Homogeneous Coordinates

Size: px
Start display at page:

Download "Homogeneous Coordinates"

Transcription

1 COMS W4172 3D Math 2 Steven Feiner Department of Computer Science Columbia Universit New York, NY Februar 1, Homogeneous Coordinates w X W Y X W Y 1 W w = 1 plane X X W W Point Y W Y, for nonzero W W W W 1 1 Vectors have the form Note: Vectors (points at infinit) reside in the w = plane 2

2 Homogeneous Transformations Given P, P' MP, where M is 1 1 d Translation Td (, d) 1 d 1 s Scale Ss (, s) s 1 cos sin Rotation R( ) sin cos 1 3 Composition of Transformations R(θ) rotates about the origin 1 To rotate about point P 1 = 1 Translate P 1 to the origin 1 Rotate b R(θ) Translate origin back to P 1 T( 1, 1) R( ) T( 1, 1) 1 1 cos sin sin cos cos sin 1(1 cos ) 1sin sin cos 1(1cos ) 1sin 1 Rotate about origin P 1 Original house Rotate about P 1 After translation of P 1 to origin After rotation b θ After translation back to original P 1 4

3 Eample: Transforming a Template To scale and rotate a template about point P 1 and position at point P 2 Translate P 1 to the origin Scale Rotate Translate origin to P 2 P 2 P 1 Original house Translate P 1 to origin Scale Rotate Translate to position P 2 5 Matri Multiplication Matri multiplication is Associative but not in general Commutative However, M 1 M 2 is commutative in the following 2D cases M 1 M 2 Translate Translate Scale Scale Rotate Rotate Scale, where s = s Rotate Scale Rotate, where θ = n * 18 for integral n 6

4 Rigid Bod Transformations Rigid bod transformations result from an sequence of rotations and translations Upper left 22 submatri rows a1 b1 ab are unit vectors (length = 1) ab a b a2 b2 are perpendicular (dot product = ) rotate into the and aes Upper left 22 submatri columns ab a b cos, are unit vectors (length = 1) are perpendicular (dot product = ) are vectors into which the and aes rotate a aa cosθ sinθ d' Upper left 22 matri sinθ cosθ d' is special orthogonal: 1 AA = I, det A = where θ is the angle between a and b 7 Affine Transformations Affine transformations are defined b an arbitrar sequence of rotation, scale, and translation transformations The preserve parallelism of lines but not length of lines angle between lines The matri is of the form rs11 rs12 d' rs21 rs22 d' 1 8

5 Shear Transformations 1 a a 1 a SH SH b 1 b b (,1) (1,1) (a,1) (1+a,1) Shears are affine SH (,) (1,) (,) (1,) (,1) (1,1+b) SH (,) (1,b) 9 3D Coordinate Sstems OpenGL Right-handed coordinate sstem Looking toward origin from + ais, a 9 CCW rotation takes one + ais into another, z, z Direct3D and Unit Left-handed coordinate sstem Looking toward origin from + ais, a 9 CW rotation takes one + ais into another, z, z z z 1

6 Direct3D vs. OpenGL and Unit Direct3D Points documented as row vectors Matrices written conventionall Stored in row-major order v' = v A BC LH coord ss (Direct3D) OpenGL and Unit Points documented as column vectors (Same vector as a point in Direct3D) Matrices written conventionall (Transpose of a matri in Direct3D) But, stored in column-major order! (Same arra as a matri in Direct3D) v' = C B A v RH coord ss (OpenGL) vs. LH coord ss (Unit) Wh? To maintain code compatibilit between original IRIS GL and later OpenGL! Vectors and arras are stored and processed identicall in each. Onl the documentation differs. 11 3D Points OpenGL and Unit 4 element column vector z 1 Direct3D and XNA 4 element row vector z 1 Note: Points in Unit are tpicall epressed as 3 element vectors Transformations in Unit are tpicall epressed as specific fields in the UI and functions in code Rotations are represented internall in Unit as quaternions 12

