Part-Based Models for Object Class Recognition Part 3

Size: px
Start display at page:

Download "Part-Based Models for Object Class Recognition Part 3"

Transcription

1 High Level Computer Vision! Part-Based Models for Object Class Recognition Part 3 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de!

2 ! State-of-the-Art in Object Class Representations Bag of Words Models (BoW) object model = histogram of local features e.g. local feature around interest points Global Object Models object model = global feature object feature e.g. HOG (Histogram of Oriented Gradients) Part-Based Object Models object model = models of parts & spatial topology model e.g. constellation model or ISM (Implicit Shape Model) But: What is the Ideal Notion of Parts here? And: Should those Parts be Semantic? BoW: no spatial relationships e.g. HOG: fixed spatial relationships e.g. ISM: flexible spatial relationships High Level Computer Vision - July o2, 2o14 2

3 Part-Based Models - Overview So Far Previous lectures about part-based models: Part-Based based on Manual Labeling of Parts - Detection by Components, Multi-Scale Parts The Constellation Model - automatic discovery of parts and part-structure The Implicit Shape Model (ISM) - star-model of part configurations, parts obtained by clustering interest-points Pictorial Structures Model Hierarchical Graphical Model Learning Object Model from CAD Data Discussion Semantic Parts vs. Discriminative Parts High Level Computer Vision - July o2, 2o14 3

4 Part-Based Models - Overview Today! Deformable Parts Model (DPM) considered as THE best model at the moment!! Extensions 3D - DPM grammar-based detection High Level Computer Vision - July o2, 2o14 4

5 slide curtesy: Pedro Felzenszwalb High Level Computer Vision - July o2, 2o14 5

6 High Level Computer Vision - July o2, 2o14 6

7 High Level Computer Vision - July o2, 2o14 7

8 High Level Computer Vision - July o2, 2o14 8

9 High Level Computer Vision - July o2, 2o14 9

10 High Level Computer Vision - July o2, 2o14 10

11 High Level Computer Vision - July o2, 2o14 11

12 High Level Computer Vision - July o2, 2o14 12

13 High Level Computer Vision - July o2, 2o14 13

14 High Level Computer Vision - July o2, 2o14 14

15 High Level Computer Vision - July o2, 2o14 15

16 High Level Computer Vision - July o2, 2o14 16

17 High Level Computer Vision - July o2, 2o14 17

18 Efficient Computation Overall score: score(p! 0,...,p n )=! nx F i (H, p i ) i=0 Maximization can be done separately: nx i=1 d i (dx 2 i,dy 2 i ) score(p 0 ) = max score(p 0,...,p n ) p 1,...,p n = F 0 (H, p 0 )+ max p 1 F 1 (H, p 1 ) d 1 (dx 2 1,dy 2 1) + + max p n F n (H, p n ) d n (dx 2 n,dy 2 n) High Level Computer Vision - July o2, 2o14 18

19 High Level Computer Vision - July o2, 2o14 19

20 High Level Computer Vision - July o2, 2o14 20

21 High Level Computer Vision - July o2, 2o14 21

22 High Level Computer Vision - July o2, 2o14 22

23 SVM training Classifier scores and example x using:! model parameter: feature vector: (x)!! Linear SVM: objective: maximize margin (for best generalization) f(x) = (x) margin High Level Computer Vision - July o2, 2o14 23

24 SVM training Training data:!! Constraints:!!!!! D =(hx 1,y 1 i,...,hx n,y n i) with y i 2 { 1, 1} f(x i ) +1 for y i =+1 f(x i ) apple 1 for y i = 1 ) y i f(x i ) +1 ) 0 1 y i f(x i ) Training error: nx max (0, 1 y i f(x i )) i=1 margin High Level Computer Vision - July o2, 2o14 24

25 SVM training Two objectives: maximize margin: minimize training error:! Therefore minimize (primal formulation)!! L( )=min ! Hinge loss: H(z) = max(0, 1 z) min nx min max (0, 1 y i f(x i )) i=1! nx max (0, 1 y i f(x i )) i=1 0 z High Level Computer Vision - July o2, 2o14 25

