1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls

Size: px
Start display at page:

Download "1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls"

Transcription

1 1/60 Geometric Algorithms Lecture 1: Introduction Convex Hulls

2 Geometric algorithms scope 2/60 Geometry algorithms (practice): Study of geometric problems that arise in various applications and how algorithms can help to solve well-defined versions of such problems Geometry algorithms (theory): Study of geometric problems on geometric data, and how efficient algorithms that solve them can be

3 Geometric problems examples 3/60 Geometric Networks,w e.g., are there relatively short routes between any two cities?

4 Geometric problems examples 3/60 Geometric Networks,w e.g., are there relatively short routes between any two cities? where do streets cross rivers?

5 Geometric problems examples 4/60 Planar Subdivisions, e.g., data structures for fast point location queries

6 Geometric problems examples 4/60 Planar Subdivisions, e.g., data structures for fast point location queries data structures for fast range queries

7 This course 5/60 lecturer: Kevin Buchin course website: http: // book: [BCKO] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry: Algorithms and Applications (3rd edition). Springer-Verlag, Heidelberg, register on

8 This course: prerequisites 6/60 O-, Θ, Ω-notation; how to analyze algorithms Basic calculus: manipulating summations, solving recurrences, working with logarithms, etc. Basic probability theory: events, probability distributions, random variables, expected values etc. Basic data structures: linked lists, stacks, queues Balanced binary search trees Sorting algorithms Graph terminology, representations of graphs, basic graph algorithms Dynamic programming, greedy algorithms

9 This course 7/60 learning objectives: At the end of this course you should be able to... decide which algorithm or data structure to use in order to solve a given basic geometric problem, analyze new problems and come up with your own efficient solutions using concepts and techniques from the course.

10 This course 8/60 assessment: do 5 out of 6 homework assignments: 12% each on each assignment there is one exercise that you solve individually and two that you solve in a group do a course project (in groups of 3 students): 40% to pass you need 12.5 (out of 25) of points on your best 5 homework exercises done individually AND 5.5 as combined grade of assignments and project

11 This course: homework assignments 9/60 assignments once a week feel free to ask questions if an exercise is not clear to you if you want early feedback on your solution if you get stuck on an exercise Monday at lecture (best) or or in person (Mon/Tue (evening)/wed better make appointment)

12 This course: homework assignments 10/60 homework marked with a (G) is done as a project group homework not marked with a (G) is done individually & in particular the write-up needs to be done completely independent. If you discuss these exercises with other students, written notes on these discussions may not be used as basis for the homework.

13 This course: projects 11/60 choice between different experimentation projects, Option A: compute geometric spanners amidst obstacles (variation on Lecture 6 using Lecture 8) Option B: compute trapezoidal map of a simple polygon (Lecture 4 motivated by Lecture 3) you can also come up with your own project ideas (e.g., game or theory), and discuss them with me. find details also on course webpage 2IMA15/projects.html

14 This course: experimentation projects 12/60 General Guidelines and Report Writing take the guidelines on the web-page into careful consideration Data challenge groups contribute one data set to the data challenge of their problem groups run additionally to their regular experiments their algorithms on the data challenge sets Mini-presentations Groups give a 4-minute presentation at the end of the course presenting their results. This presentation is not graded. January 11 or 16?

15 This course: projects 13/60 Time line: asap form a group of your choice; if you would like me to help, contact me Nov 21 send with group members (and preferred topic) Dec 14 hand in a report outline and make an appointment to discuss it with me (Dec 19/20/21) Jan 2 send data set for data challenge (if applicable) Jan 11 or 16 project presentations Jan 18 hand in deliverables

16 Geometry: points, lines,... 14/60 Plane (two-dimensional), R 2 Space (three-dimensional), R 3 Space (higher-dimensional), R d A point in the plane, 3-dimensional space, higher-dimensional space. p = (p x, p y ), p = (p x, p y, p z ), p = (p 1, p 2,..., p d ) A line in the plane: y = m x + c; representation by m and c A half-plane in the plane: y m x + c or y m x + c Represent vertical lines? Not by m and c...

17 Geometry: line segments 15/60 A line segment pq is defined by its two endpoints p and q: (λ p x + (1 λ) q x, λ p y + (1 λ) q y ) where 0 λ 1 Line segments are assumed to be closed = with endpoints, not open Two line segments intersect if they have some point in common. It is a proper intersection if it is exactly one interior point of each line segment

18 Polygons: simple or not 16/60 A polygon is a connected region of the plane bounded by a sequence of line segments interior exterior simple polygon polygon with holes convex polygon non-simple polygon The line segments of a polygon are called its edges, the endpoints of those edges are the vertices

19 Other shapes: rectangles, circles, disks 17/60 A circle is only the boundary, a disk is the boundary plus the interior Rectangles, squares, quadrants, slabs, half-lines,...

