Consider a model of a nonbipartite undirected graph in which

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg joint work with Changxing Dong, Paul Molitor, Dirk Richter November 14, 2008 Overview 1 Introduction

More information

Byzantine Consensus in Directed Graphs

Byzantine Consensus in Directed Graphs Byzantine Consensus in Directed Graphs Lewis Tseng 1,3, and Nitin Vaidya 2,3 1 Department of Computer Science, 2 Department of Electrical and Computer Engineering, and 3 Coordinated Science Laboratory

More information

Advanced Methods in Algorithms HW 5

Advanced Methods in Algorithms HW 5 Advanced Methods in Algorithms HW 5 Written by Pille Pullonen 1 Vertex-disjoint cycle cover Let G(V, E) be a finite, strongly-connected, directed graph. Let w : E R + be a positive weight function dened

More information

Job-shop scheduling with limited capacity buffers

Job-shop scheduling with limited capacity buffers Job-shop scheduling with limited capacity buffers Peter Brucker, Silvia Heitmann University of Osnabrück, Department of Mathematics/Informatics Albrechtstr. 28, D-49069 Osnabrück, Germany {peter,sheitman}@mathematik.uni-osnabrueck.de

More information

Place and Route for FPGAs

Place and Route for FPGAs Place and Route for FPGAs 1 FPGA CAD Flow Circuit description (VHDL, schematic,...) Synthesize to logic blocks Place logic blocks in FPGA Physical design Route connections between logic blocks FPGA programming

More information

15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015

15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015 15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015 While we have good algorithms for many optimization problems, the previous lecture showed that many

More information

Practice Final Exam 2: Solutions

Practice Final Exam 2: Solutions lgorithm Design Techniques Practice Final Exam 2: Solutions 1. The Simplex lgorithm. (a) Take the LP max x 1 + 2x 2 s.t. 2x 1 + x 2 3 x 1 x 2 2 x 1, x 2 0 and write it in dictionary form. Pivot: add x

More information

PERFECT MATCHING THE CENTRALIZED DEPLOYMENT MOBILE SENSORS THE PROBLEM SECOND PART: WIRELESS NETWORKS 2.B. SENSOR NETWORKS OF MOBILE SENSORS

PERFECT MATCHING THE CENTRALIZED DEPLOYMENT MOBILE SENSORS THE PROBLEM SECOND PART: WIRELESS NETWORKS 2.B. SENSOR NETWORKS OF MOBILE SENSORS SECOND PART: WIRELESS NETWORKS 2.B. SENSOR NETWORKS THE CENTRALIZED DEPLOYMENT OF MOBILE SENSORS I.E. THE MINIMUM WEIGHT PERFECT MATCHING 1 2 ON BIPARTITE GRAPHS Prof. Tiziana Calamoneri Network Algorithms

More information

Bulldozers/Sites A B C D

Bulldozers/Sites A B C D CSE 101 Summer 2017 Homework 2 Instructions Required Reading The textbook for this course is S. Dasgupta, C. Papadimitriou and U. Vazirani: Algorithms, McGraw Hill, 2008. Refer to the required reading

More information

Obstacle-Aware Longest-Path Routing with Parallel MILP Solvers

Obstacle-Aware Longest-Path Routing with Parallel MILP Solvers , October 20-22, 2010, San Francisco, USA Obstacle-Aware Longest-Path Routing with Parallel MILP Solvers I-Lun Tseng, Member, IAENG, Huan-Wen Chen, and Che-I Lee Abstract Longest-path routing problems,

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

Dominating Set on Bipartite Graphs

Dominating Set on Bipartite Graphs Dominating Set on Bipartite Graphs Mathieu Liedloff Abstract Finding a dominating set of minimum cardinality is an NP-hard graph problem, even when the graph is bipartite. In this paper we are interested

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

Fixed- Parameter Evolu2onary Algorithms

Fixed- Parameter Evolu2onary Algorithms Fixed- Parameter Evolu2onary Algorithms Frank Neumann School of Computer Science University of Adelaide Joint work with Stefan Kratsch (U Utrecht), Per Kris2an Lehre (DTU Informa2cs), Pietro S. Oliveto

More information

Dual-fitting analysis of Greedy for Set Cover

Dual-fitting analysis of Greedy for Set Cover Dual-fitting analysis of Greedy for Set Cover We showed earlier that the greedy algorithm for set cover gives a H n approximation We will show that greedy produces a solution of cost at most H n OPT LP

