Lecture 10: PGM Structure Estimation

Size: px
Start display at page:

Download "Lecture 10: PGM Structure Estimation"

Transcription

1 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401

2 Table of Contents I Heuristics 1 Heuristics Manually specify a fixed graph Use a simple rule 2 from labels only from both labels and features 3

3 How to get the graph at the first place? Human heuristics from the data Learn from labels (statistical independence testing or mutual information) Learn from both labels and features (omitted) Infer the graph and labels jointly.

4 Manually specify a fixed graph Manually specify a fixed graph Use a simple rule (a) original image (b) segmented image (c) graph structure

5 Heuristics Manually specify a fixed graph Use a simple rule Use a simple rule (d) original image (e) graph via super-pixel adjacency (f) graph via distance mst

6 from data Heuristics from labels only from both labels and features Assumptions: 1 the unknown underlying graph is fixed; 2 training data are samples from the distribution represented by the underlying graph; 3 the number of nodes (i.e. variables) is known in advance, and the edges are unknown. 4 can extend to multiple fixed underlying graphs, however, each graph shall have enough samples.

7 from labels only from labels only from both labels and features Techniques: statistical independence testing mutual information (e.g. ChowLiu Tree algorithm) Problem: it only considers labels (output), and does not consider features (input) it does not consider label cost functions

8 from labels only from both labels and features from both labels and features Idea: One can enforce sparsity (e.g. by w 1 regulariser) in structured SVM or CRFs (Lecture 9) to achieve a sparse w. If certain block of w being zero or non-zero corresponds to existence of edge, learning such w is learning edges.

9 and labels jointly Assumptions: 1 the unknown underlying graph is fixed [changing]; 2 training data are samples from the distribution represented by the underlying graph; 3 the number of nodes (i.e. variables) is known in advance, and the edges are unknown. 4 can extend to multiple fixed underlying graphs, however, each graph shall [does not] have enough samples. Not enough samples to learn the graphs.

10 and labels jointly?? Tennis???? TV episode? Figure : Unknown MRF graphs and unknown labels G = (V, E), where V node set is known, and E edge set is unknown. To find the best label and the best E jointly, (y, E ) = argmax θ ij (y (i), y (j) ) + θ i (y (i) ). (1) y Y,E E i,j E i V

11 Alternating method Heuristics Lan etal (NIPS 2010) alternates between solving y and E. Initialise y 1 randomly. for t = 1 to T do end for G = (V, E T ). E t = argmax E E y t+1 = argmax y Y i,j E θ ij (y (i) t, y (j) t ), (2) θ ij (y (i), y (j) ) + θ i (y (i) ). (3) i,j E t i V

12 Bilinear formulation Heuristics Wang etal (CVPR2013) introduces bilinear program (BLP) form. max {z ij },{µ i,j,µ i } i,j V θ i,j (y (i), y (j) )µ i,j (y (i), y (j) )z ij y (i),y (j) + θ i (y (i) )µ i (y (i) ) (4) i V y (i) s.t. µ i,j (y (i), y (j) ) = µ j (y (j) ), µ i,j (y (i), y (j) ) = µ i (y (i) ), y i y (j) µ i (y (i) ) = 1, µ i,j (y (i), y (j) ) 0, z ij = z ji, z ij [0, 1], y (i) i, j V, y (i), y (j).

13 Inference with unknown graphs

14 That s all Heuristics Thanks!

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Bilinear Programming for Human Activity Recognition with Unknown MRF Graphs

Bilinear Programming for Human Activity Recognition with Unknown MRF Graphs Bilinear Programg for Human Activity Recognition with Unknown MRF Graphs Zhenhua Wang, Qinfeng Shi, Chunhua Shen and Anton van den Hengel School of Computer Science, The University of Adelaide, Australia

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

Undirected Graphical Models. Raul Queiroz Feitosa

Undirected Graphical Models. Raul Queiroz Feitosa Undirected Graphical Models Raul Queiroz Feitosa Pros and Cons Advantages of UGMs over DGMs UGMs are more natural for some domains (e.g. context-dependent entities) Discriminative UGMs (CRF) are better

More information

Image Restoration with Deep Generative Models

Image Restoration with Deep Generative Models Image Restoration with Deep Generative Models Raymond A. Yeh *, Teck-Yian Lim *, Chen Chen, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do Department of Electrical and Computer Engineering, University

More information

Rendering and Modeling of Transparent Objects. Minglun Gong Dept. of CS, Memorial Univ.

