Motivation. CS389L: Automated Logical Reasoning. Lecture 17: SMT Solvers and the DPPL(T ) Framework. SMT solvers. The Basic Idea.

Size: px
Start display at page:

Download "Motivation. CS389L: Automated Logical Reasoning. Lecture 17: SMT Solvers and the DPPL(T ) Framework. SMT solvers. The Basic Idea."

Transcription

1 Motivation Lecture 17: SMT rs and the DPPL(T ) Framework şıl Dillig n previous lectures, we looked at decision procedures for conjunctive formulas in various first-order theories This lecture: How to handle boolean structure when deciding satisfiability modulo theories n practice, cannot convert to DNF because causes exponential blow-up in formula size SMT (satisfiability modulo theory) solvers use clever techniques to handle boolean structure şıl Dillig, 1/28 şıl Dillig, 2/28 SMT solvers The Basic dea To use solver, we construct a propositional formula, called boolean abstraction, that overapproximates satisfiability Key idea underlying SMT solvers: Combine theory solvers with solvers solver: Decision procedure for checking satisfiability in conjunctive fragment solver handles boolean structure, and theory solver handles theory-specific reasoning f boolean abstraction is UN, we are done also unsat modulo theory f boolean abstraction is, doesn t necessarily mean original formula is Use theory solver to check if assignment returned by solver is satisfiable modulo theory f not, add additional boolean constraints (called theory s) to guide the search for an assignment that is satisfiable modulo theory şıl Dillig, 3/28 şıl Dillig, 4/28 Boolean Abstraction SMT formula in theory T formed according to CFG: F := a T F 1 F 2 F 1 F 2 F What is the boolean abstraction of this formula? For each SMT formula, define a bijective function B, called boolean abstraction function, that maps SMT formula to overapproximate formula F : x = z ((y = z x < z) (x = z)) Function B defined inductively as follows: B(a T ) = b (b fresh) B(F 1 F 2 ) = B(F 1 ) B(F 2 ) B(F 1 F 2 ) = B(F 1 ) B(F 2 ) B( F ) = B(F 1 ) Boolean abstraction is also called boolean skeleton Since B is a bijective function, B 1 also exists What is B 1 (b 2 b 1 )? şıl Dillig, 5/28 şıl Dillig, 6/28 1

2 Boolean Abstraction as Overapproximation Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula solver may yield assignments that are not sat modulo T because boolean abstraction is an over-approximation n this case, we need to learn theory s Two different approaches for learning theory s s this formula satisfiable? F : x = z ((y = z x < z ) (x = z )) Boolean abstraction: B(F ) = b1 ((b2 b3 ) b1 ) s this satisfiable? What is a sat assignment? What is B 1 (A)? s B 1 (A) satisfiable? s ıl Dillig, Need for Clauses SMT Solving Off-line Version 9/28 Consider example from before: B(F ) : b1 ((b2 b3 ) b1 ) Sat assignment to B(F ) A : b1 b2 b3 B 1 (A) is unsat What is new boolean abstraction? s ıl Dillig, Unfortunately, s obtained this way are too weak Suppose A is a conjunction of 100 literals such that B 1 (A) = x = y x < y a1 a2... a98 A prevents exact same assignment But it doesn t prevent many other bad assignments involving x = y x 6= y such as: B 1 (A) = x = y x < y a1 a2... a98 s ıl Dillig, n fact, there are 298 unsat assignments containing x = y x 6= y but A prevents only one of them! 8/28 F : x = z ((y = z x < z ) (x = z )) s this formula? 10/28 mprovement to Off-line SMT So far, we just add negation of current assignment as theory (b1 ((b2 b3 ) b1 )) (b1 b2 b3 ) Shortcoming of This Approach On-line (lazy): ntegrate theory solver into the CDCL loop OfflineSMT(φ){ ψ := B(φ) while(true){ A := CDCL(φ) if(a = ) return UN; res := (B 1 (A)); if(res) return ; ψ := ψ A s ıl Dillig, Off-line (eager): Use solver as black-box First look into off-line version because it s easier s ıl Dillig, 7/28 11/28 s ıl Dillig, 2 Rather than adding A as a, better idea is to find an unsatisfiable core of B 1 (A) Given a set S of clauses, an unsat core of S 0 is a subset S 0 such that S 0 is also unsat deally, we would like to find the minimal unsatisfiable core Minimal unsatisfiable core C has property that if you drop any single atom of C, result is satisfiable What is a minimal unsat core of x = y x < y a1 a2... a98? x = y x < y 12/28

3 Computing Minimal Unsat Core How can we compute minimal unsat core of conjunctive T formula without modifying theory solver? Let φ be original unsatisfiable conjunct Let s compute minimal unsat core of φ : x = y f (x ) + z = 5 f (x ) 6= f (y) y 3 Drop x = y from φ. s result unsat? Drop one atom from φ, call this φ0 Drop f (x ) + z = 5. s result unsat? f φ0 is still unsat, φ := φ0 New formula: φ : x = y f (x ) 6= f (y) y 3 Repeat this for every atom in φ Drop f (x ) 6= f (y). s result unsat? Clearly, resulting φ is minimal unsat core of original formula Finally, drop y 3. s result unsat? So, minimal unsat core is x = y f (x ) 6= f (y) s ıl Dillig, 13/28 s ıl Dillig, SMT mproved Off-line Version 14/28 Motivation for On-line SMT OfflineSMT(φ){ ψ := B(φ) while(true){ A := CDCL(φ) if(a = ) return UN; res := (B 1 (A)); if(res) return ; χ := UnsatCore(B 1 (A)) ψ := ψ B(χ) s ıl Dillig, This strategy is much better than simple strategy where we add A as theory. But still need to wait for full assignment from the solver, which can be problematic Consider very large formula F containing x = y and x < y with corresponding boolean variables b1 and b2 As soon as sat solver makes assignment b1 = >, b2 = >, we are doomed because this is unsatisfiable in theory Thus, no need to continue with solving after this bad partial assignment s ıl Dillig, 15/28 On-line SMT 16/28 DPLL-Based r Architecture dea: Don t use solver as blackbox ntegrate theory solver right into the CDCL n other words, theory s become another kind of that solvers already learn... no conflict conflict Conflict UN s ıl Dillig, 17/28 s ıl Dillig, 3 dea: ntegrate theory solver right into this solving loop! 18/28