26 sudo High Level Computer Vision - July o2, 2o14 26

27 High Level Computer Vision - July o2, 2o14 27

28 High Level Computer Vision - July o2, 2o14 28

29 High Level Computer Vision - July o2, 2o14 29

30 High Level Computer Vision - July o2, 2o14 30

31 High Level Computer Vision - July o2, 2o14 31

32 High Level Computer Vision - July o2, 2o14 32

33 slides from Dan Huttenlocher High Level Computer Vision - July o2, 2o14 33

34 High Level Computer Vision - July o2, 2o14 34

35 High Level Computer Vision - July o2, 2o14 35

36 High Level Computer Vision - July o2, 2o14 36

37 High Level Computer Vision - July o2, 2o14 37

38 High Level Computer Vision - July o2, 2o14 38

39 High Level Computer Vision - July o2, 2o14 39

40 High Level Computer Vision - July o2, 2o14 40

41 High Level Computer Vision - July o2, 2o14 41

42 High Level Computer Vision - July o2, 2o14 42

43 High Level Computer Vision - July o2, 2o14 43

44 Part-Based Models - Overview Today Deformable Parts Model (DPM) considered as THE best model at the moment!! Extensions 3D - DPM grammar-based detection High Level Computer Vision - July o2, 2o14 44

45 Teaching 3D Geometry to Deformable Part Models Bojan Pepikj 1 1 Max Planck Institute for Informatics!! Michael Stark 1,2! 2 Stanford University! Peter Gehler 3! Bernt Schiele 1! 3 Max Planck Institute for Intelligent Systems! High Level Computer Vision - July o3, 2o13 45

46 Deformable Part part model Deformable Model (DPM) recap Recap Structure: mixture of star models = ( 1,..., M ) = ( 1, 2..., M ) Mixture of star root templates part templates car components part templates root template car deformations deformations M M Fig. 9. Some of the models learned on the PASCAL 2007 dataset. Fig. 9. Some of the models learned on the PASCAL 2007 dataset. unary terms Detection: best joint template placement Inference: best matching component pairwise terms (y, h ) = argmax, (I, y, h) (y,h) (y,h) bounding box bounding box hypothesis hypothesis MPC-VCC Review image features image features part positions component selection, part positions [Felsenszwalb et [Felsenszwalb et al. al. PAMI 10] PAMI 09] Visual Recognition Scene Interpretation High Object Level Computer Visionand - July o3, 2o13 Michael Stark 10 46

47 3D part parameterization Independent parts across components ? M Part correspondences across object views High Level Computer Vision - July o3, 2o13 47

48 3D part parameterization DPM parts defined in image plane P 1... P M? M Parameterize parts in 3D object coordinates 3D parts linked across components High Level Computer Vision - July o3, 2o13 48

49 3D part learning How to infer consistent 3D parts? Per object instance (not per image) 3D parts are observed by viewpoint-specific components DPM-3D-Constraints P 1 P M P 1 (x,y,z) (x,y,z) P M (x,y,z) = h, (I 1,y 1,h 1 )i h, (I M,y M,h M )i optimal 3D part placement High Level Computer Vision - July o3, 2o13 49

50 3D part parameterization - implementation Computed aided design (CAD) data Render images from arbitrary views Accurate supervision Non-photorealistic rendering [Stark et al. BMVC 10] High Level Computer Vision - July o3, 2o13 50

51 Results - 3D part parameterization Task: Object localization and viewpoint classification 3D object classes [Savarese & Fei-Fei ICCV 07] DPM-VOC+VP [Lopez et al. CORP 11] Cars AP Object localization DPM-3D-Constraints [Glasner et al. ICCV 11] Bicycles DPM-VOC+VP DPM-3D-Constraints [Payet et al. ICCV 11] MPPE +10.2% Cars Bicycles Viewpoint classification +15.6% DPM-VOC+VP slightly better than DPM-3D-Constraints DPM-3D-Constraints and DPM-VOC+VP improve over state-of-the-art High Level Computer Vision - July o3, 2o13 51

52 Results - 3D part parameterization Quantitative analysis: Ultra-wide baseline matching experiment [Zia et al. 3dRR 11] Fundamental matrix estimation 140 image pairs % correct SIFT [Zia et al. 3dRR 11] DPM-3D-Constraints + 5.1% Average improvement of 5.1% High Level Computer Vision - July o3, 2o13 52

53 EPFL Multi-view cars [Ozuysal et al. CVPR 09] Part correspondences without any temporal smoothing High Level Computer Vision - July o3, 2o13 53

54 Part-Based Models - Overview Today Deformable Parts Model (DPM) considered as THE best model at the moment!! Extensions 3D - DPM grammar-based detection High Level Computer Vision - July o2, 2o14 54

55 slide courtesy: again Pedro Felzenswalb High Level Computer Vision - July o2, 2o14 55