Rendering and Modeling of Transparent Objects. Minglun Gong Dept. of CS, Memorial Univ. Rendering and Modeling of Transparent Objects Minglun Gong Dept. of CS, Memorial Univ. Capture transparent object appearance Using frequency based environmental matting Reduce number of input images needed

More information

Learning GMRF Structures for Spatial Priors

Learning GMRF Structures for Spatial Priors Learning GMRF Structures for Spatial Priors Lie Gu, Eric P. Xing and Takeo Kanade Computer Science Department Carnegie Mellon University {gu, epxing, tk}@cs.cmu.edu Abstract The goal of this paper is to

More information

Image Super-Resolution via Sparse Representation

Image Super-Resolution via Sparse Representation Image Super-Resolution via Sparse Representation Jianchao Yang, John Wright, Thomas Huang and Yi Ma accepted by IEEE Trans. on Image Processing 2010 Presented by known 2010/4/20 1 Super-Resolution Techniques

More information

Image Modeling using Tree Structured Conditional Random Fields

Image Modeling using Tree Structured Conditional Random Fields Image Modeling using Tree Structured Conditional Random Fields Pranjal Awasthi IBM India Research Lab New Delhi prawasth@in.ibm.com Aakanksha Gagrani Dept. of CSE IIT Madras aksgag@cse.iitm.ernet.in Balaraman

More information

Complex Prediction Problems

Complex Prediction Problems Problems A novel approach to multiple Structured Output Prediction Max-Planck Institute ECML HLIE08 Information Extraction Extract structured information from unstructured data Typical subtasks Named Entity

More information

STAT 598L Learning Bayesian Network Structure

STAT 598L Learning Bayesian Network Structure STAT 598L Learning Bayesian Network Structure Sergey Kirshner Department of Statistics Purdue University skirshne@purdue.edu November 2, 2009 Acknowledgements: some of the slides were based on Luo Si s

More information

An efficient algorithm for rank-1 sparse PCA

An efficient algorithm for rank-1 sparse PCA An efficient algorithm for rank- sparse PCA Yunlong He Georgia Institute of Technology School of Mathematics heyunlong@gatech.edu Renato Monteiro Georgia Institute of Technology School of Industrial &

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Learning based face hallucination techniques: A survey

Learning based face hallucination techniques: A survey Vol. 3 (2014-15) pp. 37-45. : A survey Premitha Premnath K Department of Computer Science & Engineering Vidya Academy of Science & Technology Thrissur - 680501, Kerala, India (email: premithakpnath@gmail.com)

More information

Learning from Data: Adaptive Basis Functions

Learning from Data: Adaptive Basis Functions Learning from Data: Adaptive Basis Functions November 21, 2005 http://www.anc.ed.ac.uk/ amos/lfd/ Neural Networks Hidden to output layer - a linear parameter model But adapt the features of the model.