4 Suppose solver has made assignment in step and performed f no detected, immediately invoke theory solver UN Combination of DPLL-based solver and decision procedure for conjunctive T formula called DPLL(T ) framework Specifically, suppose A is current partial assignment to boolean abstraction Use theory solver to decide if B 1 (A) is unsat f B 1 (A) unsat, add theory A to clause database Or better, add negation of unsat core of A to clause database şıl Dillig, 19/28 şıl Dillig, 20/28 Propagation What we described so far is sufficient to solve SMT formula, but we can be even more clever! Suppose original formula contains literals x = y, y = z, x < z with corresponding boolean variables b 1, b 2, b 3 Suppose solver makes partial assignment b 1 :, b 2 : UN Add theory and continue doing, which will detect n next step, free to assign b 3 : or b 3 : But assignment b 3 : is stupid b/c will lead to in T As before, decides what level to to şıl Dillig, 21/28 şıl Dillig, 22/28 Propagation Lemma, cont dea: solver can communicate which literals are implied by current partial assignment n our example, x < z implied by current partial assignment x = y y = z Thus, can safely add b 1 b 2 b 3 to clause database These kinds of clauses implied by theory are called theory propagation lemmas UN Adding theory propagation lemmas prevents bad assignments to boolean abstraction şıl Dillig, 23/28 şıl Dillig, 24/28 4

5 nferring Propagation Lemmas How do we obtain theory propagation lemmas? Option #1: Treat theory solver as blackbox, query whether particular literal a is implied by current partial assisgnment? Option #2: Modify theory solver so that it can figure out implied literals Second option is considered more efficient, but have to figure out how to do this for each different theory Which Propagation Lemmas to Add Which theory propagation lemmas do we add? Option #1: Figure out and add all literals implied by current partial assignment; called exhaustive theory propagation Option #2: Only figure out literals obviously implied by current partial assignment Exhaustive theory propagation can be very expensive; second option considered preferable There isn t much of a science behind which literals are obviously implied rs use different strategies to obtain simple-to-find implications şıl Dillig, 25/28 şıl Dillig, 26/28 SMT rs Today Summary All competitive SMT solvers today are based on the on-line version Many existing off-the-shelf SMT solvers: Z3, CVC3, Yices, Math, etc. Lots of on-going research on SMT, esp. related to quantifier support Annual competition SMT-COMP between solvers; tools ranked in various categories SMT solvers decide satisfiability in boolean combinations of different theories nstead of converting to DNF, they handle boolean structure using solving technqiues Competitive solvers are based on DPLL(T ) framework şıl Dillig, 27/28 şıl Dillig, 28/28 5

Deductive Methods, Bounded Model Checking

Deductive Methods, Bounded Model Checking Deductive Methods, Bounded Model Checking http://d3s.mff.cuni.cz Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Deductive methods Pavel Parízek Deductive Methods, Bounded

More information

Minimum Satisfying Assignments for SMT. Işıl Dillig, Tom Dillig Ken McMillan Alex Aiken College of William & Mary Microsoft Research Stanford U.

Minimum Satisfying Assignments for SMT. Işıl Dillig, Tom Dillig Ken McMillan Alex Aiken College of William & Mary Microsoft Research Stanford U. Minimum Satisfying Assignments for SMT Işıl Dillig, Tom Dillig Ken McMillan Alex Aiken College of William & Mary Microsoft Research Stanford U. 1 / 20 Satisfiability Modulo Theories (SMT) Today, SMT solvers

More information

CAV Verification Mentoring Workshop 2017 SMT Solving

CAV Verification Mentoring Workshop 2017 SMT Solving CAV Verification Mentoring Workshop 2017 SMT Solving Alberto Griggio Fondazione Bruno Kessler Trento, Italy The SMT problem Satisfiability Modulo Theories Given a (quantifier-free) FOL formula and a (decidable)

More information

Improving Coq Propositional Reasoning Using a Lazy CNF Conversion

Improving Coq Propositional Reasoning Using a Lazy CNF Conversion Using a Lazy CNF Conversion Stéphane Lescuyer Sylvain Conchon Université Paris-Sud / CNRS / INRIA Saclay Île-de-France FroCoS 09 Trento 18/09/2009 Outline 1 Motivation and background Verifying an SMT solver

More information

PROPOSITIONAL LOGIC (2)

PROPOSITIONAL LOGIC (2) PROPOSITIONAL LOGIC (2) based on Huth & Ruan Logic in Computer Science: Modelling and Reasoning about Systems Cambridge University Press, 2004 Russell & Norvig Artificial Intelligence: A Modern Approach

More information

Motivation. CS389L: Automated Logical Reasoning. Lecture 5: Binary Decision Diagrams. Historical Context. Binary Decision Trees

Motivation. CS389L: Automated Logical Reasoning. Lecture 5: Binary Decision Diagrams. Historical Context. Binary Decision Trees Motivation CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams Işıl Dillig Previous lectures: How to determine satisfiability of propositional formulas Sometimes need to efficiently

More information

SAT Solvers. Ranjit Jhala, UC San Diego. April 9, 2013

SAT Solvers. Ranjit Jhala, UC San Diego. April 9, 2013 SAT Solvers Ranjit Jhala, UC San Diego April 9, 2013 Decision Procedures We will look very closely at the following 1. Propositional Logic 2. Theory of Equality 3. Theory of Uninterpreted Functions 4.