7 3D Transformations (for column vectors) 1 d 1 d Td (, d, dz) 1 dz 1 s s Ss (, s, sz) sz 1 R ( ) z R ( ) R ( ) cos sin sin cos cos sin sin cos 1 cos sin 1 sin cos D Rigid Bod Transformations Upper left 33 submatri rows are unit vectors (length = 1) are mutuall perpendicular (dot product = ) rotate into the,, and z aes Upper left 33 submatri columns are unit vectors (length = 1) are mutuall perpendicular (dot product = ) are vectors into which the,, and z aes rotate R ( ) z R ( ) R ( ) cos sin sin cos cos sin sin cos 1 cos sin 1 sin cos 1 14

8 3D Shear Transformations Representing shear relative to z,, and aes 1 sh 1 sh SH ( sh, sh ) sh 1 SHz( sh, shz ) shz sh 1 SHz( sh, shz ) shz More on Rotation Rotation matrices can accumulate error Rows/columns can grow/shrink to be other than unit length Rows/columns can skew so that the are no longer mutuall orthogonal 16

9 More on Rotation A rotation can also be represented b an ordered set of 3 rotations about a set of mutuall orthogonal aes E.g., roll, pitch, aw Can result in gimbal lock 17 Gimbal Lock 3 gimbals: 1, 2, 3 Gimbals are concentric mounting rings Each ring pivots on an ais to provide 1 degree of rotational freedom Rotation aes are orthogonal Gimbal lock occurs when 2 aes align 1 degree of rotational freedom is lost Platform containing inertial measurement unit (3 gros) 18

10 Gimbal Lock Apollo Inertial Measurement Unit (Museum of Flight) 19 Gimbal Lock Rotation about Y ais 2

11 Gimbal Lock Rotation about Z ais 21 Gimbal Lock Rotation about X ais Lost degree of rotational freedom 1 and 3 are aligned! Can t respond to roll 22

12 Gimbal Lock Eperiencing gimbal lock with a 3D tripod head 23 Gimbal Lock Eperiencing gimbal lock with a 3D tripod head Pitch Roll Adjust starting from object (camera) roll, pitch, aw around aes of parent s (tripod) coord ss Adjust starting from parent (tripod) aw, pitch, roll around aes of object s (camera) coord ss Yaw 24

13 Demo: The Perils of Roll, Pitch, & Yaw 25

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University Computer Graphics P4 Transformations Aleksandra Pizurica Ghent Universit Telecommunications and Information Processing Image Processing and Interpretation Group Transformations in computer graphics Goal:

More information

3D Transformations. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 11

3D Transformations. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 11 3D Transformations CS 4620 Lecture 11 1 Announcements A2 due tomorrow Demos on Monday Please sign up for a slot Post on piazza 2 Translation 3 Scaling 4 Rotation about z axis 5 Rotation about x axis 6

More information

Transformations. Examples of transformations: shear. scaling

Transformations. Examples of transformations: shear. scaling Transformations Eamples of transformations: translation rotation scaling shear Transformations More eamples: reflection with respect to the y-ais reflection with respect to the origin Transformations Linear

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

CS559: Computer Graphics

CS559: Computer Graphics CS559: Computer Graphics Lecture 8: 3D Transforms Li Zhang Spring 28 Most Slides from Stephen Chenne Finish Color space Toda 3D Transforms and Coordinate sstem Reading: Shirle ch 6 RGB and HSV Green(,,)

More information

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Theor, Algorithms, and Applications Hong in State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794-44 Tel: (63)632-845; Fa:

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 26 Image Warping image filtering: change range of image g() T(f()) f T f image

More information

Transformations II. Week 2, Wed Jan 17

Transformations II. Week 2, Wed Jan 17 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 27 Tamara Munzner Transformations II Week 2, Wed Jan 7 http://www.ugrad.cs.ubc.ca/~cs34/vjan27 Readings for Jan 5-22 FCG Chap 6 Transformation

More information

Scene Graphs & Modeling Transformations COS 426

Scene Graphs & Modeling Transformations COS 426 Scene Graphs & Modeling Transformations COS 426 3D Object Representations Points Range image Point cloud Surfaces Polgonal mesh Subdivision Parametric Implicit Solids Voels BSP tree CSG Sweep High-level

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 2 Image Transformations image filtering: change range of image g() T(f())

More information

More on Transformations. COS 426, Spring 2019 Princeton University

More on Transformations. COS 426, Spring 2019 Princeton University More on Transformations COS 426, Spring 2019 Princeton Universit Agenda Grab-bag of topics related to transformations: General rotations! Euler angles! Rodrigues s rotation formula Maintaining camera transformations!