20 Relations: distance, intersection, angle 18/60 The distance between two points is generally the Euclidean distance: (px q x ) 2 + (p y q y ) 2 (px q x ) 2 + (p y q y ) 2 ) Another option: the Manhattan distance: p x q x + p y q y The distance between two geometric objects other than points usually refers to the minimum distance between two points that are part of these objects p x q x p y q y

21 Relations: distance, intersection, angle 19/60 The intersection of two geometric objects is the set of points (part of the plane, space) they have in common Question 1: What is the maximum number of intersection points of a line and a simple polygon with 10 vertices (trick question)?

22 Relations: distance, intersection, angle 20/60 The intersection of two geometric objects is the set of points (part of the plane, space) they have in common Question 2: What is the maximum number of intersection points of a line and a simple polygon boundary with 10 vertices (still a trick question)?

23 Description size 21/60 A point in the plane can be represented using two reals A line in the plane can be represented using two reals and a Boolean (for example) A line segment can be represented by two points, so four reals A circle (or disk) requires three reals to store it (center, radius) A rectangle requires four reals to store it y = m x + c false, m, c x = c true,.., c

24 Description size and Computation time 22/60 A simple polygon in the plane can be represented using 2n reals if it has n vertices (and necessarily, n edges) A set of n points requires 2n reals A set of n line segments requires 4n reals A point, line, circle,... requires O(1), or constant, storage. A simple polygon with n vertices requires O(n), or linear, storage We assume: Any computation (distance, intersection) on two objects of O(1) description size takes O(1) time!

25 Algorithms, efficiency 23/60 Recall from your algorithms and data structures course: A set of n real numbers can be sorted in O(nlogn) time A set of n real numbers can be stored in a data structure that uses O(n) storage and that allows searching, insertion, and deletion in O(log n) time per operation These are fundamental results in 1-dimensional computational geometry!

26 Wildlife Analysis 24/ Black Rhino (Diceros bicornis) Extent of Occurrence

27 Convexity 25/60 A shape or set is convex if for any two points that are part of the shape, the whole connecting line segment is also part of the shape Question: Which of the following shapes are convex? Point, line segment, line, circle, disk, quadrant?

28 Convex hull 26/60 For any subset of the plane (set of points, rectangle, simple polygon), its convex hull is the smallest convex set that contains that subset

29 Convex hull problem 27/60 Give an algorithm that computes the convex hull of any given set of n points in the plane efficiently The input has 2n coordinates, so O(n) size Question: Why can t we expect to do any better than O(n) time?

30 Convex hull problem 28/60 Assume the n points are distinct The output has at least 4 and at most 2n coordinates, so it has size between O(1) and O(n) The output is a convex polygon so it should be returned as a sorted sequence of the points, counterclockwise along the boundary Question: Is there any hope of finding an O(n) time algorithm?

31 Developing an algorithm 29/60 To develop an algorithm, find useful properties, make various observations, draw many sketches to gain insight

32 Developing an algorithm 30/60 To develop an algorithm, find useful properties, make various observations, draw many sketches to gain insight Property: The vertices of the convex hull are always points from the input Consequently, the edges of the convex hull connect two points of the input Property: The supporting line of any convex hull edge has all input points to one side all points lie left of the directed line from p to q, if the edge from p to q is a CCW convex hull edge p q

33 Developing an algorithm 31/60 Algorithm SLOWCONVEXHULL(P) Input. A set P of points in the plane. Output. A list L containing the vertices of CH(P) in clockwise order. 1. E /0. 2. for all ordered pairs (p,q) P P with p not equal to q 3. do valid true 4. for all points r P not equal to p or q 5. do if r lies left of the directed line from p to q 6. then valid false 7. if valid then Add the directed edge pq to E 8. From the set E of edges construct a list L of vertices of CH(P), sorted in clockwise order.