More information

Normal Forms for Boolean Expressions

Normal Forms for Boolean Expressions Normal Forms for Boolean Expressions A NORMAL FORM defines a class expressions s.t. a. Satisfy certain structural properties b. Are usually universal: able to express every boolean function 1. Disjunctive

More information

An Introduction to Satisfiability Modulo Theories

An Introduction to Satisfiability Modulo Theories An Introduction to Satisfiability Modulo Theories Philipp Rümmer Uppsala University Philipp.Ruemmer@it.uu.se February 13, 2019 1/28 Outline From theory... From DPLL to DPLL(T) Slides courtesy of Alberto

More information

4.1 Review - the DPLL procedure

4.1 Review - the DPLL procedure Applied Logic Lecture 4: Efficient SAT solving CS 4860 Spring 2009 Thursday, January 29, 2009 The main purpose of these notes is to help me organize the material that I used to teach today s lecture. They

More information

Complete Instantiation of Quantified Formulas in Satisfiability Modulo Theories. ACSys Seminar

Complete Instantiation of Quantified Formulas in Satisfiability Modulo Theories. ACSys Seminar Complete Instantiation of Quantified Formulas in Satisfiability Modulo Theories Yeting Ge Leonardo de Moura ACSys Seminar 2008.12 Motivation SMT solvers have been successful Quantified smt formulas are

More information

Decision Procedures in the Theory of Bit-Vectors

Decision Procedures in the Theory of Bit-Vectors Decision Procedures in the Theory of Bit-Vectors Sukanya Basu Guided by: Prof. Supratik Chakraborty Department of Computer Science and Engineering, Indian Institute of Technology, Bombay May 1, 2010 Sukanya

More information

Combining forces to solve Combinatorial Problems, a preliminary approach

Combining forces to solve Combinatorial Problems, a preliminary approach Combining forces to solve Combinatorial Problems, a preliminary approach Mohamed Siala, Emmanuel Hebrard, and Christian Artigues Tarbes, France Mohamed SIALA April 2013 EDSYS Congress 1 / 19 Outline Context

More information

Satisfiability (SAT) Applications. Extensions/Related Problems. An Aside: Example Proof by Machine. Annual Competitions 12/3/2008

Satisfiability (SAT) Applications. Extensions/Related Problems. An Aside: Example Proof by Machine. Annual Competitions 12/3/2008 15 53:Algorithms in the Real World Satisfiability Solvers (Lectures 1 & 2) 1 Satisfiability (SAT) The original NP Complete Problem. Input: Variables V = {x 1, x 2,, x n }, Boolean Formula Φ (typically

More information

Theory of Integers. CS389L: Automated Logical Reasoning. Lecture 13: The Omega Test. Overview of Techniques. Geometric Description

Theory of Integers. CS389L: Automated Logical Reasoning. Lecture 13: The Omega Test. Overview of Techniques. Geometric Description Theory of ntegers This lecture: Decision procedure for qff theory of integers CS389L: Automated Logical Reasoning Lecture 13: The Omega Test şıl Dillig As in previous two lectures, we ll consider T Z formulas

More information

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,,

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,, CMPSCI 601: Recall From Last Time Lecture 5 Definition: A context-free grammar (CFG) is a 4- tuple, variables = nonterminals, terminals, rules = productions,,, are all finite. 1 ( ) $ Pumping Lemma for

More information

A Pearl on SAT Solving in Prolog (extended abstract)

A Pearl on SAT Solving in Prolog (extended abstract) A Pearl on SAT Solving in Prolog (extended abstract) Jacob M. Howe and Andy King 1 Introduction The Boolean satisfiability problem, SAT, is of continuing interest because a variety of problems are naturally

More information

Satisfiability Modulo Theories. DPLL solves Satisfiability fine on some problems but not others

Satisfiability Modulo Theories. DPLL solves Satisfiability fine on some problems but not others DPLL solves Satisfiability fine on some problems but not others DPLL solves Satisfiability fine on some problems but not others Does not do well on proving multipliers correct pigeon hole formulas cardinality

More information

Yices 1.0: An Efficient SMT Solver

Yices 1.0: An Efficient SMT Solver Yices 1.0: An Efficient SMT Solver SMT-COMP 06 Leonardo de Moura (joint work with Bruno Dutertre) {demoura, bruno}@csl.sri.com. Computer Science Laboratory SRI International Menlo Park, CA Yices: An Efficient

More information

CODE ANALYSIS CARPENTRY

CODE ANALYSIS CARPENTRY SEAN HEELAN THE (IN)COMPLETE GUIDE TO CODE ANALYSIS CARPENTRY ( Or how to avoid braining yourself when handed an SMT solving hammer Immunity Inc. Part I: Down the Rabbit Hole Propositional Logic Mechanical