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007 CS880: Approximations Algorithms Scribe: Chi Man Liu Lecturer: Shuchi Chawla Topic: Local Search: Max-Cut, Facility Location Date: 2/3/2007 In previous lectures we saw how dynamic programming could be

More information

PETAL GRAPHS. Vellore, INDIA

PETAL GRAPHS. Vellore, INDIA International Journal of Pure and Applied Mathematics Volume 75 No. 3 2012, 269-278 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu PA ijpam.eu PETAL GRAPHS V. Kolappan 1, R. Selva Kumar 2 1,2

More information

CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning

CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning Parallel sparse matrix-vector product Lay out matrix and vectors by rows y(i) = sum(a(i,j)*x(j)) Only compute terms with A(i,j) 0 P0 P1

More information

The Partitioning Problem

The Partitioning Problem The Partitioning Problem 1. Iterative Improvement The partitioning problem is the problem of breaking a circuit into two subcircuits. Like many problems in VLSI design automation, we will solve this problem

More information

Kernighan/Lin - Preliminary Definitions. Comments on Kernighan/Lin Algorithm. Partitioning Without Nodal Coordinates Kernighan/Lin

Kernighan/Lin - Preliminary Definitions. Comments on Kernighan/Lin Algorithm. Partitioning Without Nodal Coordinates Kernighan/Lin Partitioning Without Nodal Coordinates Kernighan/Lin Given G = (N,E,W E ) and a partitioning N = A U B, where A = B. T = cost(a,b) = edge cut of A and B partitions. Find subsets X of A and Y of B with

More information

Local Algorithms for Sparse Spanning Graphs

Local Algorithms for Sparse Spanning Graphs Local Algorithms for Sparse Spanning Graphs Reut Levi Dana Ron Ronitt Rubinfeld Intro slides based on a talk given by Reut Levi Minimum Spanning Graph (Spanning Tree) Local Access to a Minimum Spanning

More information

Decision Problems. Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not.

Decision Problems. Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not. Decision Problems Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not. Definition: The class of problems that can be solved by polynomial-time

More information

1 Introduction and Results

1 Introduction and Results On the Structure of Graphs with Large Minimum Bisection Cristina G. Fernandes 1,, Tina Janne Schmidt,, and Anusch Taraz, 1 Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil, cris@ime.usp.br

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

arxiv: v1 [math.co] 21 Aug 2017

arxiv: v1 [math.co] 21 Aug 2017 ON MINIMUM BISECTION AND RELATED CUT PROBLEMS IN TREES AND TREE-LIKE GRAPHS CRISTINA G. FERNANDES, TINA JANNE SCHMIDT, AND ANUSCH TARAZ arxiv:1708.06411v1 [math.co] 21 Aug 2017 Abstract. Minimum Bisection

More information

The Ordered Covering Problem

The Ordered Covering Problem The Ordered Covering Problem Uriel Feige Yael Hitron November 8, 2016 Abstract We introduce the Ordered Covering (OC) problem. The input is a finite set of n elements X, a color function c : X {0, 1} and

More information

Matching 4/21/2016. Bipartite Matching. 3330: Algorithms. First Try. Maximum Matching. Key Questions. Existence of Perfect Matching

Matching 4/21/2016. Bipartite Matching. 3330: Algorithms. First Try. Maximum Matching. Key Questions. Existence of Perfect Matching Bipartite Matching Matching 3330: Algorithms A graph is bipartite if its vertex set can be partitioned into two subsets A and B so that each edge has one endpoint in A and the other endpoint in B. A B

More information

An Ant System Algorithm for Graph Bisection

An Ant System Algorithm for Graph Bisection An Ant System Algorithm for Graph Bisection Thang N. Bui Dept. of Computer Science Penn State Harrisburg Middletown, PA 17057 Lisa C. Strite Dept. of Computer Science Penn State Harrisburg Middletown,

More information

Online Algorithms for Mul2-commodity Network Design

Online Algorithms for Mul2-commodity Network Design Online Algorithms for Mul2-commodity Network Design Debmalya Panigrahi Joint work with Deeparnab Chakrabarty, Alina Ene, and Ravishankar Krishnaswamy Thanks Alina for sharing slides! Online Network Design:

More information

CS521 \ Notes for the Final Exam

CS521 \ Notes for the Final Exam CS521 \ Notes for final exam 1 Ariel Stolerman Asymptotic Notations: CS521 \ Notes for the Final Exam Notation Definition Limit Big-O ( ) Small-o ( ) Big- ( ) Small- ( ) Big- ( ) Notes: ( ) ( ) ( ) ( )

More information

GRASP with evolutionary path-relinking for the antibandwidth problem

GRASP with evolutionary path-relinking for the antibandwidth problem GRASP with evolutionary path-relinking for the antibandwidth problem VIII Metaheuristics International Conference (MIC 009) Hamburg, Germany July 3-6, 009 Mauricio G. C. Resende AT&T Labs Research Florham

More information

8.1 Polynomial-Time Reductions

8.1 Polynomial-Time Reductions 8.1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. Those with polynomial-time algorithms.