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Learning Bayesian Networks (part 2) Goals for the lecture

Learning Bayesian Networks (part 2) Goals for the lecture Learning ayesian Networks (part 2) Mark raven and avid Page omputer Sciences 0 Spring 20 www.biostat.wisc.edu/~craven/cs0/ Some of the slides in these lectures have been adapted/borrowed from materials

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

Conditional Random Fields : Theory and Application

Conditional Random Fields : Theory and Application Conditional Random Fields : Theory and Application Matt Seigel (mss46@cam.ac.uk) 3 June 2010 Cambridge University Engineering Department Outline The Sequence Classification Problem Linear Chain CRFs CRF

More information

IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS

IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS M. J. Shafiee, A. G. Chung, A. Wong, and P. Fieguth Vision & Image Processing Lab, Systems

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Collective classification in network data

Collective classification in network data 1 / 50 Collective classification in network data Seminar on graphs, UCSB 2009 Outline 2 / 50 1 Problem 2 Methods Local methods Global methods 3 Experiments Outline 3 / 50 1 Problem 2 Methods Local methods

More information

Joint Segmentation and Pose Tracking of Human in Natural Videos

Joint Segmentation and Pose Tracking of Human in Natural Videos 23 IEEE International Conference on Computer Vision Joint Segmentation and Pose Tracking of Human in Natural Videos Taegyu Lim,2 Seunghoon Hong 2 Bohyung Han 2 Joon Hee Han 2 DMC R&D Center, Samsung Electronics,

More information

Predictive Discrete Latent Factor Models for Large Scale Dyadic Data Deepak Agarwal, Srujana Merugu Yahoo! Research

Predictive Discrete Latent Factor Models for Large Scale Dyadic Data Deepak Agarwal, Srujana Merugu Yahoo! Research Predictive Discrete Latent Factor Models for Large Scale Dyadic Data Deepak Agarwal, Srujana Merugu Yahoo! Research March 5, 2009 Outline 1 Motivation 2 Background 3 Algorithm 4 Analysis Recommender System

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Introduction

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Introduction STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Introduction You = 2 General Reasoning Scheme Data Conclusion 1010..00 0101..00 1010..11... Observations 3 General Reasoning Scheme

More information

Dense 3D Modelling and Monocular Reconstruction of Deformable Objects

Dense 3D Modelling and Monocular Reconstruction of Deformable Objects Dense 3D Modelling and Monocular Reconstruction of Deformable Objects Anastasios (Tassos) Roussos Lecturer in Computer Science, University of Exeter Research Associate, Imperial College London Overview

More information

Characterizing Layouts of Outdoor Scenes Using Spatial Topic Processes

Characterizing Layouts of Outdoor Scenes Using Spatial Topic Processes Characterizing Layouts of Outdoor Scenes Using Spatial Topic Processes Dahua Lin TTI Chicago dhlin@ttic.edu Jianxiong iao Princeton University xj@princeton.edu Abstract In this paper, we develop a generative

More information

Single Image Depth Estimation via Deep Learning

Single Image Depth Estimation via Deep Learning Single Image Depth Estimation via Deep Learning Wei Song Stanford University Stanford, CA Abstract The goal of the project is to apply direct supervised deep learning to the problem of monocular depth

More information

EFFICIENT BAYESIAN INFERENCE USING FULLY CONNECTED CONDITIONAL RANDOM FIELDS WITH STOCHASTIC CLIQUES. M. J. Shafiee, A. Wong, P. Siva, P.

EFFICIENT BAYESIAN INFERENCE USING FULLY CONNECTED CONDITIONAL RANDOM FIELDS WITH STOCHASTIC CLIQUES. M. J. Shafiee, A. Wong, P. Siva, P. EFFICIENT BAYESIAN INFERENCE USING FULLY CONNECTED CONDITIONAL RANDOM FIELDS WITH STOCHASTIC CLIQUES M. J. Shafiee, A. Wong, P. Siva, P. Fieguth Vision & Image Processing Lab, System Design Engineering

More information

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA)

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA) Detecting and Parsing of Visual Objects: Humans and Animals Alan Yuille (UCLA) Summary This talk describes recent work on detection and parsing visual objects. The methods represent objects in terms of

More information

Segmentation of Video Sequences using Spatial-temporal Conditional Random Fields

Segmentation of Video Sequences using Spatial-temporal Conditional Random Fields Segmentation of Video Sequences using Spatial-temporal Conditional Random Fields Lei Zhang and Qiang Ji Rensselaer Polytechnic Institute 110 8th St., Troy, NY 12180 {zhangl2@rpi.edu,qji@ecse.rpi.edu} Abstract

