8.5 Quadratic Functions and Their Graphs

Size: px
Start display at page:

Download "8.5 Quadratic Functions and Their Graphs"

Transcription

1 CHAPTER 8 Quadratic Equations and Functions 8. Quadratic Functions and Their Graphs S Graph Quadratic Functions of the Form f = + k. Graph Quadratic Functions of the Form f = - h. Graph Quadratic Functions of the Form f = - h + k. Graph Quadratic Functions of the Form f = a. Graph Quadratic Functions of the Form f = a - h + k. Graphing f() k We first graphed the quadratic equation = in Section.. In Section., we learned that this graph defines a function, and we wrote = as f =. In these sections, we discovered that the graph of a quadratic function is a parabola opening upward or downward. In this section, we continue our stud of quadratic functions and their graphs. (Much of the contents of this section is a review of shifting and reflecting techniques from Section., but specific to quadratic functions.) First, let s recall the definition of a quadratic function. Quadratic Function A quadratic function is a function that can be written in the form f = a + b + c, where a, b, and c are real numbers and a 0. Notice that equations of the form = a + b + c, where a 0, define quadratic functions, since is a function of or = f. Recall that if a 7 0, the parabola opens upward and if a 0, the parabola opens downward. Also, the verte of a parabola is the lowest point if the parabola opens upward and the highest point if the parabola opens downward. The ais of smmetr is the vertical line that passes through the verte. f() a b c, a 0 Verte f() a b c, a 0 Verte Ais of Smmetr Ais of Smmetr EXAMPLE Graph f = and g = + on the same set of aes. Solution First we construct a table of values for f() and plot the points. Notice that for each -value, the corresponding value of g() must be more than the corresponding value of f() since f = and g = +. In other words, the graph of g = + is the same as the graph of f = shifted upward units. The ais of smmetr for both graphs is the -ais. f () g() n Each -value is increased b. f() (0, ) (0, 0) Graph f = and g = - on the same set of aes. g()

2 Section 8. Quadratic Functions and Their Graphs In general, we have the following properties. Graphing the Parabola Defined b f () k If k is positive, the graph of f = + k is the graph of = shifted upward k units. If k is negative, the graph of f = + k is the graph of = shifted downward 0 k 0 units. The verte is (0, k), and the ais of smmetr is the -ais. EXAMPLE Graph each function. a. F = + b. g = - Solution a. F = + The graph of F = + is obtained b shifting the graph of = upward units. F() (0, ) b. g = - The graph of g = - is obtained b shifting the graph of = downward units. g() (0, ) Graph each function. a. f = - b. g = + Graphing f() ( h) Now we will graph functions of the form f = - h.

3 CHAPTER 8 Quadratic Equations and Functions EXAMPLE Graph f = and g = - on the same set of aes. Solution B plotting points, we see that for each -value, the corresponding value of g() is the same as the value of f() when the -value is increased b. Thus, the graph of g = - is the graph of f = shifted to the right units. The ais of smmetr for the graph of g = - is also shifted units to the right and is the line =. f () g() ( ) n Each -value increased b corresponds to same -value. f() g() ( ) (0, 0) (, 0) Graph f = and g = + on the same set of aes. In general, we have the following properties. Graphing the Parabola Defined b f ( ) ( h) If h is positive, the graph of f = - h is the graph of = shifted to the right h units. If h is negative, the graph of f = - h is the graph of = shifted to the left 0 h 0 units. The verte is (h, 0), and the ais of smmetr is the vertical line = h. EXAMPLE Graph each function. a. G = - b. F = + Solution a. The graph of G = - is obtained b shifting the graph of = to the right units. The graph of G() is below on the left. b. The equation F = + can be written as F = [ - -]. The graph of F = [ - -] is obtained b shifting the graph of = to the left unit. The graph of F() is below on the right. G() ( ) F() ( ) (, 0) (, 0)

4 Section 8. Quadratic Functions and Their Graphs Graph each function. a. G = + b. H = - 7 Graphing f () ( h) k As we will see in graphing functions of the form f = - h + k, it is possible to combine vertical and horizontal shifts. Graphing the Parabola Defined b f( ) ( h) k The parabola has the same shape as =. The verte is (h, k), and the ais of smmetr is the vertical line = h. EXAMPLE Graph F = - +. Solution The graph of F = - + is the graph of = shifted units to the right and unit up. The verte is then (, ), and the ais of smmetr is =. A few ordered pair solutions are plotted to aid in graphing. F () ( ) F() ( ) (, ) Graph f = + +. Graphing f () a Net, we discover the change in the shape of the graph when the coefficient of is not. EXAMPLE Graph f =, g =, and h = on the same set of aes. Solution Comparing the tables of values, we see that for each -value, the corresponding value of g() is triple the corresponding value of f(). Similarl, the value of h() is half the value of f(). f () (Continued on net page) g() h()

5 CHAPTER 8 Quadratic Equations and Functions The result is that the graph of g = is narrower than the graph of f =, and the graph of h = is wider. The verte for each graph is (0, 0), and the ais of smmetr is the -ais g() f() h() q Graph f =, g =, and h = on the same set of aes. Graphing the Parabola Defined b f() a If a is positive, the parabola opens upward, and if a is negative, the parabola opens downward. If 0 a 0 7, the graph of the parabola is narrower than the graph of =. If 0 a 0, the graph of the parabola is wider than the graph of =. EXAMPLE 7 Graph f = -. Solution Because a = -, a negative value, this parabola opens downward. Since 0-0 = and 7, the parabola is narrower than the graph of =. The verte is (0, 0), and the ais of smmetr is the -ais. We verif this b plotting a few points. f () (0, 0) f() Graph f = -. Graphing f() a( h) k Now we will see the shape of the graph of a quadratic function of the form f = a - h + k.