56 High Level Computer Vision - July o2, 2o14 56

57 High Level Computer Vision - July o2, 2o14 57

58 High Level Computer Vision - July o2, 2o14 58

59 High Level Computer Vision - July o2, 2o14 59

60 High Level Computer Vision - July o2, 2o14 60

61 High Level Computer Vision - July o2, 2o14 61

62 High Level Computer Vision - July o2, 2o14 62

63 High Level Computer Vision - July o2, 2o14 63

64 High Level Computer Vision - July o2, 2o14 64

65 High Level Computer Vision - July o2, 2o14 65

66 High Level Computer Vision - July o2, 2o14 66

67 High Level Computer Vision - July o2, 2o14 67

68 High Level Computer Vision - July o2, 2o14 68

69 High Level Computer Vision - July o2, 2o14 69

70 High Level Computer Vision - July o2, 2o14 70

71 High Level Computer Vision - July o2, 2o14 71

72 person with varying occlusion different part types different occlusion types per part type: full DPM-model with root & parts High Level Computer Vision - July o2, 2o14 72

73 High Level Computer Vision - July o2, 2o14 73

74 High Level Computer Vision - July o2, 2o14 74

75 High Level Computer Vision - July o2, 2o14 75

76 Part-Based Models - References Today Deformable Parts Model (DPM) "Object Detection with Discriminatively Trained Part-Based Models" P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan. IEEE Pattern Analysis and Machine Intelligence (PAMI). Sept D - DPM Teaching 3D Geometry to Deformable Part Models, B. Pepik, M. Stark, P. Gehler and B. Schiele, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2012 not covered today: 3D 2 PM - 3D Deformable Part Models, B. Pepik, P. Gehler, M. Stark and B. Schiele, European Conference on Computer Vision (ECCV) 2012 grammar-based detection Object Detection with Grammar Models R. Girshick, P. Felzenszwalb, D. McAllester Neural Information Processing Systems, NIPS 2011 High Level Computer Vision - July o2, 2o14 76

Part-Based Models for Object Class Recognition Part 2

Part-Based Models for Object Class Recognition Part 2 High Level Computer Vision Part-Based Models for Object Class Recognition Part 2 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de https://www.mpi-inf.mpg.de/hlcv Class of Object

More information

Part-Based Models for Object Class Recognition Part 2

Part-Based Models for Object Class Recognition Part 2 High Level Computer Vision Part-Based Models for Object Class Recognition Part 2 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de https://www.mpi-inf.mpg.de/hlcv Class of Object

More information

High Level Computer Vision

High Level Computer Vision High Level Computer Vision Part-Based Models for Object Class Recognition Part 2 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de http://www.d2.mpi-inf.mpg.de/cv Please Note No

More information

Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014

Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014 Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014 Problem Definition Viewpoint estimation: Given an image, predicting viewpoint for object of

More information

Occlusion Patterns for Object Class Detection

Occlusion Patterns for Object Class Detection Occlusion Patterns for Object Class Detection Bojan Pepik1 Michael Stark1,2 Peter Gehler3 Bernt Schiele1 Max Planck Institute for Informatics, 2Stanford University, 3Max Planck Institute for Intelligent

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan Silvio Savarese Stanford University In the 4th International IEEE Workshop on 3D Representation and Recognition

More information

Development in Object Detection. Junyuan Lin May 4th

Development in Object Detection. Junyuan Lin May 4th Development in Object Detection Junyuan Lin May 4th Line of Research [1] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection, CVPR 2005. HOG Feature template [2] P. Felzenszwalb,

More information

Object Recognition with Deformable Models

Object Recognition with Deformable Models Object Recognition with Deformable Models Pedro F. Felzenszwalb Department of Computer Science University of Chicago Joint work with: Dan Huttenlocher, Joshua Schwartz, David McAllester, Deva Ramanan.

More information

3D 2 PM 3D Deformable Part Models

3D 2 PM 3D Deformable Part Models 3D 2 PM 3D Deformable Part Models Bojan Pepik 1, Peter Gehler 3, Michael Stark 1,2, and Bernt Schiele 1 1 Max Planck Institute for Informatics, 2 Stanford University 3 Max Planck Institute for Intelligent

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Detection III: Analyzing and Debugging Detection Methods

Detection III: Analyzing and Debugging Detection Methods CS 1699: Intro to Computer Vision Detection III: Analyzing and Debugging Detection Methods Prof. Adriana Kovashka University of Pittsburgh November 17, 2015 Today Review: Deformable part models How can

More information

18 October, 2013 MVA ENS Cachan. Lecture 6: Introduction to graphical models Iasonas Kokkinos

18 October, 2013 MVA ENS Cachan. Lecture 6: Introduction to graphical models Iasonas Kokkinos Machine Learning for Computer Vision 1 18 October, 2013 MVA ENS Cachan Lecture 6: Introduction to graphical models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

Object Category Detection. Slides mostly from Derek Hoiem

Object Category Detection. Slides mostly from Derek Hoiem Object Category Detection Slides mostly from Derek Hoiem Today s class: Object Category Detection Overview of object category detection Statistical template matching with sliding window Part-based Models