More information

Modeling Transformations Revisited

Modeling Transformations Revisited Modeling Transformations Revisited Basic 3D Transformations Translation Scale Shear Rotation 3D Transformations Same idea as 2D transformations o Homogeneous coordinates: (,,z,w) o 44 transformation matrices

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

Computer Graphics. 2D transformations. Transforma3ons in computer graphics. Overview. Basic classes of geometric transforma3ons

Computer Graphics. 2D transformations. Transforma3ons in computer graphics. Overview. Basic classes of geometric transforma3ons Transforma3ons in computer graphics omputer Graphics Transforma3ons leksandra Piurica Goal: introduce methodolog to hange coordinate sstem Move and deform objects Principle: transforma3ons are applied

More information

3D Transformations. CS 4620 Lecture 10. Cornell CS4620 Fall 2014 Lecture Steve Marschner (with previous instructors James/Bala)

3D Transformations. CS 4620 Lecture 10. Cornell CS4620 Fall 2014 Lecture Steve Marschner (with previous instructors James/Bala) 3D Transformations CS 4620 Lecture 10 1 Translation 2 Scaling 3 Rotation about z axis 4 Rotation about x axis 5 Rotation about y axis 6 Properties of Matrices Translations: linear part is the identity

More information

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Angel: Interactive Computer Graphics 4E Addison-Wesley 25 1 Objectives

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Overview Ra-Tracing so far Modeling transformations Ra Tracing Image RaTrace(Camera camera, Scene scene, int width, int heigh,

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Spring 2 Image Transformations image filtering: change range of image g() = T(f())

More information

Transforms. COMP 575/770 Spring 2013

Transforms. COMP 575/770 Spring 2013 Transforms COMP 575/770 Spring 2013 Transforming Geometry Given any set of points S Could be a 2D shape, a 3D object A transform is a function T that modifies all points in S: T S S T v v S Different transforms

More information

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates Coordinate Sstems Point Representation in two dimensions Cartesian Coordinates: (; ) Polar Coordinates: (; ) (, ) ρ θ (ρ, θ) Cartesian Coordinates Polar Coordinates p = CPS1, 9: Computer Graphics D Geometric

More information

Geometric Transformations

Geometric Transformations Geometric Transformations CS 4620 Lecture 9 2017 Steve Marschner 1 A little quick math background Notation for sets, functions, mappings Linear and affine transformations Matrices Matrix-vector multiplication

More information

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11 3D graphics rendering pipeline (1) Geometr Rasteriation 3D Coordinates & Transformations Prof. Aaron Lanterman (Based on slides b Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering

More information

Transformations Week 9, Lecture 18

Transformations Week 9, Lecture 18 CS 536 Computer Graphics Transformations Week 9, Lecture 18 2D Transformations David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 3 2D Affine Transformations

More information

1. We ll look at: Types of geometrical transformation. Vector and matrix representations

1. We ll look at: Types of geometrical transformation. Vector and matrix representations Tob Howard COMP272 Computer Graphics and Image Processing 3: Transformations Tob.Howard@manchester.ac.uk Introduction We ll look at: Tpes of geometrical transformation Vector and matri representations

More information

3D Coordinates & Transformations

3D Coordinates & Transformations 3D Coordinates & Transformations Prof. Aaron Lanterman (Based on slides b Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering Georgia Institute of Technolog 3D graphics rendering pipeline

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Thomas Funkhouser Princeton Universit CS 426, Fall 2 Modeling Transformations Specif transformations for objects Allos definitions of objects in on coordinate sstems Allos use

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Announcement Assignment 2 has been posted: Due: 10/24 ASAP: Download the code and make sure it compiles» On windows: just build

More information

Modeling Transformations

Modeling Transformations Transformations Transformations Specif transformations for objects o Allos definitions of objects in on coordinate sstems o Allos use of object definition multiple times in a scene Adam Finkelstein Princeton

More information

What and Why Transformations?