More information

DPLL(T ):Fast Decision Procedures

DPLL(T ):Fast Decision Procedures DPLL(T ):Fast Decision Procedures Harald Ganzinger George Hagen Robert Nieuwenhuis Cesare Tinelli Albert Oliveras MPI, Saarburcken The University of Iowa UPC, Barcelona Computer Aided-Verification (CAV)

More information

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Sanjit A. Seshia EECS, UC Berkeley Project Proposals Due Friday, February 13 on bcourses Will discuss project topics on Monday Instructions

More information

Symbolic and Concolic Execution of Programs

Symbolic and Concolic Execution of Programs Symbolic and Concolic Execution of Programs Information Security, CS 526 Omar Chowdhury 10/7/2015 Information Security, CS 526 1 Reading for this lecture Symbolic execution and program testing - James

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory Other NP-Complete Problems Haniel Barbosa Readings for this lecture Chapter 7 of [Sipser 1996], 3rd edition. Sections 7.4 and 7.5. The 3SAT

More information

Array Dependence Analysis as Integer Constraints. Array Dependence Analysis Example. Array Dependence Analysis as Integer Constraints, cont

Array Dependence Analysis as Integer Constraints. Array Dependence Analysis Example. Array Dependence Analysis as Integer Constraints, cont Theory of Integers CS389L: Automated Logical Reasoning Omega Test Işıl Dillig Earlier, we talked aout the theory of integers T Z Signature of T Z : Σ Z : {..., 2, 1, 0, 1, 2,..., 3, 2, 2, 3,..., +,, =,

More information

Lemmas on Demand for Lambdas

Lemmas on Demand for Lambdas Lemmas on Demand for Lambdas Mathias Preiner, Aina Niemetz and Armin Biere Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria http://fmv.jku.at/ DIFTS Workshop

More information

Boolean Functions (Formulas) and Propositional Logic

Boolean Functions (Formulas) and Propositional Logic EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Part I: Basics Sanjit A. Seshia EECS, UC Berkeley Boolean Functions (Formulas) and Propositional Logic Variables: x 1, x 2, x 3,, x

More information

Symbolic Execution as DPLL Modulo Theories

Symbolic Execution as DPLL Modulo Theories Symbolic Execution as DPLL Modulo Theories Quoc-Sang Phan Queen Mary University of London q.phan@qmul.ac.uk Abstract We show how Symbolic Execution can be understood as a variant of the DPLL(T ) algorithm,

More information

Formally Certified Satisfiability Solving

Formally Certified Satisfiability Solving SAT/SMT Proof Checking Verifying SAT Solver Code Future Work Computer Science, The University of Iowa, USA April 23, 2012 Seoul National University SAT/SMT Proof Checking Verifying SAT Solver Code Future

More information

Symbolic Methods. The finite-state case. Martin Fränzle. Carl von Ossietzky Universität FK II, Dpt. Informatik Abt.

Symbolic Methods. The finite-state case. Martin Fränzle. Carl von Ossietzky Universität FK II, Dpt. Informatik Abt. Symbolic Methods The finite-state case Part I Martin Fränzle Carl von Ossietzky Universität FK II, Dpt. Informatik Abt. Hybride Systeme 02917: Symbolic Methods p.1/34 What you ll learn How to use and manipulate

More information

HySAT. what you can use it for how it works example from application domain final remarks. Christian Herde /12

HySAT. what you can use it for how it works example from application domain final remarks. Christian Herde /12 CP2007: Presentation of recent CP solvers HySAT what you can use it for how it works example from application domain final remarks Christian Herde 25.09.2007 /2 What you can use it for Satisfiability checker

More information

EECS 219C: Formal Methods Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Formal Methods Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Formal Methods Boolean Satisfiability Solving Sanjit A. Seshia EECS, UC Berkeley The Boolean Satisfiability Problem (SAT) Given: A Boolean formula F(x 1, x 2, x 3,, x n ) Can F evaluate to 1

More information

Linear Time Unit Propagation, Horn-SAT and 2-SAT

Linear Time Unit Propagation, Horn-SAT and 2-SAT Notes on Satisfiability-Based Problem Solving Linear Time Unit Propagation, Horn-SAT and 2-SAT David Mitchell mitchell@cs.sfu.ca September 25, 2013 This is a preliminary draft of these notes. Please do

More information

SAT Solver. CS 680 Formal Methods Jeremy Johnson

SAT Solver. CS 680 Formal Methods Jeremy Johnson SAT Solver CS 680 Formal Methods Jeremy Johnson Disjunctive Normal Form A Boolean expression is a Boolean function Any Boolean function can be written as a Boolean expression s x 0 x 1 f Disjunctive normal

More information

Nenofar: A Negation Normal Form SMT Solver

Nenofar: A Negation Normal Form SMT Solver Nenofar: A Negation Normal Form SMT Solver Combining Non-Clausal SAT Approaches with Theories Philippe Suter 1, Vijay Ganesh 2, Viktor Kuncak 1 1 EPFL, Switzerland 2 MIT, USA Abstract. We describe an implementation

More information

Encoding The Lexicographic Ordering Constraint in Satisfiability Modulo Theories

Encoding The Lexicographic Ordering Constraint in Satisfiability Modulo Theories Encoding The Lexicographic Ordering Constraint in Satisfiability Modulo Theories Hani Abdalla Muftah Elgabou MSc by Research University of York Computer Science February 2015 Dedication To my Mother, my

