4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1

Size: px
Start display at page:

Download "4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1"

Transcription

1 4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1

2 Definition: A Linear Programming (LP) problem is an optimization problem: where min f () s.t. X n the objective function f : X is linear, the feasible region X={ n : g i () r i 0, i {1,, m} } with r i =,, and g i : n linear functions i = 1,, m. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 2

3 Definition: * n is an optimal solution of the LP min f () s.t. X n if f (*) f () X. A wide variety of decision-making problems can be formulated as linear programs (LPs). They often involve the optimal allocation of a given set of limited resources to different activities. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 3

4 General form: min z = c c n n a a 1n n b 1 (=) ( ) a m a mn n b (=) m ( ) 1,, n 0 Matri notation: min z = c T A b 0 min c 1 c n 1 n a 11 a 1n 1 b 1 a m1 a mn n b m E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano n

5 Historical sketch 1825/26: Fourier presents a method to solve systems of linear inequalities and discusses LPs with 2-3 variables. 1939: Kantorovitch lays the foundations of LP (Nobel prize, 1975) 1947: Dantzig independently proposes LP and invents the Simple algorithm. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 5

6 Eample 1: Diet problem Given n aliments j = 1,, n m a ij b i c j nutrients (basic substances) i = 1,, m amount of i-th nutrient contained in one unit of the j-th aliment daily requirement of the i-th nutrient cost of a unit of j-th aliment, determine a diet that minimizes the total cost while satisfying all the daily requirements. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 6

7 Decision variables: j = amount of j-th aliment in the diet, with j = 1,..., n min n j1 n j1 c a j ij j j j b 0 i i 1,..., m j 1,..., n E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 7

8 Eample 2: Transportation problem (single product) Given m production plants i = 1,, m n clients j = 1,, n c ij p i d j unit transportation cost from plant i to client j maimum supply (production capacity) of plant i demand of client j q ij maimum amount transportable from plant i to client j, determine a transportation plan that minimizes the total costs while respecting plant capacities and client demands. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 8

9 Assumption: m i1 n p i d j1 j Decision variables: ij = amount of product transported from i to j, with i = 1,, m and j = 1,, n. min m n i1 j1 c ij ij n j1 ij p i i = 1,, m (plant capacity) m i1 ij d j j = 1,, n (client demand) 0 ij q ij i, j (transportation capacity) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 9

10 Eample 3: Production planning problem Given n products (j = 1,, n) which compete for resources m resources (i = 1,, m) c j a ij b i profit (selling price cost) per unit of j-th product amount of i-th resource needed to produce one unit of j-th product maimum available amount of i-th resource, determine a production plan that maimizes the total profit given the available resources. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 10

11 E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 11 j = amount of j-th product, with j = 1,..., n n j m i b a c j n j i j ij n j j j 1,..., 0 1,..., ma 1 1 Decision variables:

12 Assumptions of LP models 1) Linearity (proportionality and additivity) of the objective function and constraints. Proportionality: contribution of each variable = constant variable Drawback: does not account for economies of scale. Additivity: contribution of all variables = sum of single contributions Drawback: competing products profits are not independent. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 12

13 2) Divisibility The variables can take fractional (rational) values. 3) Parameters are considered as constants which can be estimated with a sufficient degree of accuracy. Uncertainty in the parameters may require more comple mathematical programs. In Linear Programming, if we have different scenarios we adopt sensitivity analysis (see end of Chapter 4). E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 13

14 4.1 Equivalent forms General form: min (ma) z = c T A 1 b 1 A 2 b inequality constraints 2 A 3 = b 3 equality constraints j 0 for j J {1,, n} j free for j {1,, n}\j Definition: Standard form min z = c T A = b 0 only equality constraints and all variables non negative. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 14

15 The two forms are equivalent. Simple transformation rules allow to pass form one form to the other form. Warning: the transformation may involve adding/deleting variables and/or constraints. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 15

16 Transformation rules mac T = - min -c T a T b a T + s = b s 0 slack variable a T b a T -s = b s 0 surplus variable E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 16

17 E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 17 After substituting j with j + j,wedelete j from the problem. 0 0 j j j j j j unrestricted in sign

18 Eample General from: ma s.t , 2 unrestricted Step 1: 2 = 3 4 3, 4 0 ma s.t , 3, 4 0 E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 18