More information

Part 5: Structured Support Vector Machines

Part 5: Structured Support Vector Machines Part 5: Structured Support Vector Machines Sebastian Nowozin and Christoph H. Lampert Providence, 21st June 2012 1 / 34 Problem (Loss-Minimizing Parameter Learning) Let d(x, y) be the (unknown) true data

More information

Scene Segmentation in Adverse Vision Conditions

Scene Segmentation in Adverse Vision Conditions Scene Segmentation in Adverse Vision Conditions Evgeny Levinkov Max Planck Institute for Informatics, Saarbrücken, Germany levinkov@mpi-inf.mpg.de Abstract. Semantic road labeling is a key component of

More information

Image Retrieval with Structured Object Queries Using Latent Ranking SVM

Image Retrieval with Structured Object Queries Using Latent Ranking SVM Image Retrieval with Structured Object Queries Using Latent Ranking SVM Tian Lan 1, Weilong Yang 1, Yang Wang 2, and Greg Mori 1 Simon Fraser University 1 University of Manitoba 2 {tla58,wya16,mori}@cs.sfu.ca

More information

Seminar Heidelberg University

Seminar Heidelberg University Seminar Heidelberg University Mobile Human Detection Systems Pedestrian Detection by Stereo Vision on Mobile Robots Philip Mayer Matrikelnummer: 3300646 Motivation Fig.1: Pedestrians Within Bounding Box

More information

Good Regions to Deblur

Good Regions to Deblur Good Regions to Deblur Zhe Hu and Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced {zhu, mhyang}@ucmerced.edu Abstract. The goal of single image deblurring

More information

A MRF Shape Prior for Facade Parsing with Occlusions Supplementary Material

A MRF Shape Prior for Facade Parsing with Occlusions Supplementary Material A MRF Shape Prior for Facade Parsing with Occlusions Supplementary Material Mateusz Koziński, Raghudeep Gadde, Sergey Zagoruyko, Guillaume Obozinski and Renaud Marlet Université Paris-Est, LIGM (UMR CNRS

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Network Lasso: Clustering and Optimization in Large Graphs

Network Lasso: Clustering and Optimization in Large Graphs Network Lasso: Clustering and Optimization in Large Graphs David Hallac, Jure Leskovec, Stephen Boyd Stanford University September 28, 2015 Convex optimization Convex optimization is everywhere Introduction

More information

A Trainable Object-Tracking Method using Equivalent Retinotopical Sampling and Fisher Kernel

A Trainable Object-Tracking Method using Equivalent Retinotopical Sampling and Fisher Kernel A Trainable Object-Tracking Method using Equivalent Retinotopical Sampling and Fisher Kernel Hirotaka Niitsuma DENSO IT LABORATORY, INC. Abstract In this paper, two object detection techniques in computer

More information

Detecting Burnscar from Hyperspectral Imagery via Sparse Representation with Low-Rank Interference

Detecting Burnscar from Hyperspectral Imagery via Sparse Representation with Low-Rank Interference Detecting Burnscar from Hyperspectral Imagery via Sparse Representation with Low-Rank Interference Minh Dao 1, Xiang Xiang 1, Bulent Ayhan 2, Chiman Kwan 2, Trac D. Tran 1 Johns Hopkins Univeristy, 3400

More information

EMERGENCE OF SIMPLE-CELL RECEPTIVE PROPERTIES BY LEARNING A SPARSE CODE FOR NATURAL IMAGES

EMERGENCE OF SIMPLE-CELL RECEPTIVE PROPERTIES BY LEARNING A SPARSE CODE FOR NATURAL IMAGES EMERGENCE OF SIMPLE-CELL RECEPTIVE PROPERTIES BY LEARNING A SPARSE CODE FOR NATURAL IMAGES Bruno A. Olshausen & David J. Field Presenter: Ozgur Yigit Balkan Outline Linear data representations Sparse Vector