More information

MULTILEVEL OPTIMIZATION OF GRAPH BISECTION WITH PHEROMONES

MULTILEVEL OPTIMIZATION OF GRAPH BISECTION WITH PHEROMONES MULTILEVEL OPTIMIZATION OF GRAPH BISECTION WITH PHEROMONES Peter Korošec Computer Systems Department Jožef Stefan Institute, Ljubljana, Slovenia peter.korosec@ijs.si Jurij Šilc Computer Systems Department

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 018 D/Q Greed SP s DP LP, Flow B&B, Backtrack Metaheuristics P, NP Design and Analysis of Algorithms Lecture 8: Greed Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Optimization

More information

Lecture 19: Graph Partitioning

Lecture 19: Graph Partitioning Lecture 19: Graph Partitioning David Bindel 3 Nov 2011 Logistics Please finish your project 2. Please start your project 3. Graph partitioning Given: Graph G = (V, E) Possibly weights (W V, W E ). Possibly

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Algorithm Design Patterns and Anti-Patterns Algorithm design patterns.

More information

THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM

THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM 1 THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM Prof. Tiziana Calamoneri Network Algorithms A.y. 2016/17 2 THE PROBLEM WORMS (1)! A computer worm is a standalone malware

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Competitive Algorithms for Mulitstage Online Scheduling

Competitive Algorithms for Mulitstage Online Scheduling Competitive Algorithms for Mulitstage Online Scheduling Michael Hopf a,, Clemens Thielen a, Oliver Wendt b a University of Kaiserslautern, Department of Mathematics Paul-Ehrlich-Str. 14, D-67663 Kaiserslautern,

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

5. Lecture notes on matroid intersection

5. Lecture notes on matroid intersection Massachusetts Institute of Technology Handout 14 18.433: Combinatorial Optimization April 1st, 2009 Michel X. Goemans 5. Lecture notes on matroid intersection One nice feature about matroids is that a

More information

CMSC Theory of Algorithms Second Midterm

CMSC Theory of Algorithms Second Midterm NAME (please PRINT in large letters): SECTION: 01 02 (circle one) CMSC 27200 Theory of Algorithms Second Midterm 02-26-2015 The exam is closed book. Do not use notes. The use of ELECTRONIC DEVICES is strictly

More information

is the Capacitated Minimum Spanning Tree

is the Capacitated Minimum Spanning Tree Dynamic Capacitated Minimum Spanning Trees Raja Jothi and Balaji Raghavachari Department of Computer Science, University of Texas at Dallas Richardson, TX 75083, USA raja, rbk @utdallas.edu Abstract Given

More information

Branch and Bound Algorithm for Vertex Bisection Minimization Problem

Branch and Bound Algorithm for Vertex Bisection Minimization Problem Branch and Bound Algorithm for Vertex Bisection Minimization Problem Pallavi Jain, Gur Saran and Kamal Srivastava Abstract Vertex Bisection Minimization problem (VBMP) consists of partitioning the vertex

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

Problem Definition. Clustering nonlinearly separable data:

Problem Definition. Clustering nonlinearly separable data: Outlines Weighted Graph Cuts without Eigenvectors: A Multilevel Approach (PAMI 2007) User-Guided Large Attributed Graph Clustering with Multiple Sparse Annotations (PAKDD 2016) Problem Definition Clustering

More information

THE PROBLEM OF WORM PROPAGATION/PREVENTION

THE PROBLEM OF WORM PROPAGATION/PREVENTION THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM 1 Prof. Tiziana Calamoneri Network Algorithms A.y. 2017/18 2 THE PROBLEM WORMS (1) A computer worm is a standalone malware

More information

Genetic Algorithm for Circuit Partitioning

Genetic Algorithm for Circuit Partitioning Genetic Algorithm for Circuit Partitioning ZOLTAN BARUCH, OCTAVIAN CREŢ, KALMAN PUSZTAI Computer Science Department, Technical University of Cluj-Napoca, 26, Bariţiu St., 3400 Cluj-Napoca, Romania {Zoltan.Baruch,

More information