More information

Solving Quantified Verification Conditions using Satisfiability Modulo Theories

Solving Quantified Verification Conditions using Satisfiability Modulo Theories Solving Quantified Verification Conditions using Satisfiability Modulo Theories Yeting Ge 1, Clark Barrett 1, and Cesare Tinelli 2 1 New York University, yeting barrett@cs.nyu.edu 2 The University of Iowa,

More information

Seminar decision procedures: Certification of SAT and unsat proofs

Seminar decision procedures: Certification of SAT and unsat proofs Seminar decision procedures: Certification of SAT and unsat proofs Wolfgang Nicka Technische Universität München June 14, 2016 Boolean satisfiability problem Term The boolean satisfiability problem (SAT)

More information

Massively Parallel Seesaw Search for MAX-SAT

Massively Parallel Seesaw Search for MAX-SAT Massively Parallel Seesaw Search for MAX-SAT Harshad Paradkar Rochester Institute of Technology hp7212@rit.edu Prof. Alan Kaminsky (Advisor) Rochester Institute of Technology ark@cs.rit.edu Abstract The

More information

W4231: Analysis of Algorithms

W4231: Analysis of Algorithms W4231: Analysis of Algorithms 11/23/99 NP-completeness of 3SAT, Minimum Vertex Cover, Maximum Independent Set, Boolean Formulae A Boolean formula is an expression that we can build starting from Boolean

More information

SAT/SMT summer school 2015 Introduction to SMT

SAT/SMT summer school 2015 Introduction to SMT SAT/SMT summer school 2015 Introduction to SMT Alberto Griggio Fondazione Bruno Kessler Trento, Italy Some material courtesy of Roberto Sebastiani and Leonardo de Moura Outline Introduction The DPLL(T)

More information

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus: Boolean Algebra and Simplification CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Topics Motivation: Simplifying Conditional Expressions

More information

CS-E3200 Discrete Models and Search

CS-E3200 Discrete Models and Search Shahab Tasharrofi Department of Information and Computer Science, Aalto University Lecture 7: Complete and local search methods for SAT Outline Algorithms for solving Boolean satisfiability problems Complete

More information

18733: Applied Cryptography S17. Mini Project. due April 19, 2017, 11:59pm EST. φ(x) := (x > 5) (x < 10)

18733: Applied Cryptography S17. Mini Project. due April 19, 2017, 11:59pm EST. φ(x) := (x > 5) (x < 10) 18733: Applied Cryptography S17 Mini Project due April 19, 2017, 11:59pm EST 1 SMT Solvers 1.1 Satisfiability Modulo Theory SMT (Satisfiability Modulo Theories) is a decision problem for logical formulas

More information

Decision Procedures. An Algorithmic Point of View. Decision Procedures for Propositional Logic. D. Kroening O. Strichman.

Decision Procedures. An Algorithmic Point of View. Decision Procedures for Propositional Logic. D. Kroening O. Strichman. Decision Procedures An Algorithmic Point of View Decision Procedures for Propositional Logic D. Kroening O. Strichman ETH/Technion Version 1.0, 2007 Part I Decision Procedures for Propositional Logic Outline

More information

Challenging Problems for Yices

Challenging Problems for Yices Challenging Problems for Yices Bruno Dutertre, SRI International Deduction at Scale Seminar March, 2011 SMT Solvers at SRI 2000-2004: Integrated Canonizer and Solver (ICS) Based on Shostak s method + a

More information

Finite Model Generation for Isabelle/HOL Using a SAT Solver

Finite Model Generation for Isabelle/HOL Using a SAT Solver Finite Model Generation for / Using a SAT Solver Tjark Weber webertj@in.tum.de Technische Universität München Winterhütte, März 2004 Finite Model Generation for / p.1/21 is a generic proof assistant: Highly

More information

Turbo-Charging Lemmas on Demand with Don t Care Reasoning

Turbo-Charging Lemmas on Demand with Don t Care Reasoning Turbo-Charging Lemmas on Demand with Don t Care Reasoning Aina Niemetz, Mathias Preiner and Armin Biere Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria http://fmv.jku.at/

More information

Improving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Extraction. Gilles Audemard Jean-Marie Lagniez and Laurent Simon

Improving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Extraction. Gilles Audemard Jean-Marie Lagniez and Laurent Simon Improving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Extraction Gilles Audemard Jean-Marie Lagniez and Laurent Simon SAT 2013 Glucose and MUS SAT 2013 1 / 17 Introduction

More information

On Proof Systems Behind Efficient SAT Solvers. DoRon B. Motter and Igor L. Markov University of Michigan, Ann Arbor

On Proof Systems Behind Efficient SAT Solvers. DoRon B. Motter and Igor L. Markov University of Michigan, Ann Arbor On Proof Systems Behind Efficient SAT Solvers DoRon B. Motter and Igor L. Markov University of Michigan, Ann Arbor Motivation Best complete SAT solvers are based on DLL Runtime (on unsat instances) is

More information

OpenSMT2. A Parallel, Interpolating SMT Solver. Antti Hyvärinen, Matteo Marescotti, Leonardo Alt, Sepideh Asadi, and Natasha Sharygina

OpenSMT2. A Parallel, Interpolating SMT Solver. Antti Hyvärinen, Matteo Marescotti, Leonardo Alt, Sepideh Asadi, and Natasha Sharygina OpenSMT2 A Parallel, Interpolating SMT Solver Antti Hyvärinen, Matteo Marescotti, Leonardo Alt, Sepideh Asadi, and Natasha Sharygina Why another SMT solver? Model checking OpenSMT Interpolation Parallel

More information

Scaling Up DPLL(T) String Solvers Using Context-Dependent Simplification

Scaling Up DPLL(T) String Solvers Using Context-Dependent Simplification Scaling Up DPLL(T) String s Using Context-Dependent Simplification Andrew Reynolds, Maverick Woo, Clark Barrett, David Brumley, Tianyi Liang, Cesare Tinelli CAV 2017 1 Importance of String s Automated

More information

8.1 Polynomial-Time Reductions

8.1 Polynomial-Time Reductions 8.1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. Those with polynomial-time algorithms.