6 Section 8. Quadratic Functions and Their Graphs 7 EXAMPLE 8 smmetr. Graph g = + +. Find the verte and the ais of Solution The function g = + + ma be written as g() = [ - (-)] +. Thus, this graph is the same as the graph of = shifted units to the left and units up, and it is wider because a is. The verte is -,, and the ais of smmetr is = -. We plot a few points to verif. g() ( ) (, ) g() q( ) 8 Graph h = - -. In general, the following holds. Graph of a Quadratic Function The graph of a quadratic function written in the form f = a - h + k is a parabola with verte (h, k). If a 7 0, the parabola opens upward. If a 0, the parabola opens downward. The ais of smmetr is the line whose equation is = h. f() a( h) k a 0 (h, k) (h, k) h h a 0 CONCEPT CHECK Which description of the graph of f = is correct? a. The graph opens downward and has its verte at -,. b. The graph opens upward and has its verte at -,. c. The graph opens downward and has its verte at -, -. d. The graph is narrower than the graph of =. Answer to Concept Check: c

7 8 CHAPTER 8 Quadratic Equations and Functions Graphing Calculator Eplorations Use a graphing calculator to graph the first function of each pair that follows. Then use its graph to predict the graph of the second function. Check our prediction b graphing both on the same set of aes.. F = ; G = +. g = ; H = -. H = 0 0 ; f = 0-0. h = + ; g = - +. f = ; F = G = - ; g = - - Vocabular, Readiness & Video Check Use the choices below to fill in each blank. Some choices will be used more than once. upward highest parabola downward lowest quadratic. A(n) function is one that can be written in the form f = a + b + c, a 0.. The graph of a quadratic function is a(n) opening or.. If a 7 0, the graph of the quadratic function opens.. If a 0, the graph of the quadratic function opens.. The verte of a parabola is the point if a The verte of a parabola is the point if a 0. State the verte of the graph of each quadratic function. 7. f = 8. f = - 9. g = - 0. g = +. f = +. h = -. g = + +. h = Martin-Ga Interactive Videos See Video 8. Watch the section lecture video and answer the following questions.. From Eamples and and the lecture before, how do graphs of the form f = + k differ from =? Consider the location of the verte (0, k) on these graphs of the form f = + k b what other name do we call this point on a graph?. From Eample and the lecture before, how do graphs of the form f = - h differ from =? Consider the location of the verte (h, 0) on these graphs of the form f = - h b what other name do we call this point on a graph? 7. From Eample and the lecture before, what general information does the equation f = - h + k tell us about its graph? 8. From the lecture before Eample, besides the direction a parabola opens, what other graphing information can the value of a tell us? 9. In Eamples and 7, what four properties of the graph did we learn from the equation that helped us locate and draw the general shape of the parabola?

8 Section 8. Quadratic Functions and Their Graphs 9 8. Eercise Set MIXED Sketch the graph of each quadratic function. Label the verte and sketch and label the ais of smmetr. See Eamples through.. f = -. g = +. h = +. h = -. g = + 7. f = - 7. f = - 8. g = + 9. h = + 0. H = -. G = +. f = -. f = - +. g = - +. h = + +. G = g = h = + - Sketch the graph of each quadratic function. Label the verte, and sketch and label the ais of smmetr. See Eamples and H = 0. f =. h =. f = -. g = -. g = - Sketch the graph of each quadratic function. Label the verte and sketch and label the ais of smmetr. See Eample 8.. f = - +. g = h = f = H = G = + + MIXED Sketch the graph of each quadratic function. Label the verte and sketch and label the ais of smmetr.. f = - -. g = - +. F = - +. H = F = -. g = - 7. h = f = F = a + b - 0. H = a + b -. F = g = f = - 9. H = -. h = h = f = G = REVIEW AND PREVIEW Add the proper constant to each binomial so that the resulting trinomial is a perfect square trinomial. See Section z - z z - z Solve b completing the square. See Section =. + = -. z + 0z - = = 0. z - 8z =. - 0 = CONCEPT EXTENSIONS Solve. See the Concept Check in this section. 7. Which description of f = is correct? Graph Opens Verte a. upward (0.,.) b. upward -,. c. downward (0.,.) d. downward -0.,. 8. Which description of f = a + b + is correct? Graph Opens Verte a. upward a, b b. upward a -, b c. downward a, - b d. downward a -, - b. G = a + b. F = a - b Write the equation of the parabola that has the same shape as f = but with the following verte. 7. h = f = g = G = (, ) 70. (, ) 7. -, 7., -