More information

Comparison of Means: The Analysis of Variance: ANOVA

Comparison of Means: The Analysis of Variance: ANOVA Comparison of Means: The Analysis of Variance: ANOVA The Analysis of Variance (ANOVA) is one of the most widely used basic statistical techniques in experimental design and data analysis. In contrast to

More information

arxiv: v3 [cs.cv] 23 Mar 2012

arxiv: v3 [cs.cv] 23 Mar 2012 POSTERIOR MEAN SUPER-RESOLUTION WITH A COMPOUND GAUSSIAN MARKOV RANDOM FIELD PRIOR Takayuki Katsuki Masato Inoue Department of Electrical Engineering and Bioscience Waseda University 3 4 Okubo Shinjuku

More information

Detection of Man-made Structures in Natural Images

Detection of Man-made Structures in Natural Images Detection of Man-made Structures in Natural Images Tim Rees December 17, 2004 Abstract Object detection in images is a very active research topic in many disciplines. Probabilistic methods have been applied

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Bayes Nets: Inference (Finish) Variable Elimination Graph-view of VE: Fill-edges, induced width

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Estimating Human Pose in Images. Navraj Singh December 11, 2009

Estimating Human Pose in Images. Navraj Singh December 11, 2009 Estimating Human Pose in Images Navraj Singh December 11, 2009 Introduction This project attempts to improve the performance of an existing method of estimating the pose of humans in still images. Tasks

More information

Structured Models in. Dan Huttenlocher. June 2010

Structured Models in. Dan Huttenlocher. June 2010 Structured Models in Computer Vision i Dan Huttenlocher June 2010 Structured Models Problems where output variables are mutually dependent or constrained E.g., spatial or temporal relations Such dependencies

More information

Recent Advances in Frank-Wolfe Optimization. Simon Lacoste-Julien

Recent Advances in Frank-Wolfe Optimization. Simon Lacoste-Julien Recent Advances in Frank-Wolfe Optimization Simon Lacoste-Julien OSL 2017 Les Houches April 13 th, 2017 Outline Frank-Wolfe algorithm review global linear convergence of FW optimization variants condition

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

How to Price a House

How to Price a House How to Price a House An Interpretable Bayesian Approach Dustin Lennon dustin@inferentialist.com Inferentialist Consulting Seattle, WA April 9, 2014 Introduction Project to tie up loose ends / came out

More information

4.5 The smoothed bootstrap

4.5 The smoothed bootstrap 4.5. THE SMOOTHED BOOTSTRAP 47 F X i X Figure 4.1: Smoothing the empirical distribution function. 4.5 The smoothed bootstrap In the simple nonparametric bootstrap we have assumed that the empirical distribution

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Simultaneous Clustering and Tracklet Linking for Multi-Face Tracking in Videos

Simultaneous Clustering and Tracklet Linking for Multi-Face Tracking in Videos 2013 IEEE International Conference on Computer Vision Simultaneous Clustering and Tracklet Linking for Multi-Face Tracking in Videos Baoyuan Wu National Laboratory of Pattern Recognition, CASIA Beijing

More information

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Presented by Hu Han Jan. 30 2014 For CSE 902 by Prof. Anil K. Jain: Selected

More information

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models Group Prof. Daniel Cremers 4a. Inference in Graphical Models Inference on a Chain (Rep.) The first values of µ α and µ β are: The partition function can be computed at any node: Overall, we have O(NK 2

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

An ICA based Approach for Complex Color Scene Text Binarization

An ICA based Approach for Complex Color Scene Text Binarization An ICA based Approach for Complex Color Scene Text Binarization Siddharth Kherada IIIT-Hyderabad, India siddharth.kherada@research.iiit.ac.in Anoop M. Namboodiri IIIT-Hyderabad, India anoop@iiit.ac.in