What and Why Transformations? 2D transformations What and Wh Transformations? What? : The geometrical changes of an object from a current state to modified state. Changing an object s position (translation), orientation (rotation)

More information

2D transformations and homogeneous coordinates

2D transformations and homogeneous coordinates 2D transformations and homogeneous coordinates Dr Nicolas Holzschuch Universit of Cape Ton e-mail: holzschu@cs.uct.ac.za Map of the lecture Transformations in 2D: vector/matri notation eample: translation,

More information

Vector Algebra Transformations. Lecture 4

Vector Algebra Transformations. Lecture 4 Vector Algebra Transformations Lecture 4 Cornell CS4620 Fall 2008 Lecture 4 2008 Steve Marschner 1 Geometry A part of mathematics concerned with questions of size, shape, and relative positions of figures

More information

To Do. Course Outline. Course Outline. Goals. Motivation. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1

To Do. Course Outline. Course Outline. Goals. Motivation. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1 Fondations of Compter Graphics (Fall 212) CS 184, Lectre 3: Transformations 1 http://inst.eecs.berkele.ed/~cs184 Sbmit HW b To Do Start looking at HW 1 (simple, bt need to think) Ais-angle rotation and

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

Quaternions & Rotation in 3D Space

Quaternions & Rotation in 3D Space Quaternions & Rotation in 3D Space 1 Overview Quaternions: definition Quaternion properties Quaternions and rotation matrices Quaternion-rotation matrices relationship Spherical linear interpolation Concluding

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Structural Manipulation November 22, 2017 Rapid Structural Analysis Methods Emergence of large structural databases which do not allow manual (visual) analysis and require efficient 3-D search

More information

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is.

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is. Interactive Computer Graphics Warping and morphing Lecture 14+15: Warping and Morphing Lecture 14: Warping and Morphing: Slide 1 Lecture 14: Warping and Morphing: Slide 2 Warping and Morphing What is Warping

More information

Editing and Transformation

Editing and Transformation Lecture 5 Editing and Transformation Modeling Model can be produced b the combination of entities that have been edited. D: circle, arc, line, ellipse 3D: primitive bodies, etrusion and revolved of a profile

More information

Notes. University of British Columbia

Notes. University of British Columbia Notes Drop-bo is no. 14 You can hand in our assignments Assignment 0 due Fri. 4pm Assignment 1 is out Office hours toda 16:00 17:00, in lab or in reading room Uniersit of Uniersit of Chapter 4 - Reminder

More information

Image Warping. Many slides from Alyosha Efros + Steve Seitz. Photo by Sean Carroll

Image Warping. Many slides from Alyosha Efros + Steve Seitz. Photo by Sean Carroll Image Warping Man slides from Alosha Efros + Steve Seitz Photo b Sean Carroll Morphing Blend from one object to other with a series of local transformations Image Transformations image filtering: change

More information

How is project #1 going?

How is project #1 going? How is project # going? Last Lecture Edge Detection Filtering Pramid Toda Motion Deblur Image Transformation Removing Camera Shake from a Single Photograph Rob Fergus, Barun Singh, Aaron Hertzmann, Sam

More information

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1 Toda s class Geometric objects and transformations Wednesda, November 7, 27 Computer Graphics - Class 5 Vector operations Review of vector operations needed for working in computer graphics adding two

More information

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices Computergrafik Matthias Zwicker Universität Bern Herbst 2008 Today Transformations & matrices Introduction Matrices Homogeneous Affine transformations Concatenating transformations Change of Common coordinate

More information

Modeling Transformations

Modeling Transformations שיעור 3 גרפיקה ממוחשבת תשס"ח ב ליאור שפירא Modeling Transformations Heavil based on: Thomas Funkhouser Princeton Universit CS 426, Fall 2 Modeling Transformations Specif transformations for objects Allows

More information

GEOMETRIC TRANSFORMATIONS AND VIEWING

GEOMETRIC TRANSFORMATIONS AND VIEWING GEOMETRIC TRANSFORMATIONS AND VIEWING 2D and 3D 1/44 2D TRANSFORMATIONS HOMOGENIZED Transformation Scaling Rotation Translation Matrix s x s y cosθ sinθ sinθ cosθ 1 dx 1 dy These 3 transformations are