19 Step 2: introduce slack and surplus variables 5 and 6 min = = 4 1, 3, 4, 5, 6 0 Step 3: change the objective function sign E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 19

20 Other straightforward transformations a b -a -b a b -a -b a= b a b a b a b -a -b E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 20

21 4.2 Geometry of Linear Programming Eample Capital budgeting Capital of and two possible investments A and B with, respectively, 4% and 6% epected return. Determine a portfolio that maimizes the total epected return, while respecting the diversification constraints: at most 75% of the capital is invested in A, at most 50% of the capital is invested in B. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 21

22 Model: A = amount invested in A B = amount invested in B ma s.t. z=0,04 A + 0,06 B A + B A B A, B 0 E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 22

23 4.2.1 Graphical solution B A Feasible region B A A + B A, B 0 K euro E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 23

24 10 z=500 8 z=360 6 z= K euro B 2 z= 0 f () z ma increase f () Definition:A level curve of value z of a function f is the set of points in n where f is constant and takes value z. The level curves of a LP are lines: 0,04 A + 0,06 B = z constant A Optimal solution: * A * B = z * =500 f () = 0,04 0,06 is the direction at of fastest increase of f. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 24

25 4.2.2 Vertices of the feasible region Consider a LP with inequality constraints (easier to visualize). Definitions: H = { n : a T = b } is a hyperplane and H - = { n : a T b } is an affine half-space. Half-plane in 2 Each inequality constraint (a T b) defines an affine half-space in the variable space. a H - ={ n : a T b} a 0 b = 0 E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 25

26 Definition: The feasible region X is a polyhedron P half-spaces # finite P can be empty or unbounded Definition: A subset X n is conve if for each pair y 1, y 2 X, X contains the whole segment connecting y 1 and y 2.. y 2 y 1 y 1 y 2 conve [y 1,y 2 ] = { n : = y 1 + (1 - ) y 2 with [0, 1] } segment all the conve combinations of y 1 e y 2 E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 26

27 Property: A polyhedron P is a conve set of n. Indeed: any half-space is clearly conve y 1 y 2 and the intersection of a finite number of conve sets is also a conve set. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 27

28 not a verte! 2 (0,3,1) (0,3,0) 3 H 1 (0,1,3)... H 2 (0,0,3) (1,0,3) (2,0,2) Polyedron P (0,0,0) (2,2,0) (1,3,0). (2,0,0) facet edge verte ~ H 3 1 Algebraically: ~ is a verte of P if y 1, y 2 P, y 1 y 2 and (0, 1) s.t. ~ = y 1 + (1 - ) y 2 Definition: A verte of P is a point of P which cannot be epressed as a conve combination of two other distinct points of P. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 28

29 Property: A non-empty polyhedron P ={ n : A = b, 0 } (in standard form) or P ={ n : A b, 0 } (in canonical form) has a finite number ( 1) of vertices. Definition: Given a polyhedron P, a vector d n with d 0 is an unbounded feasible direction of P if, for every point 0 P, the ray { n : = 0 + d, 0 } is contained in P.. P 0 d d. 0 E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 29

30 Theorem (representation of polyhedra -- Weyl-Minkowski): Every point of a polyhedron P can be epressed as a conve combination of its vertices 1,..., k plus (if needed) an unbounded feasible direction d of P : = k k + d where the multipliers i 0 satisfy k = 1. [ 1, 2 ], d = d. P E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 30

31 Definition:A polytope is a bounded polyhedron, that is, it has the only unbounded feasible direction d = 0. Consequence: Every point of a polytope P can be epressed as a conve combination of its vertices. 4. = (d = 0) P.. 3 with i 0 and = 1 E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 31

32 Fundamental theorem of Linear Programming: Consider a LP min{ c T : P } where P n is a non-empty polyhedron of the feasible solutions (in standard or canonical form). Then either there eists (at least) one optimal verte or the value of the objective function is unbounded below on P. Proof Case 1: P has an unbounded feasible direction d such that c T d < 0 P is unbounded and the values z = c T - along the direction d E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 32

33 E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 33 Case 2: P has no unbounded feasible direction d such that c T d < 0 i T k i T k i i T i k i i i T T c d c c d c c min For any P, we have d = 0 or c T d 0 and hence Any point of P can be epressed as: where 1,..., k are the vertices of P, i 0 with k =1, and d = 0, or d is a unbounded feasible direction. d k i i i 1 since i 0 i and k =1. 0