More information

K-means and Hierarchical Clustering

K-means and Hierarchical Clustering K-means and Hierarchical Clustering Xiaohui Xie University of California, Irvine K-means and Hierarchical Clustering p.1/18 Clustering Given n data points X = {x 1, x 2,, x n }. Clustering is the partitioning

More information

Algorithms for Markov Random Fields in Computer Vision

Algorithms for Markov Random Fields in Computer Vision Algorithms for Markov Random Fields in Computer Vision Dan Huttenlocher November, 2003 (Joint work with Pedro Felzenszwalb) Random Field Broadly applicable stochastic model Collection of n sites S Hidden

More information

SURGE: Surface Regularized Geometry Estimation from a Single Image

SURGE: Surface Regularized Geometry Estimation from a Single Image SURGE: Surface Regularized Geometry Estimation from a Single Image Peng Wang 1 Xiaohui Shen 2 Bryan Russell 2 Scott Cohen 2 Brian Price 2 Alan Yuille 3 1 University of California, Los Angeles 2 Adobe Research

More information

Networks and Algebraic Statistics

Networks and Algebraic Statistics Networks and Algebraic Statistics Dane Wilburne Illinois Institute of Technology UC Davis CACAO Seminar Davis, CA October 4th, 2016 dwilburne@hawk.iit.edu (IIT) Networks and Alg. Stat. Oct. 2016 1 / 23

More information

Fully-Automatic Landmark detection in Skull X-Ray images

Fully-Automatic Landmark detection in Skull X-Ray images Fully-Automatic Landmark detection in Skull X-Ray images Cheng Chen 1, Ching-Wei Wang 2,3, Cheng-Ta Huang 2, Chung-Hsing Li 3,4, and Guoyan Zheng 1 1 Institute for Surgical Technology and Biomechanics,

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lectures 15 and 16: Optic Flow

CS 565 Computer Vision. Nazar Khan PUCIT Lectures 15 and 16: Optic Flow CS 565 Computer Vision Nazar Khan PUCIT Lectures 15 and 16: Optic Flow Introduction Basic Problem given: image sequence f(x, y, z), where (x, y) specifies the location and z denotes time wanted: displacement

More information

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss ICRA 2016 Tutorial on SLAM Graph-Based SLAM and Sparsity Cyrill Stachniss 1 Graph-Based SLAM?? 2 Graph-Based SLAM?? SLAM = simultaneous localization and mapping 3 Graph-Based SLAM?? SLAM = simultaneous

More information

EC-433 Digital Image Processing

EC-433 Digital Image Processing EC-433 Digital Image Processing Lecture 4 Digital Image Fundamentals Dr. Arslan Shaukat Acknowledgement: Lecture slides material from Dr. Rehan Hafiz, Gonzalez and Woods Interpolation Required in image

More information

Toward the Who and Where of Action Recognition

Toward the Who and Where of Action Recognition Toward the Who and Where of Action Recognition Jason J. Corso! Associate Professor! Electrical Engineering and Computer Science! University of Michigan!! Joint work with Chenliang Xu (PhD Student)!! http://web.eecs.umich.edu/~jjcorso

More information

Data-driven Depth Inference from a Single Still Image

Data-driven Depth Inference from a Single Still Image Data-driven Depth Inference from a Single Still Image Kyunghee Kim Computer Science Department Stanford University kyunghee.kim@stanford.edu Abstract Given an indoor image, how to recover its depth information

More information

A Brief Introduction to Reinforcement Learning

A Brief Introduction to Reinforcement Learning A Brief Introduction to Reinforcement Learning Minlie Huang ( ) Dept. of Computer Science, Tsinghua University aihuang@tsinghua.edu.cn 1 http://coai.cs.tsinghua.edu.cn/hml Reinforcement Learning Agent

More information

Approximate Parameter Learning in Conditional Random Fields: An Empirical Investigation

Approximate Parameter Learning in Conditional Random Fields: An Empirical Investigation Approximate Parameter Learning in Conditional Random Fields: An Empirical Investigation Filip Korč and Wolfgang Förstner University of Bonn, Department of Photogrammetry, Nussallee 15, 53115 Bonn, Germany

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 10, October 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A New Efficient

More information

Probabilistic Cascade Random Fields for Man-Made Structure Detection

Probabilistic Cascade Random Fields for Man-Made Structure Detection Probabilistic Cascade Random Fields for Man-Made Structure Detection Songfeng Zheng Department of Mathematics Missouri State University, Springfield, MO 65897, USA SongfengZheng@MissouriState.edu Abstract.