9 0 CHAPTER 8 Quadratic Equations and Functions The shifting properties covered in this section appl to the graphs of all functions. Given the graph of = f below, sketch the graph of each of the following. f() 7. = f + 7. = f - 7. = f - 7. = f = f = f The quadratic function f = 8-0,9 + 7 approimates the number of tet messages sent in the United States each month between 000 and 008, where is the number of ears past 000 and f is the number of tet messages sent in the U.S. each month in millions. (Source: cellsigns) a. Use this function to find the number of tet messages sent in the U.S. each month in 00. b. Use this function to predict the number of tet messages sent in the U.S. each month in Use the function in Eercise 79. a. Use this function to predict the number of tet messages sent in the U.S. each month in 08. b. Look up the current number of cell phone subscribers in the U.S. c. Based on our answers for parts a. and b., discuss some possible limitations of using this quadratic function to predict data. 8. Further Graphing of Quadratic Functions S Write Quadratic Functions in the Form = a - h + k. Derive a Formula for Finding the Verte of a Parabola. Find the Minimum or Maimum Value of a Quadratic Function. Writing Quadratic Functions in the Form a h k We know that the graph of a quadratic function is a parabola. If a quadratic function is written in the form f = a - h + k we can easil find the verte (h, k) and graph the parabola. To write a quadratic function in this form, complete the square. (See Section 8. for a review of completing the square.) EXAMPLE Graph f = - -. Find the verte and an intercepts. Solution The graph of this quadratic function is a parabola. To find the verte of the parabola, we will write the function in the form = - h + k. To do this, we complete the square on the binomial -. To simplif our work, we let f =. = - - Let f =. + = - Add to both sides to get the -variable terms alone. Now we add the square of half of - to both sides. - = - and - = + + = = - = - - f = - - Add to both sides. Factor the trinomial. Subtract from both sides. Replace with f. From this equation, we can see that the verte of the parabola is, -, a point in quadrant IV, and the ais of smmetr is the line =. Notice that a =. Since a 7 0, the parabola opens upward. This parabola opening upward with verte, - will have two -intercepts and one -intercept. (See the Helpful Hint after this eample.)

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions 76 CHAPTER Graphs and Functions Find the equation of each line. Write the equation in the form = a, = b, or = m + b. For Eercises through 7, write the equation in the form f = m + b.. Through (, 6) and

More information

4.1 Graph Quadratic Functions in

4.1 Graph Quadratic Functions in 4. Graph Quadratic Functions in Standard Form Goal p Graph quadratic functions. Your Notes VOCABULARY Quadratic function Parabola Verte Ais of smmetr Minimum and maimum value PARENT FUNCTION FOR QUADRATIC

More information

QUADRATIC FUNCTIONS Investigating Quadratic Functions in Vertex Form

QUADRATIC FUNCTIONS Investigating Quadratic Functions in Vertex Form QUADRATIC FUNCTIONS Investigating Quadratic Functions in Verte Form The two forms of a quadratic function that have been eplored previousl are: Factored form: f ( ) a( r)( s) Standard form: f ( ) a b c

More information

Quadratic Functions. *These are all examples of polynomial functions.

Quadratic Functions. *These are all examples of polynomial functions. Look at: f(x) = 4x-7 f(x) = 3 f(x) = x 2 + 4 Quadratic Functions *These are all examples of polynomial functions. Definition: Let n be a nonnegative integer and let a n, a n 1,..., a 2, a 1, a 0 be real

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

Unit 4 Part 1: Graphing Quadratic Functions. Day 1: Vertex Form Day 2: Intercept Form Day 3: Standard Form Day 4: Review Day 5: Quiz

Unit 4 Part 1: Graphing Quadratic Functions. Day 1: Vertex Form Day 2: Intercept Form Day 3: Standard Form Day 4: Review Day 5: Quiz Name: Block: Unit 4 Part 1: Graphing Quadratic Functions Da 1: Verte Form Da 2: Intercept Form Da 3: Standard Form Da 4: Review Da 5: Quiz 1 Quadratic Functions Da1: Introducing.. the QUADRATIC function

More information

Math 1050 Lab Activity: Graphing Transformations

Math 1050 Lab Activity: Graphing Transformations Math 00 Lab Activit: Graphing Transformations Name: We'll focus on quadratic functions to eplore graphing transformations. A quadratic function is a second degree polnomial function. There are two common

More information

Graphs and Functions

Graphs and Functions CHAPTER Graphs and Functions. Graphing Equations. Introduction to Functions. Graphing Linear Functions. The Slope of a Line. Equations of Lines Integrated Review Linear Equations in Two Variables.6 Graphing

More information

Name Date. In Exercises 1 6, graph the function. Compare the graph to the graph of ( )

Name Date. In Exercises 1 6, graph the function. Compare the graph to the graph of ( ) Name Date 8. Practice A In Eercises 6, graph the function. Compare the graph to the graph of. g( ) =. h =.5 3. j = 3. g( ) = 3 5. k( ) = 6. n = 0.5 In Eercises 7 9, use a graphing calculator to graph the