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

Incremental Proof Development in Dafny

Incremental Proof Development in Dafny 15-414 Lecture 17 1 Instructor: Matt Fredrikson Incremental Proof Development in Dafny TA: Ryan Wagner In this discussion, we ll see in more detail how to go about proving the total correctness of imperative

More information

Encoding First Order Proofs in SMT

Encoding First Order Proofs in SMT Encoding First Order Proofs in SMT Jeremy Bongio Cyrus Katrak Hai Lin Christopher Lynch Ralph Eric McGregor June 4, 2007 Abstract We present a method for encoding first order proofs in SMT. Our implementation,

More information

Multi Domain Logic and its Applications to SAT

Multi Domain Logic and its Applications to SAT Multi Domain Logic and its Applications to SAT Tudor Jebelean RISC Linz, Austria Tudor.Jebelean@risc.uni-linz.ac.at Gábor Kusper Eszterházy Károly College gkusper@aries.ektf.hu Abstract We describe a new

More information

Turbo-Charging Lemmas on Demand with Don t Care Reasoning

Turbo-Charging Lemmas on Demand with Don t Care Reasoning Turbo-Charging Lemmas on Demand with Don t Care Reasoning Aina Niemetz, Mathias Preiner, and Armin Biere Institute for Formal Models and Verification Johannes Kepler University, Linz, Austria Abstract

More information

MajorSat: A SAT Solver to Majority Logic

MajorSat: A SAT Solver to Majority Logic MajorSat: A SAT Solver to Majority Logic Speaker : Ching-Yi Huang Authors: Yu-Min Chou, Yung-Chih Chen *, Chun-Yao Wang, Ching-Yi Huang National Tsing Hua University, Taiwan * Yuan Ze University, Taiwan

More information

(Exact Global Nonlinear) Optimization on Demand

(Exact Global Nonlinear) Optimization on Demand (Exact Global Nonlinear) Optimization on Demand Leonardo de Moura & Grant Olney Passmore MSR, Redmond, USA ADDCT-2013 ~ CADE-24 (presentation only) Edinburgh and Cambridge, UK Big Picture A CDCL-like approach

More information

SAT-CNF Is N P-complete

SAT-CNF Is N P-complete SAT-CNF Is N P-complete Rod Howell Kansas State University November 9, 2000 The purpose of this paper is to give a detailed presentation of an N P- completeness proof using the definition of N P given

More information

Where Can We Draw The Line?

Where Can We Draw The Line? Where Can We Draw The Line? On the Hardness of Satisfiability Problems Complexity 1 Introduction Objectives: To show variants of SAT and check if they are NP-hard Overview: Known results 2SAT Max2SAT Complexity

More information

CSc Parallel Scientific Computing, 2017

CSc Parallel Scientific Computing, 2017 CSc 76010 Parallel Scientific Computing, 2017 What is? Given: a set X of n variables, (i.e. X = {x 1, x 2,, x n } and each x i {0, 1}). a set of m clauses in Conjunctive Normal Form (CNF) (i.e. C = {c

More information

On Resolution Proofs for Combinational Equivalence Checking

On Resolution Proofs for Combinational Equivalence Checking On Resolution Proofs for Combinational Equivalence Checking Satrajit Chatterjee Alan Mishchenko Robert Brayton Department of EECS U. C. Berkeley {satrajit, alanmi, brayton}@eecs.berkeley.edu Andreas Kuehlmann

More information

Horn Formulae. CS124 Course Notes 8 Spring 2018

Horn Formulae. CS124 Course Notes 8 Spring 2018 CS124 Course Notes 8 Spring 2018 In today s lecture we will be looking a bit more closely at the Greedy approach to designing algorithms. As we will see, sometimes it works, and sometimes even when it

More information

EXTENDING SAT SOLVER WITH PARITY CONSTRAINTS

EXTENDING SAT SOLVER WITH PARITY CONSTRAINTS TKK Reports in Information and Computer Science Espoo 2010 TKK-ICS-R32 EXTENDING SAT SOLVER WITH PARITY CONSTRAINTS Tero Laitinen TKK Reports in Information and Computer Science Espoo 2010 TKK-ICS-R32

More information

Notes on Non-Chronologic Backtracking, Implication Graphs, and Learning

Notes on Non-Chronologic Backtracking, Implication Graphs, and Learning Notes on Non-Chronologic Backtracking, Implication Graphs, and Learning Alan J. Hu for CpSc 5 Univ. of British Columbia 00 February 9 These are supplementary notes on these aspects of a modern DPLL-style

More information

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Foundations of AI 9. Predicate Logic Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller 09/1 Contents Motivation

More information

Lost in translation. Leonardo de Moura Microsoft Research. how easy problems become hard due to bad encodings. Vampire Workshop 2015