34 Geometrically An interior point P cannot be an optimal solution: c = direction of fastest increase in z (constant gradient) always an improving direction In an optimal verte all feasible directions (respecting feasibility for a sufficiently small step) are worsening directions: -c improving directions vertices feasible directions E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 34

35 The theorem implies that, although the variables can take fractional values, Linear Programs can be viewed as combinatorial problems: we only need to eamine the vertices of the polyhedron of the feasible solutions! Finite but often eponential number Graphical method only applicabile for n 3. E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 35

36 4.2.3 Four types of Linear Programs Observation: Since min c T, better solutions found by moving along -c. A unique optimal solution 2. c 1 Multiple (infinitely many) optimal solutions c E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 36

37 Unbounded LP c Unbounded polyhedron and unlimited objective function value Infeasible LP Empty polyhedron (no feasible solution) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 37

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Linear Mathematical Programming (LP)

Linear Mathematical Programming (LP) Linear Mathematical Programming (LP) A MP is LP if : The objective function is linear where The set is defined by linear equality or inequality constraints c f T ) = ( ],..., [ n T c c c = = n b A where

More information

Linear Programming and its Applications

Linear Programming and its Applications Linear Programming and its Applications Outline for Today What is linear programming (LP)? Examples Formal definition Geometric intuition Why is LP useful? A first look at LP algorithms Duality Linear

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Intro to Linear Programming. The problem that we desire to address in this course is loosely stated below.

Intro to Linear Programming. The problem that we desire to address in this course is loosely stated below. . Introduction Intro to Linear Programming The problem that we desire to address in this course is loosely stated below. Given a number of generators make price-quantity offers to sell (each provides their

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

LINEAR PROGRAMMING INTRODUCTION 12.1 LINEAR PROGRAMMING. Three Classical Linear Programming Problems (L.P.P.)

LINEAR PROGRAMMING INTRODUCTION 12.1 LINEAR PROGRAMMING. Three Classical Linear Programming Problems (L.P.P.) LINEAR PROGRAMMING 12 INTRODUCTION ou are familiar with linear equations and linear inequations in one and two variables. They can be solved algebraically or graphically (by drawing a line diagram in case

More information

1.1 What is Microeconomics?

1.1 What is Microeconomics? 1.1 What is Microeconomics? Economics is the study of allocating limited resources to satisfy unlimited wants. Such a tension implies tradeoffs among competing goals. The analysis can be carried out at

More information

Linear Programming: Introduction

Linear Programming: Introduction CSC 373 - Algorithm Design, Analysis, and Complexity Summer 2016 Lalla Mouatadid Linear Programming: Introduction A bit of a historical background about linear programming, that I stole from Jeff Erickson

More information

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs 11 3.1 Forms of linear programs... 12 3.2 Basic feasible solutions... 13 3.3 The geometry of linear programs... 14 3.4 Local search among basic feasible solutions... 15 3.5 Organization in tableaus...

More information

Introduction to Linear Programming

Introduction to Linear Programming Introduction to Linear Programming Eric Feron (updated Sommer Gentry) (updated by Paul Robertson) 16.410/16.413 Historical aspects Examples of Linear programs Historical contributor: G. Dantzig, late 1940

More information

These notes are in two parts: this part has topics 1-3 above.

These notes are in two parts: this part has topics 1-3 above. IEEM 0: Linear Programming and Its Applications Outline of this series of lectures:. How can we model a problem so that it can be solved to give the required solution 2. Motivation: eamples of typical

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 1 Why LP? Linear programming (LP, also called linear

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 16: Mathematical Programming I Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 8, 2010 E. Frazzoli

More information

Linear Programming Motivation: The Diet Problem

Linear Programming Motivation: The Diet Problem Agenda We ve done Greedy Method Divide and Conquer Dynamic Programming Network Flows & Applications NP-completeness Now Linear Programming and the Simplex Method Hung Q. Ngo (SUNY at Buffalo) CSE 531 1

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

Linear Programming. Meaning of Linear Programming. Basic Terminology

Linear Programming. Meaning of Linear Programming. Basic Terminology Linear Programming Linear Programming (LP) is a versatile technique for assigning a fixed amount of resources among competing factors, in such a way that some objective is optimized and other defined conditions