More information

REMARKS. 8.2 Graphs of Quadratic Functions. A Graph of y = ax 2 + bx + c, where a > 0

REMARKS. 8.2 Graphs of Quadratic Functions. A Graph of y = ax 2 + bx + c, where a > 0 8. Graphs of Quadratic Functions In an earlier section, we have learned that the graph of the linear function = m + b, where the highest power of is 1, is a straight line. What would the shape of the graph

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM

GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM FOM 11 T7 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM 1 1 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM I) THE STANDARD FORM OF A QUADRATIC FUNCTION (PARABOLA) IS = a +b +c. To graph a quadratic function

More information

Unit 2: Function Transformation Chapter 1

Unit 2: Function Transformation Chapter 1 Basic Transformations Reflections Inverses Unit 2: Function Transformation Chapter 1 Section 1.1: Horizontal and Vertical Transformations A of a function alters the and an combination of the of the graph.

More information

Ready to Go On? Skills Intervention 1-1. Exploring Transformations. 2 Holt McDougal Algebra 2. Name Date Class

Ready to Go On? Skills Intervention 1-1. Exploring Transformations. 2 Holt McDougal Algebra 2. Name Date Class Lesson - Read to Go n? Skills Intervention Eploring Transformations Find these vocabular words in the lesson and the Multilingual Glossar. Vocabular transformation translation reflection stretch Translating

More information

8.5. Quadratic Function A function f is a quadratic function if f(x) ax 2 bx c, where a, b, and c are real numbers, with a 0.

8.5. Quadratic Function A function f is a quadratic function if f(x) ax 2 bx c, where a, b, and c are real numbers, with a 0. 8.5 Quadratic Functions, Applications, and Models In the previous section we discussed linear functions, those that are defined b firstdegree polnomials. In this section we will look at quadratic functions,

More information

3.2 Polynomial Functions of Higher Degree

3.2 Polynomial Functions of Higher Degree 71_00.qp 1/7/06 1: PM Page 6 Section. Polnomial Functions of Higher Degree 6. Polnomial Functions of Higher Degree What ou should learn Graphs of Polnomial Functions You should be able to sketch accurate

More information

CHAPTER 9: Quadratic Equations and Functions

CHAPTER 9: Quadratic Equations and Functions Notes # CHAPTER : Quadratic Equations and Functions -: Exploring Quadratic Graphs A. Intro to Graphs of Quadratic Equations: = ax + bx + c A is a function that can be written in the form = ax + bx + c

More information

Graphing f ( x) = ax 2 + c

Graphing f ( x) = ax 2 + c . Graphing f ( ) = a + c Essential Question How does the value of c affect the graph of f () = a + c? Graphing = a + c Work with a partner. Sketch the graphs of the functions in the same coordinate plane.

More information

REVIEW, pages

REVIEW, pages REVIEW, pages 69 697 8.. Sketch a graph of each absolute function. Identif the intercepts, domain, and range. a) = ƒ - + ƒ b) = ƒ ( + )( - ) ƒ 8 ( )( ) Draw the graph of. It has -intercept.. Reflect, in

More information

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a Example: Solve using the square root property. a) x 2 144 = 0 b) x 2 + 144 = 0 c) (x + 1) 2 = 12 Completing

More information

Graphing Review. Math Tutorial Lab Special Topic

Graphing Review. Math Tutorial Lab Special Topic Graphing Review Math Tutorial Lab Special Topic Common Functions and Their Graphs Linear Functions A function f defined b a linear equation of the form = f() = m + b, where m and b are constants, is called

More information

Investigation Free Fall

Investigation Free Fall Investigation Free Fall Name Period Date You will need: a motion sensor, a small pillow or other soft object What function models the height of an object falling due to the force of gravit? Use a motion

More information

Algebra II Quadratic Functions

Algebra II Quadratic Functions 1 Algebra II Quadratic Functions 2014-10-14 www.njctl.org 2 Ta b le o f C o n te n t Key Terms click on the topic to go to that section Explain Characteristics of Quadratic Functions Combining Transformations

More information

Graphing f ( x) = ax 2 + bx + c

Graphing f ( x) = ax 2 + bx + c 8.3 Graphing f ( ) = a + b + c Essential Question How can ou find the verte of the graph of f () = a + b + c? Comparing -Intercepts with the Verte Work with a partner. a. Sketch the graphs of = 8 and =

More information

3.5 Equations of Lines

3.5 Equations of Lines Section. Equations of Lines 6. Professional plumbers suggest that a sewer pipe should be sloped 0. inch for ever foot. Find the recommended slope for a sewer pipe. (Source: Rules of Thumb b Tom Parker,

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE. Eponential Functions. Logarithmic Properties. Graphs of Eponential

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) Chapter Outline. Eponential Functions. Logarithmic Properties. Graphs of Eponential

More information

MAC Learning Objectives. Module 4. Quadratic Functions and Equations. - Quadratic Functions - Solving Quadratic Equations