More information

Efficient Semi-supervised Spectral Co-clustering with Constraints

Efficient Semi-supervised Spectral Co-clustering with Constraints 2010 IEEE International Conference on Data Mining Efficient Semi-supervised Spectral Co-clustering with Constraints Xiaoxiao Shi, Wei Fan, Philip S. Yu Department of Computer Science, University of Illinois

More information

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University Infinite data. Filtering data streams

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University  Infinite data. Filtering data streams /9/7 Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them

More information

Exploiting Sparsity for Real Time Video Labelling

Exploiting Sparsity for Real Time Video Labelling 2013 IEEE International Conference on Computer Vision Workshops Exploiting Sparsity for Real Time Video Labelling Lachlan Horne, Jose M. Alvarez, and Nick Barnes College of Engineering and Computer Science,

More information

Introduction. Wavelets, Curvelets [4], Surfacelets [5].

Introduction. Wavelets, Curvelets [4], Surfacelets [5]. Introduction Signal reconstruction from the smallest possible Fourier measurements has been a key motivation in the compressed sensing (CS) research [1]. Accurate reconstruction from partial Fourier data

More information

Towards Spatio-Temporally Consistent Semantic Mapping

Towards Spatio-Temporally Consistent Semantic Mapping Towards Spatio-Temporally Consistent Semantic Mapping Zhe Zhao, Xiaoping Chen University of Science and Technology of China, zhaozhe@mail.ustc.edu.cn,xpchen@ustc.edu.cn Abstract. Intelligent robots require

More information

Extracting Smooth and Transparent Layers from a Single Image

Extracting Smooth and Transparent Layers from a Single Image Extracting Smooth and Transparent Layers from a Single Image Sai-Kit Yeung Tai-Pang Wu Chi-Keung Tang saikit@ust.hk pang@ust.hk cktang@cse.ust.hk Vision and Graphics Group The Hong Kong University of Science

More information

Lecture 21 : A Hybrid: Deep Learning and Graphical Models

Lecture 21 : A Hybrid: Deep Learning and Graphical Models 10-708: Probabilistic Graphical Models, Spring 2018 Lecture 21 : A Hybrid: Deep Learning and Graphical Models Lecturer: Kayhan Batmanghelich Scribes: Paul Liang, Anirudha Rayasam 1 Introduction and Motivation

More information

CS-465 Computer Vision

CS-465 Computer Vision CS-465 Computer Vision Nazar Khan PUCIT 9. Optic Flow Optic Flow Nazar Khan Computer Vision 2 / 25 Optic Flow Nazar Khan Computer Vision 3 / 25 Optic Flow Where does pixel (x, y) in frame z move to in

More information

Community detection. Leonid E. Zhukov

Community detection. Leonid E. Zhukov Community detection Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Network Science Leonid E.

More information

Semantic Segmentation without Annotating Segments

Semantic Segmentation without Annotating Segments Chapter 3 Semantic Segmentation without Annotating Segments Numerous existing object segmentation frameworks commonly utilize the object bounding box as a prior. In this chapter, we address semantic segmentation

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu Discrete Pixel-Labeling Optimization on MRF 2/37 Many computer vision tasks

More information

When Network Embedding meets Reinforcement Learning?