More information

Object Detection with Discriminatively Trained Part Based Models

Object Detection with Discriminatively Trained Part Based Models Object Detection with Discriminatively Trained Part Based Models Pedro F. Felzenszwelb, Ross B. Girshick, David McAllester and Deva Ramanan Presented by Fabricio Santolin da Silva Kaustav Basu Some slides

More information

Lecture 15 Visual recognition

Lecture 15 Visual recognition Lecture 15 Visual recognition 3D object detection Introduction Single instance 3D object detectors Generic 3D object detectors Silvio Savarese Lecture 15-26-Feb-14 3D object detection Object: Building

More information

Deformable Part Models

Deformable Part Models Deformable Part Models References: Felzenszwalb, Girshick, McAllester and Ramanan, Object Detec@on with Discrimina@vely Trained Part Based Models, PAMI 2010 Code available at hkp://www.cs.berkeley.edu/~rbg/latent/

More information

Category-level localization

Category-level localization Category-level localization Cordelia Schmid Recognition Classification Object present/absent in an image Often presence of a significant amount of background clutter Localization / Detection Localize object

More information

Structured Models in. Dan Huttenlocher. June 2010

Structured Models in. Dan Huttenlocher. June 2010 Structured Models in Computer Vision i Dan Huttenlocher June 2010 Structured Models Problems where output variables are mutually dependent or constrained E.g., spatial or temporal relations Such dependencies

More information

Find that! Visual Object Detection Primer

Find that! Visual Object Detection Primer Find that! Visual Object Detection Primer SkTech/MIT Innovation Workshop August 16, 2012 Dr. Tomasz Malisiewicz tomasz@csail.mit.edu Find that! Your Goals...imagine one such system that drives information

More information

Modeling Occlusion by Discriminative AND-OR Structures

Modeling Occlusion by Discriminative AND-OR Structures 2013 IEEE International Conference on Computer Vision Modeling Occlusion by Discriminative AND-OR Structures Bo Li, Wenze Hu, Tianfu Wu and Song-Chun Zhu Beijing Lab of Intelligent Information Technology,

More information

Modern Object Detection. Most slides from Ali Farhadi

Modern Object Detection. Most slides from Ali Farhadi Modern Object Detection Most slides from Ali Farhadi Comparison of Classifiers assuming x in {0 1} Learning Objective Training Inference Naïve Bayes maximize j i logp + logp ( x y ; θ ) ( y ; θ ) i ij

More information

Occlusion Patterns for Object Class Detection

Occlusion Patterns for Object Class Detection 23 IEEE Conference on Computer Vision and Pattern Recognition Occlusion Patterns for Object Class Detection Bojan Pepik Michael Stark,2 Peter Gehler 3 Bernt Schiele Max Planck Institute for Informatics,

More information

A Discriminatively Trained, Multiscale, Deformable Part Model

A Discriminatively Trained, Multiscale, Deformable Part Model A Discriminatively Trained, Multiscale, Deformable Part Model by Pedro Felzenszwalb, David McAllester, and Deva Ramanan CS381V Visual Recognition - Paper Presentation Slide credit: Duan Tran Slide credit:

More information

Fast, Accurate Detection of 100,000 Object Classes on a Single Machine

Fast, Accurate Detection of 100,000 Object Classes on a Single Machine Fast, Accurate Detection of 100,000 Object Classes on a Single Machine Thomas Dean etal. Google, Mountain View, CA CVPR 2013 best paper award Presented by: Zhenhua Wang 2013.12.10 Outline Background This

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

Pedestrian Detection Using Structured SVM

Pedestrian Detection Using Structured SVM Pedestrian Detection Using Structured SVM Wonhui Kim Stanford University Department of Electrical Engineering wonhui@stanford.edu Seungmin Lee Stanford University Department of Electrical Engineering smlee729@stanford.edu.

More information

Revisiting 3D Geometric Models for Accurate Object Shape and Pose

Revisiting 3D Geometric Models for Accurate Object Shape and Pose Revisiting 3D Geometric Models for Accurate Object Shape and Pose M. 1 Michael Stark 2,3 Bernt Schiele 3 Konrad Schindler 1 1 Photogrammetry and Remote Sensing Laboratory Swiss Federal Institute of Technology

More information

Modeling 3D viewpoint for part-based object recognition of rigid objects

Modeling 3D viewpoint for part-based object recognition of rigid objects Modeling 3D viewpoint for part-based object recognition of rigid objects Joshua Schwartz Department of Computer Science Cornell University jdvs@cs.cornell.edu Abstract Part-based object models based on

More information

Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models

Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models Mathieu Aubry (INRIA) Daniel Maturana (CMU) Alexei Efros (UC Berkeley) Bryan Russell (Intel) Josef Sivic (INRIA)