MAC Learning Objectives. Module 4. Quadratic Functions and Equations. - Quadratic Functions - Solving Quadratic Equations MAC 1105 Module 4 Quadratic Functions and Equations Learning Objectives Upon completing this module, you should be able to: 1. Understand basic concepts about quadratic functions and their graphs. 2. Complete

More information

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation:

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation: UNIT 8: SOLVING AND GRAPHING QUADRATICS 8-1 Factoring to Solve Quadratic Equations Zero Product Property For all numbers a & b Solve each equation: If: ab 0, 1. (x + 3)(x 5) = 0 Then one of these is true:

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

Graphing Absolute Value Functions

Graphing Absolute Value Functions Graphing Absolute Value Functions To graph an absolute value equation, make an x/y table and plot the points. Graph y = x (Parent graph) x y -2 2-1 1 0 0 1 1 2 2 Do we see a pattern? Desmos activity: 1.

More information

Exploring Quadratic Graphs

Exploring Quadratic Graphs Exploring Quadratic Graphs The general quadratic function is y=ax 2 +bx+c It has one of two basic graphs shapes, as shown below: It is a symmetrical "U"-shape or "hump"-shape, depending on the sign of

More information

Section 7.2 Characteristics of Quadratic Functions

Section 7.2 Characteristics of Quadratic Functions Section 7. Characteristics of Quadratic Functions A QUADRATIC FUNCTION is a function of the form " # $ N# 1 & ;# & 0 Characteristics Include:! Three distinct terms each with its own coefficient:! An x

More information

MAC Rev.S Learning Objectives. Learning Objectives (Cont.) Module 4 Quadratic Functions and Equations

MAC Rev.S Learning Objectives. Learning Objectives (Cont.) Module 4 Quadratic Functions and Equations MAC 1140 Module 4 Quadratic Functions and Equations Learning Objectives Upon completing this module, you should be able to 1. understand basic concepts about quadratic functions and their graphs.. complete

More information

Lesson/Unit Plan Name: Comparing Linear and Quadratic Functions. Timeframe: 50 minutes + up to 60 minute assessment/extension activity

Lesson/Unit Plan Name: Comparing Linear and Quadratic Functions. Timeframe: 50 minutes + up to 60 minute assessment/extension activity Grade Level/Course: Algebra 1 Lesson/Unit Plan Name: Comparing Linear and Quadratic Functions Rationale/Lesson Abstract: This lesson will enable students to compare the properties of linear and quadratic

More information

Example 1: Given below is the graph of the quadratic function f. Use the function and its graph to find the following: Outputs

Example 1: Given below is the graph of the quadratic function f. Use the function and its graph to find the following: Outputs Quadratic Functions: - functions defined by quadratic epressions (a 2 + b + c) o the degree of a quadratic function is ALWAYS 2 - the most common way to write a quadratic function (and the way we have

More information

Name: Chapter 7 Review: Graphing Quadratic Functions

Name: Chapter 7 Review: Graphing Quadratic Functions Name: Chapter Review: Graphing Quadratic Functions A. Intro to Graphs of Quadratic Equations: = ax + bx+ c A is a function that can be written in the form = ax + bx+ c where a, b, and c are real numbers

More information

Transformations. What are the roles of a, k, d, and c in polynomial functions of the form y a[k(x d)] n c, where n?

Transformations. What are the roles of a, k, d, and c in polynomial functions of the form y a[k(x d)] n c, where n? 1. Transformations In the architectural design of a new hotel, a pattern is to be carved in the exterior crown moulding. What power function forms the basis of the pattern? What transformations are applied

More information

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7 Warm-Up Exercises Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; 3 2. y = 2x + 7 7 2 ANSWER ; 7 Chapter 1.1 Graph Quadratic Functions in Standard Form A quadratic function is a function that

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

It s Not Complex Just Its Solutions Are Complex!

It s Not Complex Just Its Solutions Are Complex! It s Not Comple Just Its Solutions Are Comple! Solving Quadratics with Comple Solutions 15.5 Learning Goals In this lesson, ou will: Calculate comple roots of quadratic equations and comple zeros of quadratic

More information

Sketching graphs of polynomials

Sketching graphs of polynomials Sketching graphs of polynomials We want to draw the graphs of polynomial functions y = f(x). The degree of a polynomial in one variable x is the highest power of x that remains after terms have been collected.