34 Developing an algorithm 32/60 Question: How must line 5 be interpreted to make the algorithm correct, i.e., how do we handle degeneracies? Question: How efficient is the algorithm? Question: Is the algorithm robust against rounding errors? Note: Robustness is a huge issue when implementing geometric algorithms

35 Developing an algorithm 33/60 Another approach: incremental, from left to right Let s first compute the upper boundary of the convex hull this way (property: on the upper hull, points appear in x-order) Main idea: Sort the points from left to right (= by x-coordinate). Then insert the points in this order, and maintain the upper hull so far

36 Developing an algorithm 34/60 Observation: from left to right, there are only right turns on the upper hull

37 Developing an algorithm 35/60 Initialize by inserting the leftmost two points

38 Developing an algorithm 36/60 If we add the third point there will be a right turn at the previous point, so we add it

39 Developing an algorithm 37/60 If we add the fourth point we get a left turn at the third point

40 Developing an algorithm 38/60... so we remove the third point from the upper hull when we add the fourth

41 Developing an algorithm 39/60 If we add the fifth point we get a left turn at the fourth point

42 Developing an algorithm 40/60... so we remove the fourth point when we add the fifth

43 Developing an algorithm 41/60 If we add the sixth point we get a right turn at the fifth point, so we just add it

44 Developing an algorithm 42/60 We also just add the seventh point

45 Developing an algorithm 43/60 When adding the eight point... we must remove the seventh point

46 Developing an algorithm 44/60... we must remove the seventh point

47 Developing an algorithm 45/60... and also the sixth point

48 Developing an algorithm 46/60... and also the fifth point

49 Developing an algorithm 47/60 After two more steps we get:

50 The pseudo-code 48/60 Algorithm CONVEXHULL(P) Input. A set P of points in the plane. Output. A list containing the vertices of CH(P) in clockwise order. 1. Sort the points by x-coordinate, resulting in a sequence p 1,..., p n. 2. Put the points p 1 and p 2 in a list L upper, with p 1 as the first point. 3. for i 3 to n 4. do Append p i to L upper. 5. while L upper contains more than two points and the last three points in L upper do not make a right turn 6. do Delete the middle of the last three points from L upper.

51 The pseudo-code 49/60 p 1, p 2, p 10, p 13, p 14 Then we do the same for the lower convex hull, from right to left We remove the first and last points of the lower convex hull... and concatenate the two lists into one p 14, p 12, p 8, p 4, p 1

52 Algorithm analysis 50/60 Algorithm analysis generally has two components: proof of correctness efficiency analysis, proof of running time

53 Correctness 51/60 Are the general observations on which the algorithm is based correct? Does the algorithm handle degenerate cases correctly? Here: Does the sorted order matter if two or more points have the same x-coordinate? What happens if there are three or more collinear points, in particular on the convex hull?

54 Efficiency 52/60 Identify of each line of pseudo-code how much time it takes, if it is executed once (note: operations on a constant number of constant-size objects take constant time) Consider the loop-structure and examine how often each line of pseudo-code is executed Sometimes there are global arguments why an algorithm is more efficient than it seems, at first

55 The pseudo-code 53/60 Algorithm CONVEXHULL(P) Input. A set P of points in the plane. Output. A list containing the vertices of CH(P) in clockwise order. 1. Sort the points by x-coordinate, resulting in a sequence p 1,..., p n. 2. Put the points p 1 and p 2 in a list L upper, with p 1 as the first point. 3. for i 3 to n 4. do Append p i to L upper. 5. while L upper contains more than two points and the last three points in L upper do not make a right turn 6. do Delete the middle of the last three points from L upper.

56 Efficiency 54/60 The sorting step takes O(nlogn) time Adding a point takes O(1) time for the adding-part. Removing points takes constant time for each removed point. If due to an addition, k points are removed, the step takes O(1 + k) time Total time: O(nlogn) + n i=3 O(1 + k i ) if k i points are removed when adding p i Since k i = O(n), we get O(nlogn) + n i=3 O(n) = O(n 2 )

57 Efficiency 55/60 Global argument: each point can be removed only once from the upper hull This gives us the fact: Hence, n i=3 k i n O(nlogn) + n i=3 O(1 + k i ) = O(nlogn) + O(n) = O(nlogn)

58 Result 56/60 The convex hull of a set of n points in the plane can be computed in O(nlogn) time, and this is worst-case optimal.

59 Result 56/60 The convex hull of a set of n points in the plane can be computed in O(nlogn) time, and this is worst-case optimal. Can we do better?

60 Result 56/60 The convex hull of a set of n points in the plane can be computed in O(nlogn) time, and this is worst-case optimal. Can we do better? O(nh) if the CH has h vertices? O(nlogh)? Yes we can.

