Ray scene intersections

Size: px
Start display at page:

Download "Ray scene intersections"

Transcription

1 Ray scene intersections Josef Pelikán CGG MFF UK Praha Intersection 2018 Josef Pelikán, 1 / 26

2 Ray scene intersection result 3D position: t, [x,y,z] (2D position: [u,v]) (Normal: n, n u n v ) u v [x,y,z] n v P 0 p 1 t n n u input Ray: P 0, p 1 Intersection 2018 Josef Pelikán, 2 / 26

3 Plane ray: P(t) = P 0 + t p 1 P 0 p 1 n plane: n = [x n,y n,z n ] x x n + y y n + z z n + D = 0 t intersection t = (n P 0 + D) / (n p 1 ) negative: 2±, 3*, positive: 5±, 6*, 1/ computation of [x,y,z]: 3±, 3* Intersection 2018 Josef Pelikán, 3 / 26

4 Inverse transformation on the plane plane: Pl(u,v) = Pl 0 + u U + v V U = [x U,y U,z U ], V = [x V,y V,z V ] n = U V input: Pl, U, V, [x,y,z] result: [u,v] v [x,y,z] U u n V Pl 0 linear system u x u + v x v = x - Pl 0x solution [u,v]: 5±, 5*, 2/ u y u + v y v = y - Pl 0y Intersection 2018 Josef Pelikán, 4 / 26

5 Parallelogram ray: P(t) = P 0 + t p 1 P 0 parallelogram: R(u,v) = R 0 + u U + v V 0 u,v 1 p 1 t, [x,y,z], [u,v] U V n R 0 computing t, [x,y,z], [u,v], tests of u,v positive case total: 13±, 14*, 3/, 4 Intersection 2018 Josef Pelikán, 5 / 26

6 Triangle ray: P(t) = P 0 + t p 1 P 0 triangle: R(u,v) = R 0 + u U + v V 0 u,v,u+v 1 p 1 U t, [x,y,z], [u,v] V n R 0 computing t, [x,y,z], [u,v], tests of u,v positive case total: 14±, 14*, 3/, 3 Intersection 2018 Josef Pelikán, 6 / 26

7 General planar polygon ray: P(t) = P 0 + t p 1 P 0 p 1... n V 4 polygon plane: n = [x n,y n,z n ] x x n + y y n + z z n + D = 0 t, [x,y,z] V 2 V 3 polygon vertices: V 1, V 2,... V M V 8 V 1 computing t, [x,y,z], planar test: point polygon intersection with the plane: 8±, 9*, 1/ Intersection 2018 Josef Pelikán, 7 / 26

8 Parallel planes ray: p P(t) = P 0 + t p P n parallel planes: n = [x n,y n,z n ] x x n + y y n + z z n + D i = 0 t 1 t 2 intersections t i = (n P 0 + D i ) / (n p 1 ) the 1 st plane: 5±, 6*, 1/, every next one: 1±, 1/ Intersection 2018 Josef Pelikán, 8 / 26

9 Convex polyhedron defined as an intersection of K halfspaces at most K intersections ray vs. plane parallelism of planes can be used e.g. cuboid variables t in, t out initialized to 0, ray vs. one halfspace: t, resp., t t in = max{ t in, t } resp. t out = min{ t out, t } early exit if t in > t out t out t in Intersection 2018 Josef Pelikán, 9 / 26

10 Implicit surface ray: P(t) = P 0 + t p 1 implicit surface: F(x,y,z) = 0 example: (c - cos ax) cos z + (y + a sin ax) sin z + + cos a(x+z) = 0 substitution P(t) into F: F*(t) = 0 finding roots of the function F*(t) sometimes only the smallest positive root is needed (the 1 st intersection), for CSG we need all roots Intersection 2018 Josef Pelikán, 10 / 26