More information

Part-based models. Lecture 10

Part-based models. Lecture 10 Part-based models Lecture 10 Overview Representation Location Appearance Generative interpretation Learning Distance transforms Other approaches using parts Felzenszwalb, Girshick, McAllester, Ramanan

More information

DPM Score Regressor for Detecting Occluded Humans from Depth Images

DPM Score Regressor for Detecting Occluded Humans from Depth Images DPM Score Regressor for Detecting Occluded Humans from Depth Images Tsuyoshi Usami, Hiroshi Fukui, Yuji Yamauchi, Takayoshi Yamashita and Hironobu Fujiyoshi Email: usami915@vision.cs.chubu.ac.jp Email:

More information

Detecting Objects using Deformation Dictionaries

Detecting Objects using Deformation Dictionaries Detecting Objects using Deformation Dictionaries Bharath Hariharan UC Berkeley bharath2@eecs.berkeley.edu C. Lawrence Zitnick Microsoft Research larryz@microsoft.com Piotr Dollár Microsoft Research pdollar@microsoft.com

More information

3D Object Representations for Recognition. Yu Xiang Computational Vision and Geometry Lab Stanford University

3D Object Representations for Recognition. Yu Xiang Computational Vision and Geometry Lab Stanford University 3D Object Representations for Recognition Yu Xiang Computational Vision and Geometry Lab Stanford University 1 2D Object Recognition Ren et al. NIPS15 Ordonez et al. ICCV13 Image classification/tagging/annotation

More information

Category-level Localization

Category-level Localization Category-level Localization Andrew Zisserman Visual Geometry Group University of Oxford http://www.robots.ox.ac.uk/~vgg Includes slides from: Ondra Chum, Alyosha Efros, Mark Everingham, Pedro Felzenszwalb,

More information

OBJECT class detection has reached remarkable performance

OBJECT class detection has reached remarkable performance 2232 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 11, NOVEMBER 2015 Multi-View and 3D Deformable Part Models Bojan Pepik, Student Member, IEEE, Michael Stark, Member, IEEE,

More information

Automatic Discovery of Meaningful Object Parts with Latent CRFs

Automatic Discovery of Meaningful Object Parts with Latent CRFs Automatic Discovery of Meaningful Object Parts with Latent CRFs Paul Schnitzspan 1 Stefan Roth 1 Bernt Schiele 1,2 1 Department of Computer Science, TU Darmstadt 2 MPI Informatics, Saarbrücken Abstract

More information

3D Object Class Detection in the Wild

3D Object Class Detection in the Wild 3D Object Class Detection in the Wild Bojan Pepik1 1 Michael Stark1 Peter Gehler2 Tobias Ritschel1 Bernt Schiele1 Max Planck Institute for Informatics, 2 Max Planck Institute for Intelligent Systems Abstract

More information

An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b

An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b 5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016) An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b 1

More information

Class-Specific Object Pose Estimation and Reconstruction using 3D Part Geometry

Class-Specific Object Pose Estimation and Reconstruction using 3D Part Geometry Class-Specific Object Pose Estimation and Reconstruction using 3D Part Geometry Arun CS Kumar 1 András Bódis-Szomorú 2 Suchendra Bhandarkar 1 Mukta Prasad 3 1 University of Georgia 2 ETH Zürich 3 Trinity

More information

Deformable Part Models Revisited: A Performance Evaluation for Object Category Pose Estimation

Deformable Part Models Revisited: A Performance Evaluation for Object Category Pose Estimation Deformable Part Models Revisited: A Performance Evaluation for Object Category Pose Estimation Roberto J. Lo pez-sastre Tinne Tuytelaars2 Silvio Savarese3 GRAM, Dept. Signal Theory and Communications,

More information

Beyond Bags of features Spatial information & Shape models

Beyond Bags of features Spatial information & Shape models Beyond Bags of features Spatial information & Shape models Jana Kosecka Many slides adapted from S. Lazebnik, FeiFei Li, Rob Fergus, and Antonio Torralba Detection, recognition (so far )! Bags of features

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model

Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model Johnson Hsieh (johnsonhsieh@gmail.com), Alexander Chia (alexchia@stanford.edu) Abstract -- Object occlusion presents a major

More information

Every Picture Tells a Story: Generating Sentences from Images

Every Picture Tells a Story: Generating Sentences from Images Every Picture Tells a Story: Generating Sentences from Images Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi, Peter Young, Cyrus Rashtchian, Julia Hockenmaier, David Forsyth University of Illinois

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

Object Recognition II

Object Recognition II Object Recognition II Linda Shapiro EE/CSE 576 with CNN slides from Ross Girshick 1 Outline Object detection the task, evaluation, datasets Convolutional Neural Networks (CNNs) overview and history Region-based