Lost in translation. Leonardo de Moura Microsoft Research. how easy problems become hard due to bad encodings. Vampire Workshop 2015 Lost in translation how easy problems become hard due to bad encodings Vampire Workshop 2015 Leonardo de Moura Microsoft Research I wanted to give the following talk http://leanprover.github.io/ Automated

More information

SAT Solver Heuristics

SAT Solver Heuristics SAT Solver Heuristics SAT-solver History Started with David-Putnam-Logemann-Loveland (DPLL) (1962) Able to solve 10-15 variable problems Satz (Chu Min Li, 1995) Able to solve some 1000 variable problems

More information

Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis

Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis (abridged version of DAC slides) Sanjit A. Seshia Associate Professor EECS Department UC Berkeley Design Automation

More information

1.4 Normal Forms. We define conjunctions of formulas as follows: and analogously disjunctions: Literals and Clauses

1.4 Normal Forms. We define conjunctions of formulas as follows: and analogously disjunctions: Literals and Clauses 1.4 Normal Forms We define conjunctions of formulas as follows: 0 i=1 F i =. 1 i=1 F i = F 1. n+1 i=1 F i = n i=1 F i F n+1. and analogously disjunctions: 0 i=1 F i =. 1 i=1 F i = F 1. n+1 i=1 F i = n

More information

Satisfiability Solvers

Satisfiability Solvers Satisfiability Solvers Part 1: Systematic Solvers 600.325/425 Declarative Methods - J. Eisner 1 Vars SAT solving has made some progress 100000 10000 1000 100 10 1 1960 1970 1980 1990 2000 2010 Year slide

More information

Integration of SMT Solvers with ITPs There and Back Again

Integration of SMT Solvers with ITPs There and Back Again Integration of SMT Solvers with ITPs There and Back Again Sascha Böhme and University of Sheffield 7 May 2010 1 2 Features: SMT-LIB vs. Yices Translation Techniques Caveats 3 4 Motivation Motivation System

More information

Propagation via Lazy Clause Generation

Propagation via Lazy Clause Generation Propagation via Lazy Clause Generation Olga Ohrimenko 1, Peter J. Stuckey 1, and Michael Codish 2 1 NICTA Victoria Research Lab, Department of Comp. Sci. and Soft. Eng. University of Melbourne, Australia

More information

Announcements. CS243: Discrete Structures. Strong Induction and Recursively Defined Structures. Review. Example (review) Example (review), cont.

Announcements. CS243: Discrete Structures. Strong Induction and Recursively Defined Structures. Review. Example (review) Example (review), cont. Announcements CS43: Discrete Structures Strong Induction and Recursively Defined Structures Işıl Dillig Homework 4 is due today Homework 5 is out today Covers induction (last lecture, this lecture, and

More information

ESE535: Electronic Design Automation CNF. Today CNF. 3-SAT Universal. Problem (A+B+/C)*(/B+D)*(C+/A+/E)

ESE535: Electronic Design Automation CNF. Today CNF. 3-SAT Universal. Problem (A+B+/C)*(/B+D)*(C+/A+/E) ESE535: Electronic Design Automation CNF Day 21: April 21, 2008 Modern SAT Solvers ({z}chaff, GRASP,miniSAT) Conjunctive Normal Form Logical AND of a set of clauses Product of sums Clauses: logical OR

More information

NP and computational intractability. Kleinberg and Tardos, chapter 8

NP and computational intractability. Kleinberg and Tardos, chapter 8 NP and computational intractability Kleinberg and Tardos, chapter 8 1 Major Transition So far we have studied certain algorithmic patterns Greedy, Divide and conquer, Dynamic programming to develop efficient

More information

Binary Decision Diagrams

Binary Decision Diagrams Logic and roof Hilary 2016 James Worrell Binary Decision Diagrams A propositional formula is determined up to logical equivalence by its truth table. If the formula has n variables then its truth table

More information

Interpolant based Decision Procedure for Quantifier-Free Presburger Arithmetic

Interpolant based Decision Procedure for Quantifier-Free Presburger Arithmetic Journal on Satisfiability, Boolean Modeling and Computation 1 (7) 187 207 Interpolant based Decision Procedure for Quantifier-Free Presburger Arithmetic Shuvendu K. Lahiri Microsoft Research, Redmond Krishna

More information

Learning a SAT Solver from Single-

Learning a SAT Solver from Single- Learning a SAT Solver from Single- Bit Supervision Daniel Selsman, Matthew Lamm, Benedikt Bunz, Percy Liang, Leonardo de Moura and David L. Dill Presented By Aditya Sanghi Overview NeuroSAT Background:

More information

Solving Quantified Verification Conditions using Satisfiability Modulo Theories

Solving Quantified Verification Conditions using Satisfiability Modulo Theories Solving Quantified Verification Conditions using Satisfiability Modulo Theories Yeting Ge 1, Clark Barrett 1, and Cesare Tinelli 2 1 New York University, yeting barrett@cs.nyu.edu 2 The University of Iowa,

More information

Automated Testing and Debugging of SAT and QBF Solvers

Automated Testing and Debugging of SAT and QBF Solvers Automated Testing and Debugging of SAT and QBF Solvers JKU Linz, Austria 13 th International Conference on Theory and Applications of Satisfiability Testing July 13, 2010 Edinburgh, Scotland, UK Outline

More information

Satisfiability. Michail G. Lagoudakis. Department of Computer Science Duke University Durham, NC SATISFIABILITY