11 Algebraic surface ray: P(t) = P 0 + t p 1 algebraic surface of degree d: i jk d i, j, k 0 A x, y, z a x y z ijk i j k 0 example (toroid with radii a, b): Tab x, y, z x y z a b a b z after substitution P(t) into A: A*(t) = 0 A* is a polynomial of degree d (at most) Intersection 2018 Josef Pelikán, 11 / 26

12 Quadric (d=2) general quadric: T x Qx 0 x x y, z 1 Q a b c d b e f g c f h i d g i j after substitution of P(t): a2t 2 a1t a0 0, 2 1 T T T 0 where kde a P QP, a 2P QP, a P QP Intersection 2018 Josef Pelikán, 12 / 26

13 Quadric of revolution quadric of revolution in standard position: x y az bz c sphere: x y z 1 0, after substitution of P(t): 2 t P P 2t P P P P Intersection 2018 Josef Pelikán, 13 / 26

14 Sphere (geometric solution) P(t) = P 0 + t p 1 p 1 P 0 center of the subtense t 0 = (v p 1 ) distance D 2 = (v v) - t 0 2 inclination t D2 = R 2 - D 2 v t 1 t 0 t 2 t D R D for t D 2 = 0 there is one tangent point P( t 0 ) for t D2 > 0 two intersections exist: P( t 0 ± t D ) negative case: 9±, 6*, 1<, positive addit.: 2±, 1 sqrt Intersection 2018 Josef Pelikán, 14 / 26

15 Inverse transformation on the sphere sphere: (x-x C ) 2 +(y-y C ) 2 +(z-z C ) 2 = R 2 pole dir: P, equator dir: E (P E) = 0 input: N, P, E result: [u,v] from [0,1] 2 v P u N E arccos N E sin arccos N P, 2 v, P E N 0 u, jinak else u 1 Intersection 2018 Josef Pelikán, 15 / 26

16 Cylinder and cone 2 unit cylinder and unit cone in basic position: x 2 2 y 1 0 x y z after substitution P(t) for the cylinder: t x y 2t x x y y x y after substitution P(t) for the cone: t x y z t x x y y z z 0 x y z Intersection 2018 Josef Pelikán, 16 / 26

17 Toroid z -a a x Two circles in the xz plane: x a z b x a z b x 2 z 2 a 2 b 2 2 4a 2 b 2 z 2 0 b After substitution r 2 = x 2 + y 2 for x 2 the 4 th degree equation: x 2 y 2 z 2 a 2 b 2 2 a 2 b 2 z Intersection 2018 Josef Pelikán, 17 / 26

18 Surface of revolution P 0 + t p 1 z z r x y equation of the ray in the rz plane: r x y x0 x1t y0 y1t z z z t r Intersection 2018 Josef Pelikán, 18 / 26

19 Ray in the rz plane 2 2 After elimination of t: ar bz cz d 0 (1) 2 a = z 1 b = x y 1 c = 2 z 1 e z 0 b 2 d = z 0 z 0 b 2 z 1 e f z 1 e = x 0 x 1 y 0 y 1 f = x y 0 after substitution of parametric curve K(s) into (1) we get an equation K*(s) = 0 K* has got a double degree (compared to K) Intersection 2018 Josef Pelikán, 19 / 26

20 CSG representation primitive solids are easy convex objects only two intersections set operations are performed in the 1D ray-space: distributivity: P (A-B) = (PA) - (PB) general ray-scene intersection is a collection of line segments (intervals in 1D ray-space) geometric transformations: inverse transformation applied to a ray Intersection 2018 Josef Pelikán, 20 / 26

21 Intersections PA, PB B PB P 0 p 1 A PA P 0 p 1 Intersection 2018 Josef Pelikán, 21 / 26

22 Intersection P(A-B) difference B P(A-B) A B P 0 p 1 A Intersection 2018 Josef Pelikán, 22 / 26

23 Implementation ray: origin P 0 and direction p 1 transforms with inverse matrices T i -1 (could not be efficient enough... 1 transformation: 15+, 18*) ray vs. scene intersection (partial & final): ordered list of t parameter in ray-space: [t 1, t 2, t 3,..] set operation: generalized merging of ordered lists [ t i ] transformation of normal vectors! Intersection 2018 Josef Pelikán, 23 / 26