More information

Chapter 4 Section 1 Graphing Linear Inequalities in Two Variables

Chapter 4 Section 1 Graphing Linear Inequalities in Two Variables Chapter 4 Section 1 Graphing Linear Inequalities in Two Variables Epressions of the tpe + 2 8 and 3 > 6 are called linear inequalities in two variables. A solution of a linear inequalit in two variables

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Lecture 5: Properties of convex sets

Lecture 5: Properties of convex sets Lecture 5: Properties of convex sets Rajat Mittal IIT Kanpur This week we will see properties of convex sets. These properties make convex sets special and are the reason why convex optimization problems

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

Graphing Linear Inequalities in Two Variables.

Graphing Linear Inequalities in Two Variables. Many applications of mathematics involve systems of inequalities rather than systems of equations. We will discuss solving (graphing) a single linear inequality in two variables and a system of linear

More information

Linear Programming. Linear Programming

Linear Programming. Linear Programming APPENDIX C Linear Programming C Appendi C Linear Programming C Linear Programming Linear Programming Application FIGURE C. 7 (, ) (, ) FIGURE C. Feasible solutions (, ) 7 NOTE In Eample, tr evaluating

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Finite Math Linear Programming 1 May / 7

Finite Math Linear Programming 1 May / 7 Linear Programming Finite Math 1 May 2017 Finite Math Linear Programming 1 May 2017 1 / 7 General Description of Linear Programming Finite Math Linear Programming 1 May 2017 2 / 7 General Description of

More information

A linear program is an optimization problem of the form: minimize subject to

A linear program is an optimization problem of the form: minimize subject to Lec11 Page 1 Lec11p1, ORF363/COS323 This lecture: Linear Programming (LP) Applications of linear programming History of linear programming Geometry of linear programming Geometric and algebraic definition

More information

Introduction. Linear because it requires linear functions. Programming as synonymous of planning.

Introduction. Linear because it requires linear functions. Programming as synonymous of planning. LINEAR PROGRAMMING Introduction Development of linear programming was among the most important scientific advances of mid-20th cent. Most common type of applications: allocate limited resources to competing

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 50

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 50 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 50 CS 473: Algorithms, Spring 2018 Introduction to Linear Programming Lecture 18 March

More information

Econ 172A - Slides from Lecture 2

Econ 172A - Slides from Lecture 2 Econ 205 Sobel Econ 172A - Slides from Lecture 2 Joel Sobel September 28, 2010 Announcements 1. Sections this evening (Peterson 110, 8-9 or 9-10). 2. Podcasts available when I remember to use microphone.

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction Nothing happens in the universe that does not have a sense of either certain maimum or minimum. L. Euler, Swiss Mathematician and Physicist, 1707 1783 ptimization is a fundamental

More information

1. Given a range of foods to choose from, what is the diet of lowest cost that meets an individual s nutritional requirements?

1. Given a range of foods to choose from, what is the diet of lowest cost that meets an individual s nutritional requirements? Chapter 1 Introduction Nothing happens in the universe that does not have a sense of either certain maimum or minimum. L. Euler, Swiss Mathematician and Physicist, 1707 1783 ptimization is a fundamental

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Math 273a: Optimization Linear programming

Math 273a: Optimization Linear programming Math 273a: Optimization Linear programming Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 some material taken from the textbook Chong-Zak, 4th Ed. History The word programming used traditionally

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

AMS : Combinatorial Optimization Homework Problems - Week V

AMS : Combinatorial Optimization Homework Problems - Week V AMS 553.766: Combinatorial Optimization Homework Problems - Week V For the following problems, A R m n will be m n matrices, and b R m. An affine subspace is the set of solutions to a a system of linear

More information

LINEAR PROGRAMMING - V.

LINEAR PROGRAMMING - V. LINEAR PROGRAMMING Vassilis Kostoglou E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl/en LINEAR PROGRAMMING - V. Kostoglou 1 The problem of limited resources Every business activity requires

More information

FOUNDATIONS OF OPERATIONS RESEARCH

FOUNDATIONS OF OPERATIONS RESEARCH Master of Science in Computer Engineering FOUNDATIONS OF OPERATIONS RESEARCH Edoardo Amaldi DEI - Politecnico di Milano amaldi@elet.polimi.it Course website: http://home.dei.polimi.it/amaldi/for-10-11.html

More information

R n a T i x = b i} is a Hyperplane.