61 Other approaches: divide-and-conquer 57/60 Divide-and-conquer: split the point set in two halves, compute the convex hulls recursively, and merge A merge involves finding extreme vertices in every direction

62 Other approaches: divide-and-conquer 58/60 Alternatively: split the point set in two halves on x-coordinate, compute the convex hulls recursively, and merge A merge now comes down to finding two common tangent lines

63 Convex hulls in 3D 59/60 For a 3-dimensional point set, the convex hull is a convex polyhedron It has vertices (0-dim.), edges (1-dim.), and facets (2-dim.) in its boundary, and a 3-dimensional interior The boundary is a planar graph, so it has O(n) vertices, edges and facets

64 Convex hulls in 4D 60/60 For a 4-dimensional point set, the convex hull is a convex polyhedron It has vertices (0-dim.), edges (1-dim.), 2-facets (2-dim.), and 3-facets (3-dim.) in its boundary, and a 4-dimensional interior Its boundary can have Θ(n 2 ) facets in the worst case!

Computational Geometry

Computational Geometry Lecture 1: Introduction and convex hulls Geometry: points, lines,... Geometric objects Geometric relations Combinatorial complexity Computational geometry Plane (two-dimensional), R 2 Space (three-dimensional),

More information

Computational Geometry Algorithmische Geometrie

Computational Geometry Algorithmische Geometrie Algorithmische Geometrie Panos Giannopoulos Wolfgang Mulzer Lena Schlipf AG TI SS 2013 !! Register in Campus Management!! Outline What you need to know (before taking this course) What is the course about?

More information

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel Computational Geometry (CS 236719) http://www.cs.tufts.edu/~barequet/teaching/cg Chapter 1 Introduction 1 Copyright 2002-2009 2009 Prof. Gill Barequet Center for Graphics and Geometric Computing Dept.

More information

GEOMETRIC SEARCHING PART 1: POINT LOCATION

GEOMETRIC SEARCHING PART 1: POINT LOCATION GEOMETRIC SEARCHING PART 1: POINT LOCATION PETR FELKEL FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 3.10.2014 Geometric

More information

Notes and Answers to Homework Exam 1, Geometric Algorithms, 2017

Notes and Answers to Homework Exam 1, Geometric Algorithms, 2017 Notes and Answers to Homework Exam 1, Geometric Algorithms, 2017 Below are some notes and sketches of correct answers for the first homework exam. We have also included the most common mistakes that were

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

CS3110 Spring 2017 Lecture 14: Computational Geometry and Convex Hulls

CS3110 Spring 2017 Lecture 14: Computational Geometry and Convex Hulls CS3110 Spring 2017 Lecture 14: Computational Geometry and Convex Hulls Robert Constable 1 Lecture Plan 1. Cantor s Theorem, as stated by Bishop [1]. 2. Background for geometry 3. Finding the convex hull

More information

CS 372: Computational Geometry Lecture 3 Line Segment Intersection

CS 372: Computational Geometry Lecture 3 Line Segment Intersection CS 372: Computational Geometry Lecture 3 Line Segment Intersection Antoine Vigneron King Abdullah University of Science and Technology September 9, 2012 Antoine Vigneron (KAUST) CS 372 Lecture 3 September

More information

CS 6463: AT Computational Geometry Spring 2006 Convex Hulls Carola Wenk

CS 6463: AT Computational Geometry Spring 2006 Convex Hulls Carola Wenk CS 6463: AT Computational Geometry Spring 2006 Convex Hulls Carola Wenk 8/29/06 CS 6463: AT Computational Geometry 1 Convex Hull Problem Given a set of pins on a pinboard and a rubber band around them.

More information

Line segment intersection. Family of intersection problems

Line segment intersection. Family of intersection problems CG Lecture 2 Line segment intersection Intersecting two line segments Line sweep algorithm Convex polygon intersection Boolean operations on polygons Subdivision overlay algorithm 1 Family of intersection

More information

Lecture 3: Art Gallery Problems and Polygon Triangulation

Lecture 3: Art Gallery Problems and Polygon Triangulation EECS 396/496: Computational Geometry Fall 2017 Lecture 3: Art Gallery Problems and Polygon Triangulation Lecturer: Huck Bennett In this lecture, we study the problem of guarding an art gallery (specified

More information

26 The closest pair problem

26 The closest pair problem The closest pair problem 1 26 The closest pair problem Sweep algorithms solve many kinds of proximity problems efficiently. We present a simple sweep that solves the two-dimensional closest pair problem

More information

Solutions to problem set 1

Solutions to problem set 1 Massachusetts Institute of Technology Handout 5 6.838: Geometric Computation October 4, 2001 Professors Piotr Indyk and Seth Teller Solutions to problem set 1 (mostly taken from the solution set of Jan

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

Lecture 3 February 9, 2010

Lecture 3 February 9, 2010 6.851: Advanced Data Structures Spring 2010 Dr. André Schulz Lecture 3 February 9, 2010 Scribe: Jacob Steinhardt and Greg Brockman 1 Overview In the last lecture we continued to study binary search trees

More information

Computational Geometry

Computational Geometry Motivation Motivation Polygons and visibility Visibility in polygons Triangulation Proof of the Art gallery theorem Two points in a simple polygon can see each other if their connecting line segment is

More information

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8!