More information

Section 9.3 Graphing Quadratic Functions

Section 9.3 Graphing Quadratic Functions Section 9.3 Graphing Quadratic Functions A Quadratic Function is an equation that can be written in the following Standard Form., where a 0. Every quadratic function has a U-shaped graph called a. If the

More information

TIPS4RM: MHF4U: Unit 1 Polynomial Functions

TIPS4RM: MHF4U: Unit 1 Polynomial Functions TIPSRM: MHFU: Unit Polnomial Functions 008 .5.: Polnomial Concept Attainment Activit Compare and contrast the eamples and non-eamples of polnomial functions below. Through reasoning, identif attributes

More information

CHAPTER 6 Quadratic Functions

CHAPTER 6 Quadratic Functions CHAPTER 6 Quadratic Functions Math 1201: Linear Functions is the linear term 3 is the leading coefficient 4 is the constant term Math 2201: Quadratic Functions Math 3201: Cubic, Quartic, Quintic Functions

More information

F.BF.B.3: Graphing Polynomial Functions

F.BF.B.3: Graphing Polynomial Functions F.BF.B.3: Graphing Polynomial Functions 1 Given the graph of the line represented by the equation f(x) = 2x + b, if b is increased by 4 units, the graph of the new line would be shifted 4 units 1) right

More information

6.4 Vertex Form of a Quadratic Function

6.4 Vertex Form of a Quadratic Function 6.4 Vertex Form of a Quadratic Function Recall from 6.1 and 6.2: Standard Form The standard form of a quadratic is: f(x) = ax 2 + bx + c or y = ax 2 + bx + c where a, b, and c are real numbers and a 0.

More information

Graphing square root functions. What would be the base graph for the square root function? What is the table of values?

Graphing square root functions. What would be the base graph for the square root function? What is the table of values? Unit 3 (Chapter 2) Radical Functions (Square Root Functions Sketch graphs of radical functions b appling translations, stretches and reflections to the graph of Analze transformations to identif the of

More information

Name Class Date. subtract 3 from each side. w 5z z 5 2 w p - 9 = = 15 + k = 10m. 10. n =

Name Class Date. subtract 3 from each side. w 5z z 5 2 w p - 9 = = 15 + k = 10m. 10. n = Reteaching Solving Equations To solve an equation that contains a variable, find all of the values of the variable that make the equation true. Use the equalit properties of real numbers and inverse operations

More information

The Quadratic function f(x) = x 2 2x 3. y y = x 2 2x 3. We will now begin to study the graphs of the trig functions, y = sinx, y = cosx and y = tanx.

The Quadratic function f(x) = x 2 2x 3. y y = x 2 2x 3. We will now begin to study the graphs of the trig functions, y = sinx, y = cosx and y = tanx. Chapter 7 Trigonometric Graphs Introduction We have alread looked at the graphs of various functions : The Linear function f() = The Quadratic function f() = The Hperbolic function f() = = = = We will

More information

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y)

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y) SESSION 9: FUNCTIONS KEY CONCEPTS: Definitions & Terminology Graphs of Functions - Straight line - Parabola - Hyperbola - Exponential Sketching graphs Finding Equations Combinations of graphs TERMINOLOGY

More information

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS 1.1 DIFFERENT TYPES AND SHAPES OF GRAPHS: A graph can be drawn to represent are equation connecting two variables. There are different tpes of equations which

More information

Graphing f ( x) = ax 2

Graphing f ( x) = ax 2 . Graphing f ( ) = a Essential Question What are some of the characteristics of the graph of a quadratic function of the form f () = a? Graphing Quadratic Functions Work with a partner. Graph each quadratic

More information

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions?

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions? .1 Graphing Polnomial Functions COMMON CORE Learning Standards HSF-IF.B. HSF-IF.C.7c Essential Question What are some common characteristics of the graphs of cubic and quartic polnomial functions? A polnomial

More information

Let us start with a quick revision of algebra and how to work with variables. Now let us look at the simpler topic, namely Substitution.

Let us start with a quick revision of algebra and how to work with variables. Now let us look at the simpler topic, namely Substitution. Section F Algebra & Equations Objective In this section, we will be dealing with solving equations for the variable involved, manipulating formulae to get one variable as the subject of the formula and

More information

Appendix A.6 Functions

Appendix A.6 Functions A. Functions 539 RELATIONS: DOMAIN AND RANGE Appendi A. Functions A relation is a set of ordered pairs. A relation can be a simple set of just a few ordered pairs, such as {(0, ), (1, 3), (, )}, or it

More information

UNIT P1: PURE MATHEMATICS 1 QUADRATICS

UNIT P1: PURE MATHEMATICS 1 QUADRATICS QUADRATICS Candidates should able to: carr out the process of completing the square for a quadratic polnomial, and use this form, e.g. to locate the vertex of the graph of or to sketch the graph; find

More information

10 Academic Date: Enter this equation into in DESMOS. Adjust your screen to show the scales like they are shown in the grid below.

10 Academic Date: Enter this equation into in DESMOS. Adjust your screen to show the scales like they are shown in the grid below. Academic Date: Open: DESMOS Graphing Calculator Task : Let s Review Linear Relationships Bill Bob s dog is out for a walk. The equation to model its distance awa from the house, d metres, after t seconds

More information

5.5 Completing the Square for the Vertex

5.5 Completing the Square for the Vertex 5.5 Completing the Square for the Vertex Having the zeros is great, but the other key piece of a quadratic function is the vertex. We can find the vertex in a couple of ways, but one method we ll explore

More information

STRAND G: Relations, Functions and Graphs

STRAND G: Relations, Functions and Graphs UNIT G Using Graphs to Solve Equations: Tet STRAND G: Relations, Functions and Graphs G Using Graphs to Solve Equations Tet Contents * * Section G. Solution of Simultaneous Equations b Graphs G. Graphs