More information

CS Computer Graphics: Transformations & The Synthetic Camera

CS Computer Graphics: Transformations & The Synthetic Camera CS 543 - Computer Graphics: Transformations The Snthetic Camera b Robert W. Lindeman gogo@wpi.edu (with help from Emmanuel Agu ;-) Introduction to Transformations A transformation changes an objects Size

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Affine Transformations in 3D

Affine Transformations in 3D Affine Transformations in 3D 1 Affine Transformations in 3D 1 Affine Transformations in 3D General form 2 Translation Elementary 3D Affine Transformations 3 Scaling Around the Origin 4 Along x-axis Shear

More information

Transformations III. Week 2, Fri Jan 19

Transformations III. Week 2, Fri Jan 19 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 2007 Tamara Munzner Transformations III Week 2, Fri Jan 9 http://www.ugrad.cs.ubc.ca/~cs34/vjan2007 Readings for Jan 5-22 FCG Chap 6 Transformation

More information

Image Warping (Szeliski Sec 2.1.2)

Image Warping (Szeliski Sec 2.1.2) Image Warping (Szeliski Sec 2..2) http://www.jeffre-martin.com CS94: Image Manipulation & Computational Photograph Aleei Efros, UC Berkele, Fall 7 Some slides from Steve Seitz Image Transformations image

More information

2D and 3D Transformations AUI Course Denbigh Starkey

2D and 3D Transformations AUI Course Denbigh Starkey 2D and 3D Transformations AUI Course Denbigh Starkey. Introduction 2 2. 2D transformations using Cartesian coordinates 3 2. Translation 3 2.2 Rotation 4 2.3 Scaling 6 3. Introduction to homogeneous coordinates

More information

3D Transformations World Window to Viewport Transformation Week 2, Lecture 4

3D Transformations World Window to Viewport Transformation Week 2, Lecture 4 CS 430/536 Computer Graphics I 3D Transformations World Window to Viewport Transformation Week 2, Lecture 4 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory

More information

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations CS 445 / 645 Introduction to Computer Graphics Lecture 21 Representing Rotations Parameterizing Rotations Straightforward in 2D A scalar, θ, represents rotation in plane More complicated in 3D Three scalars

More information

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices Uses of Transformations 2D transformations Homogeneous coordinates odeling: position and resie parts of a comple model; Viewing: define and position the virtual camera Animation: define how objects move/change

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 8: Geometric transformations Szeliski: Chapter 3.6 Reading Announcements Project 2 out today, due Oct. 4 (demo at end of class today) Image alignment Why don

More information

Transformations: 2D Transforms

Transformations: 2D Transforms 1. Translation Transformations: 2D Transforms Relocation of point WRT frame Given P = (x, y), translation T (dx, dy) Then P (x, y ) = T (dx, dy) P, where x = x + dx, y = y + dy Using matrix representation

More information

Announcements. Equation of Perspective Projection. Image Formation and Cameras

Announcements. Equation of Perspective Projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 22-4 Irfanview: http://www.irfanview.com/ is a good Windows utilit for manipulating images.

More information

2D/3D Geometric Transformations and Scene Graphs

2D/3D Geometric Transformations and Scene Graphs 2D/3D Geometric Transformations and Scene Graphs Week 4 Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University 1 A little quick math background

More information

3-Dimensional Viewing

3-Dimensional Viewing CHAPTER 6 3-Dimensional Vieing Vieing and projection Objects in orld coordinates are projected on to the vie plane, hich is defined perpendicular to the vieing direction along the v -ais. The to main tpes

More information

Image Warping CSE399b, Spring 07 Computer Vision

Image Warping CSE399b, Spring 07 Computer Vision Image Warping CSE399b, Spring 7 Computer Vision http://maps.a9.com http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html Autostiching on A9.com

More information

Chapter 3 : Computer Animation

Chapter 3 : Computer Animation Chapter 3 : Computer Animation Histor First animation films (Disne) 30 drawings / second animator in chief : ke frames others : secondar drawings Use the computer to interpolate? positions orientations

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points Coordinate Sstems Coordinate sstems used in graphics Screen coordinates: the

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

2D Object Definition (1/3)

2D Object Definition (1/3) 2D Object Definition (1/3) Lines and Polylines Lines drawn between ordered points to create more complex forms called polylines Same first and last point make closed polyline or polygon Can intersect itself

More information

What does OpenGL do?