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8! CS 410/584, Algorithm Design & Analysis, Computational Geometry! Algorithms for manipulation of geometric objects We will concentrate on 2-D geometry Numerically robust try to avoid division Round-off

More information

2D Geometry. Pierre Alliez Inria Sophia Antipolis

2D Geometry. Pierre Alliez Inria Sophia Antipolis 2D Geometry Pierre Alliez Inria Sophia Antipolis Outline Sample problems Polygons Graphs Convex hull Voronoi diagram Delaunay triangulation Sample Problems Line Segment Intersection Theorem: Segments (p

More information

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces. Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery

More information

CS6100: Topics in Design and Analysis of Algorithms

CS6100: Topics in Design and Analysis of Algorithms CS6100: Topics in Design and Analysis of Algorithms Guarding and Triangulating Polygons John Augustine CS6100 (Even 2012): Guarding and Triangulating Polygons The Art Gallery Problem A simple polygon is

More information

Convex Hull Algorithms

Convex Hull Algorithms Convex Hull Algorithms Design and Analysis of Algorithms prof. F. Malucelli Villa Andrea e Ceriani Simone Outline Problem Definition Basic Concepts Bruteforce Algorithm Graham Scan Algorithm Divide and

More information

CSE 5311 Notes 13: Computational Geometry

CSE 5311 Notes 13: Computational Geometry CSE 5311 Notes 13: Computational Geometry (Last updated 4/17/17 4:39 PM) SMALLEST ENCLOSING DISK See section 4.7 of de Berg ( http://dx.doi.org.ezproxy.uta.edu/10.1007/978-3-540-77974-2 ) Algorithm MINIDISC(P)

More information

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Spring, 2010

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Spring, 2010 UMass Lowell Computer Science 91.504 Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2010 Lecture 3 O Rourke Chapter 3: 2D Convex Hulls Thursday, 2/18/10 Chapter 3 2D Convex Hulls

More information

Computational Geometry

Computational Geometry Casting a polyhedron CAD/CAM systems CAD/CAM systems allow you to design objects and test how they can be constructed Many objects are constructed used a mold Casting Casting A general question: Given

More information

Geometric Computation: Introduction

Geometric Computation: Introduction : Introduction Piotr Indyk Welcome to 6.838! Overview and goals Course Information Syllabus 2D Convex hull Signup sheet Geometric computation occurs everywhere: Geographic Information Systems (GIS): nearest

More information

Planar convex hulls (I) Computational Geometry [csci 3250] Laura Toma Bowdoin College

Planar convex hulls (I) Computational Geometry [csci 3250] Laura Toma Bowdoin College Planar convex hulls (I) Computational Geometry [csci 3250] Laura Toma Bowdoin College Convex Hull Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points

More information

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8 CS 410/584,, Computational Geometry Algorithms for manipulation of geometric objects We will concentrate on 2-D geometry Numerically robust try to avoid division Round-off error Divide-by-0 checks Techniques

More information

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms Geometric data structures Sudebkumar Prasant Pal Department of Computer Science and Engineering IIT Kharagpur, 721302. email: spp@cse.iitkgp.ernet.in January 10-12, 2012 - NIT Surathkal Introduction to

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Computational Geometry 1 David M. Mount Department of Computer Science University of Maryland Fall 2005 1 Copyright, David M. Mount, 2005, Dept. of Computer Science, University of Maryland, College

More information

(Master Course) Mohammad Farshi Department of Computer Science, Yazd University. Yazd Univ. Computational Geometry.