R n a T i x = b i} is a Hyperplane. Geometry of LPs Consider the following LP : min {c T x a T i x b i The feasible region is i =1,...,m}. X := {x R n a T i x b i i =1,...,m} = m i=1 {x Rn a T i x b i} }{{} X i The set X i is a Half-space.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Combinatorial Optimization G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/34 Outline 1 Motivation 2 Geometric resolution

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

Simplex Method. Introduction:

Simplex Method. Introduction: Introduction: Simple Method In the previous chapter, we discussed about the graphical method for solving linear programming problems. Although the graphical method is an invaluable aid to understand the

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

UNIT 2 LINEAR PROGRAMMING PROBLEMS

UNIT 2 LINEAR PROGRAMMING PROBLEMS UNIT 2 LINEAR PROGRAMMING PROBLEMS Structure 2.1 Introduction Objectives 2.2 Linear Programming Problem (LPP) 2.3 Mathematical Formulation of LPP 2.4 Graphical Solution of Linear Programming Problems 2.5

More information

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way.

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way. University of Southern California Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research - Deterministic Models Fall

More information

Linear Programming. Revised Simplex Method, Duality of LP problems and Sensitivity analysis

Linear Programming. Revised Simplex Method, Duality of LP problems and Sensitivity analysis Linear Programming Revised Simple Method, Dualit of LP problems and Sensitivit analsis Introduction Revised simple method is an improvement over simple method. It is computationall more efficient and accurate.

More information

Lecture 1: Introduction

Lecture 1: Introduction Lecture 1 1 Linear and Combinatorial Optimization Anders Heyden Centre for Mathematical Sciences Lecture 1: Introduction The course and its goals Basic concepts Optimization Combinatorial optimization

More information

Lecture 2 Convex Sets

Lecture 2 Convex Sets Optimization Theory and Applications Lecture 2 Convex Sets Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2016 2016/9/29 Lecture 2: Convex Sets 1 Outline

More information

Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem

Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem IE 5: Integer Programming, Spring 29 24 Jan, 29 Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem Lecturer: Karthik Chandrasekaran Scribe: Setareh Taki Disclaimer: These notes have not been subjected

More information

Linear Programming has been used to:

Linear Programming has been used to: Linear Programming Linear programming became important during World War II: used to solve logistics problems for the military. Linear Programming (LP) was the first widely used form of optimization in

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

OPTIMIZATION. joint course with. Ottimizzazione Discreta and Complementi di R.O. Edoardo Amaldi. DEIB Politecnico di Milano

OPTIMIZATION. joint course with. Ottimizzazione Discreta and Complementi di R.O. Edoardo Amaldi. DEIB Politecnico di Milano OPTIMIZATION joint course with Ottimizzazione Discreta and Complementi di R.O. Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml

More information

Polar Duality and Farkas Lemma

Polar Duality and Farkas Lemma Lecture 3 Polar Duality and Farkas Lemma October 8th, 2004 Lecturer: Kamal Jain Notes: Daniel Lowd 3.1 Polytope = bounded polyhedron Last lecture, we were attempting to prove the Minkowsky-Weyl Theorem:

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5.1 DUALITY Associated with every linear programming problem (the primal) is another linear programming problem called its dual. If the primal involves

More information

maximize c, x subject to Ax b,

maximize c, x subject to Ax b, Lecture 8 Linear programming is about problems of the form maximize c, x subject to Ax b, where A R m n, x R n, c R n, and b R m, and the inequality sign means inequality in each row. The feasible set

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

Unconstrained and Constrained Optimization

Unconstrained and Constrained Optimization Unconstrained and Constrained Optimization Agenda General Ideas of Optimization Interpreting the First Derivative Interpreting the Second Derivative Unconstrained Optimization Constrained Optimization

More information

AMATH 383 Lecture Notes Linear Programming

AMATH 383 Lecture Notes Linear Programming AMATH 8 Lecture Notes Linear Programming Jakob Kotas (jkotas@uw.edu) University of Washington February 4, 014 Based on lecture notes for IND E 51 by Zelda Zabinsky, available from http://courses.washington.edu/inde51/notesindex.htm.