What does OpenGL do? Theor behind Geometrical Transform What does OpenGL do? So the user specifies a lot of information Ee Center Up Near, far, UP EE Left, right top, bottom, etc. f b CENTER left right top bottom What does

More information

Transforms II. Overview. Homogeneous Coordinates 3-D Transforms Viewing Projections. Homogeneous Coordinates. x y z w

Transforms II. Overview. Homogeneous Coordinates 3-D Transforms Viewing Projections. Homogeneous Coordinates. x y z w Transforms II Overvie Homogeneous Coordinates 3- Transforms Vieing Projections 2 Homogeneous Coordinates Allos translations to be included into matri transform. Allos us to distinguish beteen a vector

More information

Orientation & Quaternions

Orientation & Quaternions Orientation & Quaternions Orientation Position and Orientation The position of an object can be represented as a translation of the object from the origin The orientation of an object can be represented

More information

To Do. Computer Graphics (Fall 2004) Course Outline. Course Outline. Motivation. Motivation

To Do. Computer Graphics (Fall 2004) Course Outline. Course Outline. Motivation. Motivation Comuter Grahics (Fall 24) COMS 416, Lecture 3: ransformations 1 htt://www.cs.columbia.edu/~cs416 o Do Start (thinking about) assignment 1 Much of information ou need is in this lecture (slides) Ask A NOW

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

Chap 7, 2009 Spring Yeong Gil Shin

Chap 7, 2009 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 29 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a snthetic camera) Specification

More information

EECE 478. Learning Objectives. Learning Objectives. Linear Algebra and 3D Geometry. Linear algebra in 3D. Coordinate systems

EECE 478. Learning Objectives. Learning Objectives. Linear Algebra and 3D Geometry. Linear algebra in 3D. Coordinate systems EECE 478 Linear Algebra and 3D Geometry Learning Objectives Linear algebra in 3D Define scalars, points, vectors, lines, planes Manipulate to test geometric properties Coordinate systems Use homogeneous

More information

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1]

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D A vector is specified b its coordinates, so it is defined relative to a reference frame. The same vector will have different coordinates in

More information

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University 2D Image Transforms 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Extract features from an image what do we do next? Feature matching (object recognition, 3D reconstruction, augmented

More information

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship?

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship? Utah School of Computing Fall 25 Transformations II CS46 Computer Graphics From Rich Riesenfeld Fall 25 Arbitrar 3D Rotation What is its inverse? What is its transpose? Can we constructivel elucidate this

More information

Name: [20 points] Consider the following OpenGL commands:

Name: [20 points] Consider the following OpenGL commands: Name: 2 1. [20 points] Consider the following OpenGL commands: glmatrimode(gl MODELVIEW); glloadidentit(); glrotatef( 90.0, 0.0, 1.0, 0.0 ); gltranslatef( 2.0, 0.0, 0.0 ); glscalef( 2.0, 1.0, 1.0 ); What

More information

2D Transformations. 7 February 2017 Week 5-2D Transformations 1

2D Transformations. 7 February 2017 Week 5-2D Transformations 1 2D Transformations 7 Februar 27 Week 5-2D Transformations Matri math Is there a difference between possible representations? a c b e d f ae bf ce df a c b d e f ae cf be df a b c d e f ae bf ce df 7 Februar

More information

Geometric transformations in 3D and coordinate frames. Computer Graphics CSE 167 Lecture 3

Geometric transformations in 3D and coordinate frames. Computer Graphics CSE 167 Lecture 3 Geometric transformations in 3D and coordinate frames Computer Graphics CSE 167 Lecture 3 CSE 167: Computer Graphics 3D points as vectors Geometric transformations in 3D Coordinate frames CSE 167, Winter

More information

CS354 Computer Graphics Rotations and Quaternions

CS354 Computer Graphics Rotations and Quaternions Slide Credit: Don Fussell CS354 Computer Graphics Rotations and Quaternions Qixing Huang April 4th 2018 Orientation Position and Orientation The position of an object can be represented as a translation