(Master Course) Mohammad Farshi Department of Computer Science, Yazd University. Yazd Univ. Computational Geometry. 1 / 17 (Master Course) Mohammad Farshi Department of Computer Science, Yazd University 1392-1 2 / 17 : Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars, Algorithms and Applications, 3rd Edition,

More information

Flavor of Computational Geometry. Convex Hull in 2D. Shireen Y. Elhabian Aly A. Farag University of Louisville

Flavor of Computational Geometry. Convex Hull in 2D. Shireen Y. Elhabian Aly A. Farag University of Louisville Flavor of Computational Geometry Convex Hull in 2D Shireen Y. Elhabian Aly A. Farag University of Louisville February 2010 Agenda Introduction Definitions of Convexity and Convex Hulls Naïve Algorithms

More information

Computational Geometry. Lecture 17

Computational Geometry. Lecture 17 Computational Geometry Lecture 17 Computational geometry Algorithms for solving geometric problems in 2D and higher. Fundamental objects: Basic structures: point line segment line point set polygon L17.2

More information

Visibility: Finding the Staircase Kernel in Orthogonal Polygons

Visibility: Finding the Staircase Kernel in Orthogonal Polygons Visibility: Finding the Staircase Kernel in Orthogonal Polygons 8 Visibility: Finding the Staircase Kernel in Orthogonal Polygons Tzvetalin S. Vassilev, Nipissing University, Canada Stefan Pape, Nipissing

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

COT5405: GEOMETRIC ALGORITHMS

COT5405: GEOMETRIC ALGORITHMS COT5405: GEOMETRIC ALGORITHMS Objects: Points in, Segments, Lines, Circles, Triangles Polygons, Polyhedra R n Alications Vision, Grahics, Visualizations, Databases, Data mining, Networks, GIS Scientific

More information

Computational Geometry

Computational Geometry CS 5633 -- Spring 2004 Computational Geometry Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 5633 Analysis of Algorithms 1 Computational geometry Algorithms for solving

More information

Computational Geometry Overview from Cormen, et al.

Computational Geometry Overview from Cormen, et al. UMass Lowell Computer Science 91.503 Graduate Algorithms Prof. Karen Daniels Spring, 2014 Computational Geometry Overview from Cormen, et al. Chapter 33 (with additional material from other sources) 1

More information

CS S Lecture February 13, 2017

CS S Lecture February 13, 2017 CS 6301.008.18S Lecture February 13, 2017 Main topics are #Voronoi-diagrams, #Fortune. Quick Note about Planar Point Location Last week, I started giving a difficult analysis of the planar point location

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Project 3: Point Location

Project 3: Point Location MCS 481 / David Dumas / Spring 2011 Project 3: Point Location Due Friday, April 1 0. Overview In this project you will study CGAL s support for point location in planar subdivisions. While the project

More information

Geometric Algorithms. 1. Objects

Geometric Algorithms. 1. Objects Geometric Algorithms 1. Definitions 2. Line-Segment properties 3. Inner Points of polygons 4. Simple polygons 5. Convex hulls 6. Closest pair of points 7. Diameter of a point set 1. Objects 2-dimensional

More information

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College 3D convex hulls Computational Geometry [csci 3250] Laura Toma Bowdoin College Convex Hull in 3D The problem: Given a set P of points in 3D, compute their convex hull convex polyhedron 2D 3D polygon

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Connected Components of Underlying Graphs of Halving Lines

Connected Components of Underlying Graphs of Halving Lines arxiv:1304.5658v1 [math.co] 20 Apr 2013 Connected Components of Underlying Graphs of Halving Lines Tanya Khovanova MIT November 5, 2018 Abstract Dai Yang MIT In this paper we discuss the connected components

More information

VORONOI DIAGRAM PETR FELKEL. FEL CTU PRAGUE Based on [Berg] and [Mount]

VORONOI DIAGRAM PETR FELKEL. FEL CTU PRAGUE   Based on [Berg] and [Mount] VORONOI DIAGRAM PETR FELKEL FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 9.11.2017 Talk overview Definition and examples

More information

Advanced Algorithm Homework 4 Results and Solutions

Advanced Algorithm Homework 4 Results and Solutions Advanced Algorithm Homework 4 Results and Solutions ID 1 2 3 4 5 Av Ex 2554 6288 9919 10 6 10 10 9.5 8.9 10-1 4208 10 10 9 8.5 10 9.5 9 0996 10 10 10 10 10 10 10 8239 10 10 10 10 10 10 10 7388 8 8.5 9

More information

would be included in is small: to be exact. Thus with probability1, the same partition n+1 n+1 would be produced regardless of whether p is in the inp

would be included in is small: to be exact. Thus with probability1, the same partition n+1 n+1 would be produced regardless of whether p is in the inp 1 Introduction 1.1 Parallel Randomized Algorihtms Using Sampling A fundamental strategy used in designing ecient algorithms is divide-and-conquer, where that input data is partitioned into several subproblems

More information

5. DIVIDE AND CONQUER I

5. DIVIDE AND CONQUER I 5. DIVIDE AND CONQUER I mergesort counting inversions closest pair of points randomized quicksort median and selection Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013