Satisfiability. Michail G. Lagoudakis. Department of Computer Science Duke University Durham, NC SATISFIABILITY Satisfiability Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 27708 COMPSCI 271 - Spring 2001 DUKE UNIVERSITY Page 1 Why SAT? Historical Reasons The first NP-COMPLETE problem

More information

argo-lib: A Generic Platform for Decision Procedures

argo-lib: A Generic Platform for Decision Procedures argo-lib: A Generic Platform for Decision Procedures Filip Marić 1 and Predrag Janičić 2 1 e-mail: filip@matf.bg.ac.yu 2 e-mail: janicic@matf.bg.ac.yu Faculty of Mathematics, University of Belgrade Studentski

More information

Small Formulas for Large Programs: On-line Constraint Simplification In Scalable Static Analysis

Small Formulas for Large Programs: On-line Constraint Simplification In Scalable Static Analysis Small Formulas for Large Programs: On-line Constraint Simplification In Scalable Static Analysis Isil Dillig, Thomas Dillig, Alex Aiken Stanford University Scalability and Formula Size Many program analysis

More information

Implementation of a Sudoku Solver Using Reduction to SAT

Implementation of a Sudoku Solver Using Reduction to SAT Implementation of a Sudoku Solver Using Reduction to SAT For this project you will develop a Sudoku solver that receives an input puzzle and computes a solution, if one exists. Your solver will: read an

More information

Algorithms for SAT and k-sat problems

Algorithms for SAT and k-sat problems Algorithms for SAT and k-sat problems On solutions that don t require bounded treewidth Pauli Miettinen Pauli.Miettinen@cs.Helsinki.FI Department of Computer Science - p. 1/23 - p. 2/23 Problem definitions

More information

1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it.

1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it. 1 Introduction There are hundreds of NP-complete problems. For a recent selection see http://www. csc.liv.ac.uk/ ped/teachadmin/comp202/annotated_np.html Also, see the book M. R. Garey and D. S. Johnson.

More information

OPTIMIZATION IN SMT WITH LA(Q) COST FUNCTIONS. Roberto Sebastiani and Silvia Tomasi

OPTIMIZATION IN SMT WITH LA(Q) COST FUNCTIONS. Roberto Sebastiani and Silvia Tomasi DISI - Via Sommarive, 14-38123 POVO, Trento - Italy http://disi.unitn.it OPTIMIZATION IN SMT WITH LA(Q) COST FUNCTIONS Roberto Sebastiani and Silvia Tomasi January 2012 Technical Report # DISI-12-003 Optimization

More information

Practical SAT Solving

Practical SAT Solving Practical SAT Solving Lecture 5 Carsten Sinz, Tomáš Balyo May 23, 2016 INSTITUTE FOR THEORETICAL COMPUTER SCIENCE KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz

More information

CS-E3220 Declarative Programming

CS-E3220 Declarative Programming CS-E3220 Declarative Programming Lecture 5: Premises for Modern SAT Solving Aalto University School of Science Department of Computer Science Spring 2018 Motivation The Davis-Putnam-Logemann-Loveland (DPLL)

More information

An Alldifferent Constraint Solver in SMT

An Alldifferent Constraint Solver in SMT An Alldifferent Constraint Solver in SMT Milan Banković and Filip Marić Faculty of Mathematics, University of Belgrade (milan filip)@matf.bg.ac.rs May 16, 2010 Abstract The finite domain alldifferent constraint,

More information

CSP- and SAT-based Inference Techniques Applied to Gnomine

CSP- and SAT-based Inference Techniques Applied to Gnomine CSP- and SAT-based Inference Techniques Applied to Gnomine Bachelor Thesis Faculty of Science, University of Basel Department of Computer Science Artificial Intelligence ai.cs.unibas.ch Examiner: Prof.

More information

Constraint Programming

Constraint Programming Constraint Programming Functional programming describes computation using functions f : A B Computation proceeds in one direction: from inputs (A) to outputs (B) e.g. f(x) = x / 2 is a function that maps

More information

Efficient SMT Solving for Hardware Model Checking

Efficient SMT Solving for Hardware Model Checking University of Colorado, Boulder CU Scholar Electrical, Computer & Energy Engineering Graduate Theses & Dissertations Electrical, Computer & Energy Engineering Spring 1-1-2010 Efficient SMT Solving for

More information

Integrating a SAT Solver with Isabelle/HOL

Integrating a SAT Solver with Isabelle/HOL Integrating a SAT Solver with / Tjark Weber (joint work with Alwen Tiu et al.) webertj@in.tum.de First Munich-Nancy Workshop on Decision Procedures for Theorem Provers March 6th & 7th, 2006 Integrating

More information

Leonardo de Moura and Nikolaj Bjorner Microsoft Research

Leonardo de Moura and Nikolaj Bjorner Microsoft Research Leonardo de Moura and Nikolaj Bjorner Microsoft Research A Satisfiability Checker with built-in support for useful theories Z3 is a solver developed at Microsoft Research. Development/Research driven by

More information

1 Definition of Reduction

1 Definition of Reduction 1 Definition of Reduction Problem A is reducible, or more technically Turing reducible, to problem B, denoted A B if there a main program M to solve problem A that lacks only a procedure to solve problem

More information

Program Synthesis using Conflict-Driven Learning

Program Synthesis using Conflict-Driven Learning Program Synthesis using Conflict-Driven Learning Abstract Yu Feng University of Texas at Austin U.S.A yufeng@cs.utexas.edu Osbert Bastani Massachusetts Institute of Technology U.S.A obastani@csail.mit.edu

More information