24 Set operations on the ray A B AB AB AB Intersection 2018 Josef Pelikán, 24 / 26

25 Normal vector transformation n n n v n n u n = n u n v general afine transformation doesn't keep angles two tangent vectors instead a normal tangent vectors transformed by 3 3 submatrix only! alternative matrix for normal vectors: M n = (M -1 ) T Intersection 2018 Josef Pelikán, 25 / 26

26 References A. Glassner: An Introduction to Ray Tracing, Academic Press, London 1989, J. Foley, A. van Dam, S. Feiner, J. Hughes: Computer Graphics, Principles and Practice, Intersection 2018 Josef Pelikán, 26 / 26

Geometric Queries for Ray Tracing

Geometric Queries for Ray Tracing CSCI 420 Computer Graphics Lecture 16 Geometric Queries for Ray Tracing Ray-Surface Intersection Barycentric Coordinates [Angel Ch. 11] Jernej Barbic University of Southern California 1 Ray-Surface Intersections

More information

CS770/870 Spring 2017 Ray Tracing Implementation

CS770/870 Spring 2017 Ray Tracing Implementation Useful ector Information S770/870 Spring 07 Ray Tracing Implementation Related material:angel 6e: h.3 Ray-Object intersections Spheres Plane/Polygon Box/Slab/Polyhedron Quadric surfaces Other implicit/explicit

More information

Hierarchical Models Josef Pelikán & Alexander Wilkie CGG MFF UK Praha

Hierarchical Models Josef Pelikán & Alexander Wilkie CGG MFF UK Praha Hierarchical Models 1995-2015 Josef Pelikán & Alexander Wilkie CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchies for 3D Modeling Bottom-up modeling Complex models

More information

CS348B Lecture 2 Pat Hanrahan, Spring Greeks: Do light rays proceed from the eye to the light, or from the light to the eye?

CS348B Lecture 2 Pat Hanrahan, Spring Greeks: Do light rays proceed from the eye to the light, or from the light to the eye? Page 1 Ray Tracing Today Basic algorithms Overview of pbrt Ray-surface intersection for single surface Next lecture Acceleration techniques for ray tracing large numbers of geometric primitives Classic

More information

8.1 Geometric Queries for Ray Tracing

8.1 Geometric Queries for Ray Tracing Fall 2017 CSCI 420: Computer Graphics 8.1 Geometric Queries for Ray Tracing Hao Li http://cs420.hao-li.com 1 Outline Ray-Surface Intersections Special cases: sphere, polygon Barycentric coordinates 2 Outline

More information

Surfaces. Ron Goldman Department of Computer Science Rice University

Surfaces. Ron Goldman Department of Computer Science Rice University Surfaces Ron Goldman Department of Computer Science Rice University Representations 1. Parametric Plane, Sphere, Tensor Product x = f (s,t) y = g(s,t) z = h(s,t) 2. Algebraic Plane, Sphere, Torus F(x,

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

Ray Tracing I. History

Ray Tracing I. History History Ray Tracing came from the Physics of lens making. The process was that of drawing lines or rays through a glass shape to determine it s lens properties. It is also related to early perspective

More information

Transformations in Ray Tracing. MIT EECS 6.837, Durand and Cutler

Transformations in Ray Tracing. MIT EECS 6.837, Durand and Cutler Transformations in Ray Tracing Linear Algebra Review Session Tonight! 7:30 9 PM Last Time: Simple Transformations Classes of Transformations Representation homogeneous coordinates Composition not commutative

More information

Distributed Ray Tracing

Distributed Ray Tracing Distributed Ray Tracing 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ DistribRT 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 24 Distributed ray