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Lecture 4: Linear Programming

Lecture 4: Linear Programming COMP36111: Advanced Algorithms I Lecture 4: Linear Programming Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2017 18 Outline The Linear Programming Problem Geometrical analysis The Simplex

More information

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where LP Geometry: outline I Polyhedra I Extreme points, vertices, basic feasible solutions I Degeneracy I Existence of extreme points I Optimality of extreme points IOE 610: LP II, Fall 2013 Geometry of Linear

More information

Advanced Algorithms Linear Programming

Advanced Algorithms Linear Programming Reading: Advanced Algorithms Linear Programming CLRS, Chapter29 (2 nd ed. onward). Linear Algebra and Its Applications, by Gilbert Strang, chapter 8 Linear Programming, by Vasek Chvatal Introduction to

More information

5-8. Systems of Linear Inequalities. Vocabulary. Lesson. Mental Math

5-8. Systems of Linear Inequalities. Vocabulary. Lesson. Mental Math Lesson 5-8 Systems of Linear Inequalities Vocabulary feasible set, feasible region BIG IDEA The solution to a system of linear inequalities in two variables is either the empty set, the interior of a polygon,

More information

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D.

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D. Linear Programming Module Outline Introduction The Linear Programming Model Examples of Linear Programming Problems Developing Linear Programming Models Graphical Solution to LP Problems The Simplex Method

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Decision Aid Methodologies In Transportation Lecture 1: Polyhedra and Simplex method

Decision Aid Methodologies In Transportation Lecture 1: Polyhedra and Simplex method Decision Aid Methodologies In Transportation Lecture 1: Polyhedra and Simplex method Chen Jiang Hang Transportation and Mobility Laboratory April 15, 2013 Chen Jiang Hang (Transportation and Mobility Decision

More information

THEORY OF LINEAR AND INTEGER PROGRAMMING

THEORY OF LINEAR AND INTEGER PROGRAMMING THEORY OF LINEAR AND INTEGER PROGRAMMING ALEXANDER SCHRIJVER Centrum voor Wiskunde en Informatica, Amsterdam A Wiley-Inter science Publication JOHN WILEY & SONS^ Chichester New York Weinheim Brisbane Singapore

More information

Linear programming and the efficiency of the simplex algorithm for transportation polytopes

Linear programming and the efficiency of the simplex algorithm for transportation polytopes Linear programming and the efficiency of the simplex algorithm for transportation polytopes Edward D. Kim University of Wisconsin-La Crosse February 20, 2015 Loras College Department of Mathematics Colloquium

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology

Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology Course Title: Linear Programming Full Marks: 50 Course No. : Math 403 Pass Mark: 17.5 Level

More information

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming Linear Programming 3 describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions. Linear Programming consists of three parts: A set of

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

II. Linear Programming

II. Linear Programming II. Linear Programming A Quick Example Suppose we own and manage a small manufacturing facility that produced television sets. - What would be our organization s immediate goal? - On what would our relative

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

Supplemental Problems MAT (Prepared by Prof. Urmi Ghosh-Dastidar)

Supplemental Problems MAT (Prepared by Prof. Urmi Ghosh-Dastidar) Supplemental Problems MAT 3770 (Prepared by Prof. Urmi Ghosh-Dastidar) 1. Use Lagrange Multiplier methods to find the stationary values of z: (a) z = y, subject to + y = (b) z = (y+4), subject to + y =

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Two common formulations of linear programming (LP) problems are: min Subject to: 1,,, 1,2,,;, max Subject to: 1,,, 1,2,,;, Linear Programming Problems The standard LP problem

More information

Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization

Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization Introduction to Linear Programming Algorithmic and Geometric Foundations of Optimization Optimization and Linear Programming Mathematical programming is a class of methods for solving problems which ask

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Partial Fraction Decomposition

Partial Fraction Decomposition Section 7. Partial Fractions 53 Partial Fraction Decomposition Algebraic techniques for determining the constants in the numerators of partial fractions are demonstrated in the eamples that follow. Note

More information

February 10, 2005

February 10, 2005 15.053 February 10, 2005 The Geometry of Linear Programs the geometry of LPs illustrated on DTC Announcement: please turn in homework solutions now with a cover sheet 1 Goal of this Lecture 3 mathematical

More information