More information

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1 Algebra I Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola Name Period Date Day #1 There are some important features about the graphs of quadratic functions we are going to explore over the

More information

1. y = f(x) y = f(x + 3) 3. y = f(x) y = f(x 1) 5. y = 3f(x) 6. y = f(3x) 7. y = f(x) 8. y = f( x) 9. y = f(x 3) + 1

1. y = f(x) y = f(x + 3) 3. y = f(x) y = f(x 1) 5. y = 3f(x) 6. y = f(3x) 7. y = f(x) 8. y = f( x) 9. y = f(x 3) + 1 .7 Transformations.7. Eercises To see all of the help resources associated with this section, click OSttS Chapter b. Suppose (, ) is on the graph of = f(). In Eercises - 8, use Theorem.7 to find a point

More information

The Graph of an Equation

The Graph of an Equation 60_0P0.qd //0 :6 PM Page CHAPTER P Preparation for Calculus Archive Photos Section P. RENÉ DESCARTES (96 60) Descartes made man contributions to philosoph, science, and mathematics. The idea of representing

More information

Lesson 8.1 Exercises, pages

Lesson 8.1 Exercises, pages Lesson 8.1 Eercises, pages 1 9 A. Complete each table of values. a) -3 - -1 1 3 3 11 8 5-1 - -7 3 11 8 5 1 7 To complete the table for 3, take the absolute value of each value of 3. b) - -3 - -1 1 3 3

More information

Transformations of Absolute Value Functions. Compression A compression is a. function a function of the form f(x) = a 0 x - h 0 + k

Transformations of Absolute Value Functions. Compression A compression is a. function a function of the form f(x) = a 0 x - h 0 + k - Transformations of Absolute Value Functions TEKS FOCUS VOCABULARY Compression A compression is a TEKS (6)(C) Analze the effect on the graphs of f() = when f() is replaced b af(), f(b), f( - c), and f()

More information

Transformations of y = x 2 Parent Parabola

Transformations of y = x 2 Parent Parabola Transformations of = 2 SUGGESTED LEARNING STRATEGIES: Marking the Tet, Interactive Word Wall, Create Representations, Quickwrite 1. Graph the parent quadratic function, f () = 2, on the coordinate grid

More information

Quadratic Functions In Standard Form In Factored Form In Vertex Form Transforming Graphs. Math Background

Quadratic Functions In Standard Form In Factored Form In Vertex Form Transforming Graphs. Math Background Graphing In Standard Form In Factored Form In Vertex Form Transforming Graphs Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

Graphing Equations. The Rectangular Coordinate System

Graphing Equations. The Rectangular Coordinate System 3.1 Graphing Equations The Rectangular Coordinate Sstem Ordered pair two numbers associated with a point on a graph. The first number gives the horizontal location of the point. The second gives the vertical

More information

2.2 Absolute Value Functions

2.2 Absolute Value Functions . Absolute Value Functions 7. Absolute Value Functions There are a few was to describe what is meant b the absolute value of a real number. You ma have been taught that is the distance from the real number

More information

The Graph Scale-Change Theorem

The Graph Scale-Change Theorem Lesson 3-5 Lesson 3-5 The Graph Scale-Change Theorem Vocabular horizontal and vertical scale change, scale factor size change BIG IDEA The graph of a function can be scaled horizontall, verticall, or in

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

Up and Down or Down and Up

Up and Down or Down and Up Lesson.1 Skills Practice Name Date Up and Down or Down and Up Eploring Quadratic Functions Vocabular Write the given quadratic function in standard form. Then describe the shape of the graph and whether

More information

Instructor: Virginia Davis Course: Foundations for College Math (1)

Instructor: Virginia Davis Course: Foundations for College Math (1) 5/19/01 Final Eam Review Ch 10,11-Virginia Davis Student: Date: Instructor: Virginia Davis Course: Foundations for College Math (1) Assignment: Final Eam Review Ch 10,11 1. Simplif b factoring. Assume

More information

Module 2, Section 2 Graphs of Trigonometric Functions

Module 2, Section 2 Graphs of Trigonometric Functions Principles of Mathematics Section, Introduction 5 Module, Section Graphs of Trigonometric Functions Introduction You have studied trigonometric ratios since Grade 9 Mathematics. In this module ou will

More information

Topic 2 Transformations of Functions

Topic 2 Transformations of Functions Week Topic Transformations of Functions Week Topic Transformations of Functions This topic can be a little trick, especiall when one problem has several transformations. We re going to work through each

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 6: Analyzing Quadratic Functions Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 6: Analyzing Quadratic Functions Instruction Prerequisite Skills This lesson requires the use of the following skills: factoring quadratic expressions finding the vertex of a quadratic function Introduction We have studied the key features of the

More information

Graphing Quadratics: Vertex and Intercept Form

Graphing Quadratics: Vertex and Intercept Form Algebra : UNIT Graphing Quadratics: Verte and Intercept Form Date: Welcome to our second function famil...the QUADRATIC FUNCTION! f() = (the parent function) What is different between this function and

More information

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form.