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Recursive Ray Tracing

Recursive Ray Tracing Recursive Ray Tracing 1995-2015 Josef Pelikán & Alexander Wilkie CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 18 Pinhole Camera Model 2 / 18 Backward / Reverse Ray Tracing

More information

Image warping introduction

Image warping introduction Image warping introduction 1997-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Warping 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 22 Warping.. image

More information

Last week. Machiraju/Zhang/Möller

Last week. Machiraju/Zhang/Möller Last week Machiraju/Zhang/Möller 1 Overview of a graphics system Output device Input devices Image formed and stored in frame buffer Machiraju/Zhang/Möller 2 Introduction to CG Torsten Möller 3 Ray tracing:

More information

Revision Problems for Examination 2 in Algebra 1

Revision Problems for Examination 2 in Algebra 1 Centre for Mathematical Sciences Mathematics, Faculty of Science Revision Problems for Examination in Algebra. Let l be the line that passes through the point (5, 4, 4) and is at right angles to the plane

More information

CSC418 / CSCD18 / CSC2504

CSC418 / CSCD18 / CSC2504 5 5.1 Surface Representations As with 2D objects, we can represent 3D objects in parametric and implicit forms. (There are also explicit forms for 3D surfaces sometimes called height fields but we will

More information

Ray Tracing. Foley & Van Dam, Chapters 15 and 16

Ray Tracing. Foley & Van Dam, Chapters 15 and 16 Ray Tracing Foley & Van Dam, Chapters 15 and 16 Ray Tracing Visible Surface Ray Tracing (Ray Casting) Examples Efficiency Issues Computing Boolean Set Operations Recursive Ray Tracing Determine visibility

More information

Ray Tracing Foley & Van Dam, Chapters 15 and 16

Ray Tracing Foley & Van Dam, Chapters 15 and 16 Foley & Van Dam, Chapters 15 and 16 (Ray Casting) Examples Efficiency Issues Computing Boolean Set Operations Recursive Determine visibility of a surface by tracing rays of light from the viewer s eye

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 Computer graphics Assignment 5 1 Overview Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 In this assignment you will implement the camera and several primitive objects for a ray tracer. We

More information

Lecture 11: Ray tracing (cont.)

Lecture 11: Ray tracing (cont.) Interactive Computer Graphics Ray tracing - Summary Lecture 11: Ray tracing (cont.) Graphics Lecture 10: Slide 1 Some slides adopted from H. Pfister, Harvard Graphics Lecture 10: Slide 2 Ray tracing -

More information

3D Rendering and Ray Casting

3D Rendering and Ray Casting 3D Rendering and Ray Casting Michael Kazhdan (601.457/657) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 Rendering Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D)

More information

Ray Tracing I. Internet Raytracing Competition

Ray Tracing I. Internet Raytracing Competition History Ray Tracing came from the Physics of lens making. The process was that of drawing lines or rays through a glass shape to determine it s lens properties. It is also related to early perspective

More information

A Method to Generate Exact Contour Files for Solid Freeform Fabrication

A Method to Generate Exact Contour Files for Solid Freeform Fabrication A Method to Generate Exact Contour Files for Solid Freeform Fabrication Sashidhar Guduri, Graduate Research Assistant Richard H. Crawford, Assistant Professor Joseph J. Beaman, Professor Dept. of Mechanical

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

CMSC427 Final Practice v2 Fall 2017

CMSC427 Final Practice v2 Fall 2017 CMSC427 Final Practice v2 Fall 2017 This is to represent the flow of the final and give you an idea of relative weighting. No promises that knowing this will predict how you ll do on the final. Some questions

More information

Ray casting. Ray casting/ray tracing

Ray casting. Ray casting/ray tracing Ray casting Ray casting/ray tracing Iterate over pixels, not objects Effects that are difficult with Z-buffer, are easy with ray tracing: shadows, reflections, transparency, procedural textures and objects

More information

GEOMETRY IN THREE DIMENSIONS

GEOMETRY IN THREE DIMENSIONS 1 CHAPTER 5. GEOMETRY IN THREE DIMENSIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW GEOMETRY IN THREE DIMENSIONS Contents 1 Geometry in R 3 2 1.1 Lines...............................................