More information

Learning to Localize Objects with Structured Output Regression

Learning to Localize Objects with Structured Output Regression Learning to Localize Objects with Structured Output Regression Matthew Blaschko and Christopher Lampert ECCV 2008 Best Student Paper Award Presentation by Jaeyong Sung and Yiting Xie 1 Object Localization

More information

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas Brox University of Freiburg Presented by: Shreyansh Daftry Visual Learning and Recognition

More information

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing Object Recognition Lecture 11, April 21 st, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ 1 Announcements 2 HW#5 due today HW#6 last HW of the semester Due May

More information

Intro to Deep Learning for Computer Vision

Intro to Deep Learning for Computer Vision High Level Computer Vision Intro to Deep Learning for Computer Vision Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de https://www.mpi-inf.mpg.de/hlcv Overview Today Recent successes

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

3D Object Detection and Pose Estimation. Yu Xiang University of Michigan 1st Workshop on Recovering 6D Object Pose 12/17/2015

3D Object Detection and Pose Estimation. Yu Xiang University of Michigan 1st Workshop on Recovering 6D Object Pose 12/17/2015 3D Object Detection and Pose Estimation Yu Xiang University of Michigan 1st Workshop on Recovering 6D Object Pose 12/17/2015 1 2D Object Detection 2 2D detection is NOT enough! 3 Applications that need

More information

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 CS 1674: Intro to Computer Vision Object Recognition Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 Different Flavors of Object Recognition Semantic Segmentation Classification + Localization

More information

CS 231A Computer Vision (Fall 2011) Problem Set 4

CS 231A Computer Vision (Fall 2011) Problem Set 4 CS 231A Computer Vision (Fall 2011) Problem Set 4 Due: Nov. 30 th, 2011 (9:30am) 1 Part-based models for Object Recognition (50 points) One approach to object recognition is to use a deformable part-based

More information

Is 2D Information Enough For Viewpoint Estimation?

Is 2D Information Enough For Viewpoint Estimation? GHODRATI et al.: IS 2D INFORMATION ENOUGH FOR VIEWPOINT ESTIMATION? 1 Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati amir.ghodrati@esat.kuleuven.be Marco Pedersoli marco.pedersoli@esat.kuleuven.be

More information

Multiple-Person Tracking by Detection

Multiple-Person Tracking by Detection http://excel.fit.vutbr.cz Multiple-Person Tracking by Detection Jakub Vojvoda* Abstract Detection and tracking of multiple person is challenging problem mainly due to complexity of scene and large intra-class

More information

https://en.wikipedia.org/wiki/the_dress Recap: Viola-Jones sliding window detector Fast detection through two mechanisms Quickly eliminate unlikely windows Use features that are fast to compute Viola

More information

Graphical Models for Computer Vision

Graphical Models for Computer Vision Graphical Models for Computer Vision Pedro F Felzenszwalb Brown University Joint work with Dan Huttenlocher, Joshua Schwartz, Ross Girshick, David McAllester, Deva Ramanan, Allie Shapiro, John Oberlin

More information

Lecture 16: Object recognition: Part-based generative models

Lecture 16: Object recognition: Part-based generative models Lecture 16: Object recognition: Part-based generative models Professor Stanford Vision Lab 1 What we will learn today? Introduction Constellation model Weakly supervised training One-shot learning (Problem

More information

Building Part-based Object Detectors via 3D Geometry

Building Part-based Object Detectors via 3D Geometry Building Part-based Object Detectors via 3D Geometry Abhinav Shrivastava Abhinav Gupta The Robotics Institute, Carnegie Mellon University http://graphics.cs.cmu.edu/projects/gdpm Abstract This paper proposes

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 People Detection Some material for these slides comes from www.cs.cornell.edu/courses/cs4670/2012fa/lectures/lec32_object_recognition.ppt

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

Multiple Kernel Learning for Emotion Recognition in the Wild

Multiple Kernel Learning for Emotion Recognition in the Wild Multiple Kernel Learning for Emotion Recognition in the Wild Karan Sikka, Karmen Dykstra, Suchitra Sathyanarayana, Gwen Littlewort and Marian S. Bartlett Machine Perception Laboratory UCSD EmotiW Challenge,

More information

CS 231A Computer Vision (Fall 2012) Problem Set 4

CS 231A Computer Vision (Fall 2012) Problem Set 4 CS 231A Computer Vision (Fall 2012) Problem Set 4 Master Set Due: Nov. 29 th, 2012 (23:59pm) 1 Part-based models for Object Recognition (50 points) One approach to object recognition is to use a deformable