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. A. Intro to Graphs of Quadratic Equations:! = ax + bx + c A is a function

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

Quadratic Functions. Full Set of Notes. No Solutions

Quadratic Functions. Full Set of Notes. No Solutions Quadratic Functions Full Set of Notes No Solutions Graphing Quadratic Functions The graph of a quadratic function is called a parabola. Applications of Parabolas: http://www.doe.virginia.gov/div/winchester/jhhs/math/lessons/calc2004/appparab.html

More information

( ) ( ) Completing the Square. Alg 3 1 Rational Roots Solving Polynomial Equations. A Perfect Square Trinomials

( ) ( ) Completing the Square. Alg 3 1 Rational Roots Solving Polynomial Equations. A Perfect Square Trinomials Alg Completing the Square A Perfect Square Trinomials (± ) ± (± ) ± 4 4 (± ) ± 6 9 (± 4) ± 8 6 (± 5) ± 5 What is the relationship between the red term and the blue term? B. Creating perfect squares.. 6

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Imagine the path of a basketball as it leaves a player s hand and swooshes through the net. Or, imagine the path of an Olympic diver

More information

Quadratic Inequalities

Quadratic Inequalities TEKS FCUS - Quadratic Inequalities VCABULARY TEKS ()(H) Solve quadratic inequalities. TEKS ()(E) Create and use representations to organize, record, and communicate mathematical ideas. Representation a

More information

1.1 Horizontal & Vertical Translations

1.1 Horizontal & Vertical Translations Unit II Transformations of Functions. Horizontal & Vertical Translations Goal: Demonstrate an understanding of the effects of horizontal and vertical translations on the graphs of functions and their related

More information

Unit 6 Quadratic Functions

Unit 6 Quadratic Functions Unit 6 Quadratic Functions 12.1 & 12.2 Introduction to Quadratic Functions What is A Quadratic Function? How do I tell if a Function is Quadratic? From a Graph The shape of a quadratic function is called

More information

You Try: Find the x-intercepts of f ( x) Find the roots (zeros, x-intercepts) of 2. x x. x 2. x 8 x x 2 8x 4 4x 32

You Try: Find the x-intercepts of f ( x) Find the roots (zeros, x-intercepts) of 2. x x. x 2. x 8 x x 2 8x 4 4x 32 1 Find the roots (zeros, -intercepts) of 1 3. 1a Find the -intercepts of 5 1 We are looking for the solutions to Method 1: Factoring Using Guess & heck Using an rea Model, fill in a Generic Rectangle with

More information

Calculus & Its Applications Larry J. Goldstein David Lay Nakhle I. Asmar David I. Schneider Thirteenth Edition

Calculus & Its Applications Larry J. Goldstein David Lay Nakhle I. Asmar David I. Schneider Thirteenth Edition Calculus & Its Applications Larr J. Goldstein David La Nakhle I. Asmar David I. Schneider Thirteenth Edition Pearson Education Limited Edinburgh Gate Harlow Esse CM20 2JE England and Associated Companies

More information

2.2. Changing One Dimension

2.2. Changing One Dimension 2.2 Changing One Dimension The epression (n - 2)(n + 2) is in factored form because it is written as a product of factors. The epression n 2-4 is in epanded form because it is written as the sum or difference

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Section 4.2 Graphs of Exponential Functions

Section 4.2 Graphs of Exponential Functions 238 Chapter 4 Section 4.2 Graphs of Eponential Functions Like with linear functions, the graph of an eponential function is determined by the values for the parameters in the function s formula. To get

More information

Appendix C: Review of Graphs, Equations, and Inequalities

Appendix C: Review of Graphs, Equations, and Inequalities Appendi C: Review of Graphs, Equations, and Inequalities C. What ou should learn Just as ou can represent real numbers b points on a real number line, ou can represent ordered pairs of real numbers b points

More information

Section 4.3 Features of a Line

Section 4.3 Features of a Line Section.3 Features of a Line Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif the - and -intercepts of a line. Plotting points in the --plane

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions Math 3200 Unit I Ch 3 - Polnomial Functions 1 Unit I - Chapter 3 Polnomial Functions 3.1 Characteristics of Polnomial Functions Goal: To Understand some Basic Features of Polnomial functions: Continuous

More information

3.7 Graphing Linear Inequalities

3.7 Graphing Linear Inequalities 8 CHAPTER Graphs and Functions.7 Graphing Linear Inequalities S Graph Linear Inequalities. Graph the Intersection or Union of Two Linear Inequalities. Graphing Linear Inequalities Recall that the graph

More information

2.4. Families of Polynomial Functions

2.4. Families of Polynomial Functions 2. Families of Polnomial Functions Crstal pieces for a large chandelier are to be cut according to the design shown. The graph shows how the design is created using polnomial functions. What do all the

More information

Further Differentiation

Further Differentiation Worksheet 39 Further Differentiation Section Discriminant Recall that the epression a + b + c is called a quadratic, or a polnomial of degree The graph of a quadratic is called a parabola, and looks like

More information