More information

Gardener s spline curve

Gardener s spline curve Annales Mathematicae et Informaticae 47 (017) pp. 109 118 http://ami.uni-eszterhazy.hu Gardener s spline curve Imre Juhász Department of Descriptive Geometry University of Miskolc agtji@uni-miskolc.hu

More information

CS 532: 3D Computer Vision 11 th Set of Notes

CS 532: 3D Computer Vision 11 th Set of Notes 1 CS 532: 3D Computer Vision 11 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Line Intersection

More information

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI. February 7, 2009 Second Round Three Hours

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI. February 7, 2009 Second Round Three Hours UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI February 7, 009 Second Round Three Hours (1) An equilateral triangle is inscribed in a circle which is circumscribed by a square. This square is inscribed in

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

Computational Geometry 2D Convex Hulls

Computational Geometry 2D Convex Hulls Computational Geometry 2D Convex Hulls Joseph S. B. Mitchell Stony Brook University Chapter 2: Devadoss-O Rourke Convexity p p Set X is convex if p,q X pq X q q convex non-convex Point p X is an extreme

More information

1 The range query problem

1 The range query problem CS268: Geometric Algorithms Handout #12 Design and Analysis Original Handout #12 Stanford University Thursday, 19 May 1994 Original Lecture #12: Thursday, May 19, 1994 Topics: Range Searching with Partition

More information

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair {machado,tron}@visgraf.impa.br Theoretical Models Random Access Machine Memory: Infinite Array. Access

More information

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College 3D convex hulls Computational Geometry [csci 3250] Laura Toma Bowdoin College Convex Hulls The problem: Given a set P of points, compute their convex hull 2D 3D 2D 3D polygon polyhedron Polyhedron region

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

CS 373: Combinatorial Algorithms, Fall Name: Net ID: Alias: U 3 / 4 1

CS 373: Combinatorial Algorithms, Fall Name: Net ID: Alias: U 3 / 4 1 CS 373: Combinatorial Algorithms, Fall 2000 Homework 1 (due November 16, 2000 at midnight) Starting with Homework 1, homeworks may be done in teams of up to three people. Each team turns in just one solution,

More information

Convex Hulls in Three Dimensions. Polyhedra

Convex Hulls in Three Dimensions. Polyhedra Convex Hulls in Three Dimensions Polyhedra Polyhedron 1.A polyhedron is the generalization of a 2- D polygon to 3-D A finite number of flat polygonal faces The boundary or surface of a polyhedron - Zero-dimensional

More information

Lecture 16: Voronoi Diagrams and Fortune s Algorithm

Lecture 16: Voronoi Diagrams and Fortune s Algorithm contains q changes as a result of the ith insertion. Let P i denote this probability (where the probability is taken over random insertion orders, irrespective of the choice of q). Since q could fall through

More information

Flavor of Computational Geometry. Voronoi Diagrams. Shireen Y. Elhabian Aly A. Farag University of Louisville

Flavor of Computational Geometry. Voronoi Diagrams. Shireen Y. Elhabian Aly A. Farag University of Louisville Flavor of Computational Geometry Voronoi Diagrams Shireen Y. Elhabian Aly A. Farag University of Louisville March 2010 Pepperoni Sparse Pizzas Olive Sparse Pizzas Just Two Pepperonis A person gets the

More information

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm GEOMETRY COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Computational

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

4 Linear Programming. Manufacturing with Molds

4 Linear Programming. Manufacturing with Molds 4 Linear Programming Manufacturing with Molds Most objects we see around us today from car bodies to plastic cups and cutlery are made using some form of automated manufacturing. Computers play an important

More information

CSC Design and Analysis of Algorithms. Lecture 5. Decrease and Conquer Algorithm Design Technique. Decrease-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 5. Decrease and Conquer Algorithm Design Technique. Decrease-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 5 Decrease and Conquer Algorithm Design Technique Decrease-and-Conquer This algorithm design technique is based on exploiting a relationship between

More information

Motion Planning. O Rourke, Chapter 8

Motion Planning. O Rourke, Chapter 8 O Rourke, Chapter 8 Outline Translating a polygon Moving a ladder Shortest Path (Point-to-Point) Goal: Given disjoint polygons in the plane, and given positions s and t, find the shortest path from s to

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

CPSC 320 Midterm 2 Thursday March 13th, 2014

CPSC 320 Midterm 2 Thursday March 13th, 2014 CPSC 320 Midterm 2 Thursday March 13th, 2014 [12] 1. Answer each question with True or False, and then justify your answer briefly. [2] (a) The Master theorem can be applied to the recurrence relation