More information

Deformable Part Models with Individual Part Scaling

Deformable Part Models with Individual Part Scaling DUBOUT, FLEURET: DEFORMABLE PART MODELS WITH INDIVIDUAL PART SCALING 1 Deformable Part Models with Individual Part Scaling Charles Dubout charles.dubout@idiap.ch François Fleuret francois.fleuret@idiap.ch

More information

Recap Image Classification with Bags of Local Features

Recap Image Classification with Bags of Local Features Recap Image Classification with Bags of Local Features Bag of Feature models were the state of the art for image classification for a decade BoF may still be the state of the art for instance retrieval

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

arxiv: v1 [cs.cv] 13 Sep 2016

arxiv: v1 [cs.cv] 13 Sep 2016 F. MASSA ET AL.: CRAFTING A MULTI-TASK CNN FOR VIEWPOINT ESTIMATION 1 arxiv:1609.03894v1 [cs.cv] 13 Sep 2016 Crafting a multi-task CNN for viewpoint estimation Francisco Massa http://imagine.enpc.fr/~suzano-f/

More information

Structured output regression for detection with partial truncation

Structured output regression for detection with partial truncation Structured output regression for detection with partial truncation Andrea Vedaldi Andrew Zisserman Department of Engineering University of Oxford Oxford, UK {vedaldi,az}@robots.ox.ac.uk Abstract We develop

More information

Learning and Recognizing Visual Object Categories Without First Detecting Features

Learning and Recognizing Visual Object Categories Without First Detecting Features Learning and Recognizing Visual Object Categories Without First Detecting Features Daniel Huttenlocher 2007 Joint work with D. Crandall and P. Felzenszwalb Object Category Recognition Generic classes rather

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan yuxiang@umich.edu Silvio Savarese Stanford University ssilvio@stanford.edu Abstract We propose a novel framework

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Category vs. instance recognition

Category vs. instance recognition Category vs. instance recognition Category: Find all the people Find all the buildings Often within a single image Often sliding window Instance: Is this face James? Find this specific famous building

More information

Learning People Detectors for Tracking in Crowded Scenes

Learning People Detectors for Tracking in Crowded Scenes Learning People Detectors for Tracking in Crowded Scenes Siyu Tang1 Mykhaylo Andriluka1 Konrad Schindler3 Stefan Roth2 1 Anton Milan2 Bernt Schiele1 Max Planck Institute for Informatics, Saarbru cken,

More information

Can appearance patterns improve pedestrian detection?

Can appearance patterns improve pedestrian detection? IEEE Intelligent Vehicles Symposium, June 25 (to appear) Can appearance patterns improve pedestrian detection? Eshed Ohn-Bar and Mohan M. Trivedi Abstract This paper studies the usefulness of appearance

More information

Learning to Localize Objects with Structured Output Regression

Learning to Localize Objects with Structured Output Regression Learning to Localize Objects with Structured Output Regression Matthew B. Blaschko and Christoph H. Lampert Max Planck Institute for Biological Cybernetics 72076 Tübingen, Germany {blaschko,chl}@tuebingen.mpg.de

More information

Feature Selection using Constellation Models

Feature Selection using Constellation Models Feature Selection using Constellation Models Heydar Maboudi Afkham, Carl Herik Ek and Stefan Calsson Computer Vision and Active Perception Lab. Royal Institute of Technology (KTH) Stockholm, Sweden {heydarma,chek,stefanc}@csc.kth.se

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

Hierarchical Learning for Object Detection. Long Zhu, Yuanhao Chen, William Freeman, Alan Yuille, Antonio Torralba MIT and UCLA, 2010

Hierarchical Learning for Object Detection. Long Zhu, Yuanhao Chen, William Freeman, Alan Yuille, Antonio Torralba MIT and UCLA, 2010 Hierarchical Learning for Object Detection Long Zhu, Yuanhao Chen, William Freeman, Alan Yuille, Antonio Torralba MIT and UCLA, 2010 Background I: Our prior work Our work for the Pascal Challenge is based

More information

Supervised learning and evaluation of KITTI s cars detector with DPM

Supervised learning and evaluation of KITTI s cars detector with DPM 24 IEEE Intelligent Vehicles Symposium (IV) June 8-, 24. Dearborn, Michigan, USA Supervised learning and evaluation of KITTI s cars detector with DPM J. Javier Yebes, Luis M. Bergasa, Roberto Arroyo and

More information

Learning People Detectors for Tracking in Crowded Scenes

Learning People Detectors for Tracking in Crowded Scenes 2013 IEEE International Conference on Computer Vision Learning People Detectors for Tracking in Crowded Scenes Siyu Tang 1 Mykhaylo Andriluka 1 Anton Milan 2 Konrad Schindler 3 Stefan Roth 2 Bernt Schiele