When Network Embedding meets Reinforcement Learning? When Network Embedding meets Reinforcement Learning? ---Learning Combinatorial Optimization Problems over Graphs Changjun Fan 1 1. An Introduction to (Deep) Reinforcement Learning 2. How to combine NE

More information

When Sparsity Meets Low-Rankness: Transform Learning With Non-Local Low-Rank Constraint For Image Restoration

When Sparsity Meets Low-Rankness: Transform Learning With Non-Local Low-Rank Constraint For Image Restoration When Sparsity Meets Low-Rankness: Transform Learning With Non-Local Low-Rank Constraint For Image Restoration Bihan Wen, Yanjun Li and Yoram Bresler Department of Electrical and Computer Engineering Coordinated

More information

Learning Algorithms for Medical Image Analysis. Matteo Santoro slipguru

Learning Algorithms for Medical Image Analysis. Matteo Santoro slipguru Learning Algorithms for Medical Image Analysis Matteo Santoro slipguru santoro@disi.unige.it June 8, 2010 Outline 1. learning-based strategies for quantitative image analysis 2. automatic annotation of

More information

Shape Co-analysis. Daniel Cohen-Or. Tel-Aviv University

Shape Co-analysis. Daniel Cohen-Or. Tel-Aviv University Shape Co-analysis Daniel Cohen-Or Tel-Aviv University 1 High-level Shape analysis [Fu et al. 08] Upright orientation [Mehra et al. 08] Shape abstraction [Kalograkis et al. 10] Learning segmentation [Mitra

More information

COMP 558 lecture 19 Nov. 17, 2010

COMP 558 lecture 19 Nov. 17, 2010 COMP 558 lecture 9 Nov. 7, 2 Camera calibration To estimate the geometry of 3D scenes, it helps to know the camera parameters, both external and internal. The problem of finding all these parameters is

More information

Learning Data Terms for Non-blind Deblurring Supplemental Material

Learning Data Terms for Non-blind Deblurring Supplemental Material Learning Data Terms for Non-blind Deblurring Supplemental Material Jiangxin Dong 1, Jinshan Pan 2, Deqing Sun 3, Zhixun Su 1,4, and Ming-Hsuan Yang 5 1 Dalian University of Technology dongjxjx@gmail.com,

More information

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 16 Dr. Ted Ralphs IE406 Lecture 16 1 Reading for This Lecture Bertsimas 7.1-7.3 IE406 Lecture 16 2 Network Flow Problems Networks are used to model

More information

CRFs for Image Classification

CRFs for Image Classification CRFs for Image Classification Devi Parikh and Dhruv Batra Carnegie Mellon University Pittsburgh, PA 15213 {dparikh,dbatra}@ece.cmu.edu Abstract We use Conditional Random Fields (CRFs) to classify regions

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2016 Lecturer: Trevor Cohn 20. PGM Representation Next Lectures Representation of joint distributions Conditional/marginal independence * Directed vs

More information

Toward a rigorous statistical framework for brain mapping

Toward a rigorous statistical framework for brain mapping Toward a rigorous statistical framework for brain mapping Bertrand Thirion, bertrand.thirion@inria.fr 1 Cognitive neuroscience How are cognitive activities affected or controlled by neural circuits in

More information

Nonlinear data separation and fusion for multispectral image classification

Nonlinear data separation and fusion for multispectral image classification Nonlinear data separation and fusion for multispectral image classification Hela Elmannai #*1, Mohamed Anis Loghmari #2, Mohamed Saber Naceur #3 # Laboratoire de Teledetection et Systeme d informations

More information

CS 179 Lecture 16. Logistic Regression & Parallel SGD

CS 179 Lecture 16. Logistic Regression & Parallel SGD CS 179 Lecture 16 Logistic Regression & Parallel SGD 1 Outline logistic regression (stochastic) gradient descent parallelizing SGD for neural nets (with emphasis on Google s distributed neural net implementation)

More information

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal.

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal. Models for grids Computer vision: models, learning and inference Chapter 9 Graphical Models Consider models where one unknown world state at each pixel in the image takes the form of a grid. Loops in the

More information