More information

3D Rendering and Ray Casting

3D Rendering and Ray Casting 3D Rendering and Ray Casting Michael Kazhdan (601.457/657) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 Rendering Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D)

More information

Polygon Meshes and Implicit Surfaces

Polygon Meshes and Implicit Surfaces CSCI 420 Computer Graphics Lecture 9 Polygon Meshes and Implicit Surfaces Polygon Meshes Implicit Surfaces Constructive Solid Geometry [Angel Ch. 10] Jernej Barbic University of Southern California 1 Modeling

More information

Polygon Meshes and Implicit Surfaces

Polygon Meshes and Implicit Surfaces CSCI 420 Computer Graphics Lecture 9 and Constructive Solid Geometry [Angel Ch. 10] Jernej Barbic University of Southern California Modeling Complex Shapes An equation for a sphere is possible, but how

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Lecture 11. More Ray Casting/Tracing

Lecture 11. More Ray Casting/Tracing Lecture 11 More Ray Casting/Tracing Basic Algorithm For each pixel { } Shoot a ray from camera to pixel for all objects in scene Compute intersection with ray Find object with closest intersection Display

More information

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2)

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2) Sphere Definition: A sphere is the locus of a point which remains at a constant distance from a fixed point. The fixed point is called the centre and the constant distance is the radius of the sphere.

More information

Curvilinear Coordinates

Curvilinear Coordinates Curvilinear Coordinates Cylindrical Coordinates A 3-dimensional coordinate transformation is a mapping of the form T (u; v; w) = hx (u; v; w) ; y (u; v; w) ; z (u; v; w)i Correspondingly, a 3-dimensional

More information

Answers to Geometry Unit 5 Practice

Answers to Geometry Unit 5 Practice Lesson 0- Answers to Geometry Unit 5 Practice. a. Rectangle; Sample answer: It has four right angles. b. length: units; width: 9 units A 5 bh 7 units. 96 units. a. Parallelogram; Sample answer: Opposite

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Simple Closed Surfaces A simple closed surface has exactly one interior, no holes, and is hollow. A sphere is the set of all points at a

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

Supplement to Lecture 16

Supplement to Lecture 16 Supplement to Lecture 16 Global Illumination: View Dependent CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Notes and figures from Ed Angel: Interactive Computer Graphics, 6 th Ed., 2012 Addison

More information

11/1/13. Polygon Meshes and Implicit Surfaces. Shape Representations. Polygon Models in OpenGL. Modeling Complex Shapes

11/1/13. Polygon Meshes and Implicit Surfaces. Shape Representations. Polygon Models in OpenGL. Modeling Complex Shapes CSCI 420 Computer Graphics Lecture 7 and Constructive Solid Geometry [Angel Ch. 12.1-12.3] Jernej Barbic University of Southern California Modeling Complex Shapes An equation for a sphere is possible,

More information

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D From curves to surfaces Parametric surfaces and solid modeling CS 465 Lecture 12 2007 Doug James & Steve Marschner 1 So far have discussed spline curves in 2D it turns out that this already provides of

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR European Schools Office of the Secretary-General Pedagogical Development Unit Ref.: 011-01-D-7-en- Orig.: EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 4 period/week course APPROVED BY THE JOINT TEACHING

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

SUMMARY. CS380: Introduction to Computer Graphics Ray tracing Chapter 20. Min H. Kim KAIST School of Computing 18/05/29. Modeling

SUMMARY. CS380: Introduction to Computer Graphics Ray tracing Chapter 20. Min H. Kim KAIST School of Computing 18/05/29. Modeling CS380: Introduction to Computer Graphics Ray tracing Chapter 20 Min H. Kim KAIST School of Computing Modeling SUMMARY 2 1 Types of coordinate function Explicit function: Line example: Implicit function:

More information

Curves and Surfaces. CS475 / 675, Fall Siddhartha Chaudhuri

Curves and Surfaces. CS475 / 675, Fall Siddhartha Chaudhuri Curves and Surfaces CS475 / 675, Fall 26 Siddhartha Chaudhuri Klein bottle: surface, no edges (Möbius strip: Inductiveload@Wikipedia) Möbius strip: surface, edge Curves and Surfaces Curve: D set Surface:

More information

ME 111: Engineering Drawing. Geometric Constructions

ME 111: Engineering Drawing. Geometric Constructions ME 111: Engineering Drawing Lecture 2 01-08-2011 Geometric Constructions Indian Institute of Technology Guwahati Guwahati 781039 Geometric Construction Construction of primitive geometric forms (points,

More information

Illumination Models III: Ray Tracing (View Dependent Global Illumination)

Illumination Models III: Ray Tracing (View Dependent Global Illumination) Illumination Models III: Ray Tracing (View Dependent Global Illumination) The University of Texas at Austin 1 Basic Definitions Ray Tracing/Casting: Setting: eyepoint, virtual screen (an array of virtual

More information

Ray Tracing. Shandong University

Ray Tracing. Shandong University Ray Tracing Shandong University Introduction OpenGL is based on a pipeline model in which primitives are rendered one at time - No shadows (except by tricks or multiple renderings) - No multiple reflections

More information

Curves D.A. Forsyth, with slides from John Hart

Curves D.A. Forsyth, with slides from John Hart Curves D.A. Forsyth, with slides from John Hart Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction

More information

FOUNDATION HIGHER. F Autumn 1, Yr 9 Autumn 2, Yr 9 Spring 1, Yr 9 Spring 2, Yr 9 Summer 1, Yr 9 Summer 2, Yr 9

FOUNDATION HIGHER. F Autumn 1, Yr 9 Autumn 2, Yr 9 Spring 1, Yr 9 Spring 2, Yr 9 Summer 1, Yr 9 Summer 2, Yr 9 Year: 9 GCSE Mathematics FOUNDATION F Autumn 1, Yr 9 Autumn 2, Yr 9 Spring 1, Yr 9 Spring 2, Yr 9 Summer 1, Yr 9 Summer 2, Yr 9 HIGHER Integers and place value Decimals Indices, powers and roots Factors,multiples

More information

Extended Mathematics for Cambridge IGCSE by David Rayner. Chapter 1. Identify and use rational and irrational numbers, real numbers.

Extended Mathematics for Cambridge IGCSE by David Rayner. Chapter 1. Identify and use rational and irrational numbers, real numbers. Schemes of Work Overview Structure There are two separate schemes of work laid out in the following units, one for students following the Core Curriculum and one for students following the Extended Curriculum.

More information

the straight line in the xy plane from the point (0, 4) to the point (2,0)

the straight line in the xy plane from the point (0, 4) to the point (2,0) Math 238 Review Problems for Final Exam For problems #1 to #6, we define the following paths vector fields: b(t) = the straight line in the xy plane from the point (0, 4) to the point (2,0) c(t) = the

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

MATHEMATICS Curriculum Grades 10 to 12

MATHEMATICS Curriculum Grades 10 to 12 MATHEMATICS Curriculum Grades 10 to 12 Grade 10 Number systems Algebraic Expressions expressions Products (Ch. 1) Factorisation Term 1 Exponents (Ch. 2) Number patterns (Ch. 3) (CH.4) Notation, rules,

More information

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 12 Vector Geometry Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated by Mathematica

More information

3D Rendering. Course Syllabus. Where Are We Now? Rendering. 3D Rendering Example. Overview. Rendering. I. Image processing II. Rendering III.