More information

Semantic Pooling for Image Categorization using Multiple Kernel Learning

Semantic Pooling for Image Categorization using Multiple Kernel Learning Semantic Pooling for Image Categorization using Multiple Kernel Learning Thibaut Durand (1,2), Nicolas Thome (1), Matthieu Cord (1), David Picard (2) (1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,

More information

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients ThreeDimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients Authors: Zhile Ren, Erik B. Sudderth Presented by: Shannon Kao, Max Wang October 19, 2016 Introduction Given an

More information

Detecting Actions, Poses, and Objects with Relational Phraselets

Detecting Actions, Poses, and Objects with Relational Phraselets Detecting Actions, Poses, and Objects with Relational Phraselets Chaitanya Desai and Deva Ramanan University of California at Irvine, Irvine CA, USA {desaic,dramanan}@ics.uci.edu Abstract. We present a

More information

Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds

Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds Sudheendra Vijayanarasimhan Kristen Grauman Department of Computer Science University of Texas at Austin Austin,

More information

Strong Appearance and Expressive Spatial Models for Human Pose Estimation

Strong Appearance and Expressive Spatial Models for Human Pose Estimation 2013 IEEE International Conference on Computer Vision Strong Appearance and Expressive Spatial Models for Human Pose Estimation Leonid Pishchulin 1 Mykhaylo Andriluka 1 Peter Gehler 2 Bernt Schiele 1 1

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Adding spatial information Forming vocabularies from pairs of nearby features doublets

More information

Pedestrian Detection and Tracking in Images and Videos

Pedestrian Detection and Tracking in Images and Videos Pedestrian Detection and Tracking in Images and Videos Azar Fazel Stanford University azarf@stanford.edu Viet Vo Stanford University vtvo@stanford.edu Abstract The increase in population density and accessibility

More information

Coupling-and-Decoupling: A Hierarchical Model for Occlusion-Free Car Detection

Coupling-and-Decoupling: A Hierarchical Model for Occlusion-Free Car Detection Coupling-and-Decoupling: A Hierarchical Model for Occlusion-Free Car Detection Bo Li 1,2,3, Tianfu Wu 2,3, Wenze Hu 3,4 and Mingtao Pei 1 1 Beijing Lab of Intelligent Information, School of Computer Science

More information

Beyond Bags of Features

Beyond Bags of Features : for Recognizing Natural Scene Categories Matching and Modeling Seminar Instructed by Prof. Haim J. Wolfson School of Computer Science Tel Aviv University December 9 th, 2015

More information

Revisiting 3D Geometric Models for Accurate Object Shape and Pose

Revisiting 3D Geometric Models for Accurate Object Shape and Pose Revisiting 3D Geometric Models for Accurate Object Shape and Pose M. Zeeshan Zia 1, Michael Stark 2, Bernt Schiele 2, and Konrad Schindler 1 1 Photogrammetry and Remote Sensing Laboratory, ETH Zürich,

More information

Lecture 15: Detecting Objects by Parts

Lecture 15: Detecting Objects by Parts Lecture 15: Detecting Objects by Parts David R. Morales, Austin O. Narcomey, Minh-An Quinn, Guilherme Reis, Omar Solis Department of Computer Science Stanford University Stanford, CA 94305 {mrlsdvd, aon2,

More information

Object Category Detection: Sliding Windows

Object Category Detection: Sliding Windows 04/10/12 Object Category Detection: Sliding Windows Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class: Object Category Detection Overview of object category detection Statistical

More information

Visuelle Perzeption für Mensch- Maschine Schnittstellen

Visuelle Perzeption für Mensch- Maschine Schnittstellen Visuelle Perzeption für Mensch- Maschine Schnittstellen Vorlesung, WS 2009 Prof. Dr. Rainer Stiefelhagen Dr. Edgar Seemann Institut für Anthropomatik Universität Karlsruhe (TH) http://cvhci.ira.uka.de

More information

Detection and Localization with Multi-scale Models

Detection and Localization with Multi-scale Models Detection and Localization with Multi-scale Models Eshed Ohn-Bar and Mohan M. Trivedi Computer Vision and Robotics Research Laboratory University of California San Diego {eohnbar, mtrivedi}@ucsd.edu Abstract

More information

In Good Shape: Robust People Detection based on Appearance and Shape

In Good Shape: Robust People Detection based on Appearance and Shape PISHCHULIN et al.: PEOPLE DETECTION USING APPEARANCE AND SHAPE 1 In Good Shape: Robust People Detection based on Appearance and Shape Leonid Pishchulin leonid@mpi-inf.mpg.de Arjun Jain ajain@mpi-inf.mpg.de

More information