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

Transformation. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Transformation. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Transformation Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Announcement Project

More information

Computer Graphics: Viewing in 3-D. Course Website:

Computer Graphics: Viewing in 3-D. Course Website: Computer Graphics: Viewing in 3-D Course Website: http://www.comp.dit.ie/bmacnamee 2 Contents Transformations in 3-D How do transformations in 3-D work? 3-D homogeneous coordinates and matrix based transformations

More information

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner GLOBAL EDITION Interactive Computer Graphics A Top-Down Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner This page is intentionall left blank. 4.10 Concatenation of Transformations 219 in

More information

Geometric Transformations

Geometric Transformations CS INTRODUCTION TO COMPUTER GRAPHICS Geometric Transformations D and D Andries an Dam 9/9/7 /46 CS INTRODUCTION TO COMPUTER GRAPHICS How do we use Geometric Transformations? (/) Objects in a scene at the

More information

Warping, Morphing and Mosaics

Warping, Morphing and Mosaics Computational Photograph and Video: Warping, Morphing and Mosaics Prof. Marc Pollefes Dr. Gabriel Brostow Toda s schedule Last week s recap Warping Morphing Mosaics Toda s schedule Last week s recap Warping

More information

Viewing/Projection IV. Week 4, Fri Jan 29

Viewing/Projection IV. Week 4, Fri Jan 29 Universit of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munner Viewing/Projection IV Week 4, Fri Jan 29 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 News etra TA office hours in lab

More information

Motivation. General Idea. Goals. (Nonuniform) Scale. Outline. Foundations of Computer Graphics. s x Scale(s x. ,s y. 0 s y. 0 0 s z.

Motivation. General Idea. Goals. (Nonuniform) Scale. Outline. Foundations of Computer Graphics. s x Scale(s x. ,s y. 0 s y. 0 0 s z. Fondations of Compter Graphics Online Lectre 3: Transformations 1 Basic 2D Transforms Motivation Man different coordinate sstems in graphics World, model, bod, arms, To relate them, we mst transform between

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

Computer Graphics. Chapter 5 Geometric Transformations. Somsak Walairacht, Computer Engineering, KMITL

Computer Graphics. Chapter 5 Geometric Transformations. Somsak Walairacht, Computer Engineering, KMITL Chapter 5 Geometric Transformations Somsak Walairacht, Computer Engineering, KMITL 1 Outline Basic Two-Dimensional Geometric Transformations Matrix Representations and Homogeneous Coordinates Inverse Transformations

More information

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h Image warping Image warping image filtering: change range of image g() () = h(f()) h(f()) f h g h()=0.5+0.5 image warping: change domain of image g() = f(h()) f h g h([,])=[,/2] Parametric (global) warping

More information

Computer Animation II

Computer Animation II Computer Animation II Orientation interpolation Dynamics Some slides courtesy of Leonard McMillan and Jovan Popovic Lecture 13 6.837 Fall 2002 Interpolation Review from Thursday Splines Articulated bodies

More information

3D Kinematics. Consists of two parts

3D Kinematics. Consists of two parts D Kinematics Consists of two parts D rotation D translation The same as D D rotation is more complicated than D rotation (restricted to z-ais) Net, we will discuss the treatment for spatial (D) rotation

More information

Matrix Transformations. Affine Transformations

Matrix Transformations. Affine Transformations Matri ransformations Basic Graphics ransforms ranslation Scaling Rotation Reflection Shear All Can be Epressed As Linear Functions of the Original Coordinates : A + B + C D + E + F ' A ' D 1 B E C F 1

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS56 and Quaternions Piar s Luo Jr. A New Dimension - Time 3 4 Principles of Traditional Specifing Anticipation Suash/Stretch Secondar Action 5 6 C. Gotsman, G. Elber,. Ben-Chen Page CS56 Keframes anual

More information

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1 Transformations 1-1 Transformations are used within the entire viewing pipeline: Projection from world to view coordinate system View modifications: Panning Zooming Rotation 1-2 Transformations can also

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München Points in 3D 3D point Augmented vector Homogeneous

More information