3D Rendering. Course Syllabus. Where Are We Now? Rendering. 3D Rendering Example. Overview. Rendering. I. Image processing II. Rendering III. Course Syllabus I. Image processing II. Rendering III. Modeling 3D Rendering Rendering I. Animation (Michael Bostock, CS426, Fall99) Image Processing Adam Finkelstein Princeton University COS 426, Spring

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

1999, Denis Zorin. Ray tracing

1999, Denis Zorin. Ray tracing Ray tracing Ray tracing shadow rays normal reflected ray pixel ray camera normal Ray casting/ray tracing Iterate over pixels, not objects. Effects that are difficult with Z-buffer, are easy with ray tracing:

More information

MATH 261 EXAM I PRACTICE PROBLEMS

MATH 261 EXAM I PRACTICE PROBLEMS MATH 261 EXAM I PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 1 typically has 6 problems on it, with no more than one problem of any given type (e.g.,

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing Lecture 11 Ray tracing Introduction Projection vs. ray tracing Projection Ray tracing Rendering Projection vs. ray tracing Projection Ray tracing Basic methods for image generation Major areas of computer

More information

Overview. Affine Transformations (2D and 3D) Coordinate System Transformations Vectors Rays and Intersections

Overview. Affine Transformations (2D and 3D) Coordinate System Transformations Vectors Rays and Intersections Overview Affine Transformations (2D and 3D) Coordinate System Transformations Vectors Rays and Intersections ITCS 4120/5120 1 Mathematical Fundamentals Geometric Transformations A set of tools that aid

More information

BASIC ELEMENTS. Geometry is the study of the relationships among objects in an n-dimensional space

BASIC ELEMENTS. Geometry is the study of the relationships among objects in an n-dimensional space GEOMETRY 1 OBJECTIVES Introduce the elements of geometry Scalars Vectors Points Look at the mathematical operations among them Define basic primitives Line segments Polygons Look at some uses for these

More information

Clipping and Intersection

Clipping and Intersection Clipping and Intersection Clipping: Remove points, line segments, polygons outside a region of interest. Need to discard everything that s outside of our window. Point clipping: Remove points outside window.

More information

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Spring 2012)

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Spring 2012) Foundations of omputer Graphics (Spring 202) S 84, Lecture 5: Ray Tracing http://inst.eecs.berkeley.edu/~cs84 Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water,

More information

Curves and Surface I. Angel Ch.10

Curves and Surface I. Angel Ch.10 Curves and Surface I Angel Ch.10 Representation of Curves and Surfaces Piece-wise linear representation is inefficient - line segments to approximate curve - polygon mesh to approximate surfaces - can

More information

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College 3D convex hulls Computational Geometry [csci 3250] Laura Toma Bowdoin College Convex Hull in 3D The problem: Given a set P of points in 3D, compute their convex hull convex polyhedron 2D 3D polygon

More information

Mathematics NC Math 3 Scope and Sequence 176 Instructional Days (Traditional) 88 Instructional Days (Block) 9 Units

Mathematics NC Math 3 Scope and Sequence 176 Instructional Days (Traditional) 88 Instructional Days (Block) 9 Units Mathematics NC Math 3 Scope and Sequence 176 Instructional () 88 Instructional () 9 Units Unit 1: Functions and Their Inverses NC.M3.F-BF.4a Understand the inverse relationship between exponential and

More information

Second degree equations - quadratics. nonparametric: x 2 + y 2 + z 2 = r 2

Second degree equations - quadratics. nonparametric: x 2 + y 2 + z 2 = r 2 walters@buffalo.edu CSE 480/580 Lecture 20 Slide 1 Three Dimensional Representations Quadric Surfaces Superquadrics Sweep Representations Constructive Solid Geometry Octrees Quadric Surfaces Second degree

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include motion, behavior Graphics is a form of simulation and

More information

Intersecting Simple Surfaces. Dr. Scott Schaefer

Intersecting Simple Surfaces. Dr. Scott Schaefer Intersecting Simple Surfaces Dr. Scott Schaefer 1 Types of Surfaces Infinite Planes Polygons Convex Ray Shooting Winding Number Spheres Cylinders 2/66 Infinite Planes Defined by a unit normal n and a point

More information

To be a grade 1 I need to

To be a grade 1 I need to To be a grade 1 I need to Order positive and negative integers Understand addition and subtraction of whole numbers and decimals Apply the four operations in correct order to integers and proper fractions

More information

- number of elements - complement linear, simple quadratic and cubic sequences - exponential sequences and - simple combinations of these

- number of elements - complement linear, simple quadratic and cubic sequences - exponential sequences and - simple combinations of these IGCSE Mathematics Revision checklist 2016. Syllabus 1 Numbers, set notation and language 1 Identify and use: - natural s - prime s - square s - common factors (HCF) - common multiples (LCM) - rational

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5 UNIVERSITI TEKNOLOGI MALAYSIA SSE 189 ENGINEERING MATHEMATIS TUTORIAL 5 1. Evaluate the following surface integrals (i) (x + y) ds, : part of the surface 2x+y+z = 6 in the first octant. (ii) (iii) (iv)

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Computer Graphics Instructor: Brian Curless CSE 457 Spring 2013 Homework #2 Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Assigned: Sunday, May 12 th Due: Thursday,

More information

High School Geometry

High School Geometry High School Geometry This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular

More information

Ray Tracer Due date: April 27, 2011

Ray Tracer Due date: April 27, 2011 Computer graphics Assignment 4 1 Overview Ray Tracer Due date: April 27, 2011 In this assignment you will implement the camera and several primitive objects for a ray tracer, and a basic ray tracing algorithm.

More information

Ray Tracing. CS334 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Ray Tracing. CS334 Fall Daniel G. Aliaga Department of Computer Science Purdue University Ray Tracing CS334 Fall 2013 Daniel G. Aliaga Department of Computer Science Purdue University Ray Casting and Ray Tracing Ray Casting Arthur Appel, started around 1968 Ray Tracing Turner Whitted, started

More information

AQA GCSE Maths - Higher Self-Assessment Checklist

AQA GCSE Maths - Higher Self-Assessment Checklist AQA GCSE Maths - Higher Self-Assessment Checklist Number 1 Use place value when calculating with decimals. 1 Order positive and negative integers and decimals using the symbols =,, , and. 1 Round to

More information

GEOMETRY. Background Knowledge/Prior Skills. Knows ab = a b. b =

GEOMETRY. Background Knowledge/Prior Skills. Knows ab = a b. b = GEOMETRY Numbers and Operations Standard: 1 Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers, and number

More information

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review.

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. 1. The intersection of two non-parallel planes is a line. Find the equation of the line. Give

More information

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Computer Graphics Instructor: Brian Curless CSEP 557 Autumn 2016 Homework #2 Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Assigned: Wednesday, Nov 16 th Due: Wednesday, Nov 30

More information

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables.

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables. Surfaces Level Surfaces One of the goals of this chapter is to use di erential calculus to explore surfaces, in much the same way that we used di erential calculus to study curves in the rst chapter. In

More information

Cambridge IGCSE mapping

Cambridge IGCSE mapping Cambridge IGCSE mapping Specification point Boardworks presentation 1. Number, set notation and language Identify and use natural numbers, integers (positive, negative and zero), prime numbers, square

More information

Equation of tangent plane: for implicitly defined surfaces section 12.9

Equation of tangent plane: for implicitly defined surfaces section 12.9 Equation of tangent plane: for implicitly defined surfaces section 12.9 Some surfaces are defined implicitly, such as the sphere x 2 + y 2 + z 2 = 1. In general an implicitly defined surface has the equation

More information

Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer

Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer The exam consists of 10 questions. There are 2 points per question for a total of 20 points. You

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

Additional mathematical results

Additional mathematical results Additional mathematical results In this appendix we consider some useful mathematical results that are relevant to threedimensional computer graphics but were not considered in the book itself. 0.1 The

More information

Intro to Curves Week 1, Lecture 2

Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University Outline Math review Introduction to 2D curves

More information