More information

Review implementation of Stable Matching Survey of common running times. Turn in completed problem sets. Jan 18, 2019 Sprenkle - CSCI211

Review implementation of Stable Matching Survey of common running times. Turn in completed problem sets. Jan 18, 2019 Sprenkle - CSCI211 Objectives Review implementation of Stable Matching Survey of common running times Turn in completed problem sets Jan 18, 2019 Sprenkle - CSCI211 1 Review: Asymptotic Analysis of Gale-Shapley Alg Not explicitly

More information

Polygon decomposition. Motivation: Art gallery problem

Polygon decomposition. Motivation: Art gallery problem CG Lecture 3 Polygon decomposition 1. Polygon triangulation Triangulation theory Monotone polygon triangulation 2. Polygon decomposition into monotone pieces 3. Trapezoidal decomposition 4. Convex decomposition

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 18: Putting Lines Together: Polylines and Polygons Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book

More information

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018)

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018) Homework Assignment Sheet I (Due 16-March-2018) Assignment 1 Let f, g : N R with f(n) := 8n + 4 and g(n) := 1 5 n log 2 n. Prove explicitly that f O(g) and f o(g). Assignment 2 How can you generalize the

More information

Mathematics Curriculum

Mathematics Curriculum 6 G R A D E Mathematics Curriculum GRADE 6 5 Table of Contents 1... 1 Topic A: Area of Triangles, Quadrilaterals, and Polygons (6.G.A.1)... 11 Lesson 1: The Area of Parallelograms Through Rectangle Facts...

More information

Computing intersections in a set of line segments: the Bentley-Ottmann algorithm

Computing intersections in a set of line segments: the Bentley-Ottmann algorithm Computing intersections in a set of line segments: the Bentley-Ottmann algorithm Michiel Smid October 14, 2003 1 Introduction In these notes, we introduce a powerful technique for solving geometric problems.

More information

A Real Time GIS Approximation Approach for Multiphase Spatial Query Processing Using Hierarchical-Partitioned-Indexing Technique

A Real Time GIS Approximation Approach for Multiphase Spatial Query Processing Using Hierarchical-Partitioned-Indexing Technique International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2017 IJSRCSEIT Volume 2 Issue 6 ISSN : 2456-3307 A Real Time GIS Approximation Approach for Multiphase

More information

pine cone Ratio = 13:8 or 8:5

pine cone Ratio = 13:8 or 8:5 Chapter 10: Introducing Geometry 10.1 Basic Ideas of Geometry Geometry is everywhere o Road signs o Carpentry o Architecture o Interior design o Advertising o Art o Science Understanding and appreciating

More information

The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior. CS 312, Winter 2007 Project #1: Convex Hull Due Dates: See class schedule Overview: In this project, you will implement a divide and conquer algorithm for finding the convex hull of a set of points and

More information

6 Mathematics Curriculum

6 Mathematics Curriculum New York State Common Core 6 Mathematics Curriculum GRADE GRADE 6 MODULE 5 Table of Contents 1 Area, Surface Area, and Volume Problems... 3 Topic A: Area of Triangles, Quadrilaterals, and Polygons (6.G.A.1)...

More information

COMPUTING CONSTRAINED DELAUNAY

COMPUTING CONSTRAINED DELAUNAY COMPUTING CONSTRAINED DELAUNAY TRIANGULATIONS IN THE PLANE By Samuel Peterson, University of Minnesota Undergraduate The Goal The Problem The Algorithms The Implementation Applications Acknowledgments

More information

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 High-Dimensional Computational Geometry Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 Outline 3-D vector geometry High-D hyperplane intersections Convex hull & its extension to 3

More information

TEACHER CERTIFICATION STUDY GUIDE KNOWLEDGE OF MATHEMATICS THROUGH SOLVING...1

TEACHER CERTIFICATION STUDY GUIDE KNOWLEDGE OF MATHEMATICS THROUGH SOLVING...1 TABLE OF CONTENTS COMPETENCY/SKILLS PG # COMPETENCY 1 KNOWLEDGE OF MATHEMATICS THROUGH PROBLEM SOLVING...1 Skill 1.1 Skill 1.2 Skill 1.3 Skill 1.4 Identify appropriate mathematical problems from real-world

More information

Geometric Computations for Simulation

Geometric Computations for Simulation 1 Geometric Computations for Simulation David E. Johnson I. INTRODUCTION A static virtual world would be boring and unlikely to draw in a user enough to create a sense of immersion. Simulation allows things

More information

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Simple Closed Surfaces A simple closed surface has exactly one interior, no holes, and is hollow. A sphere is the set of all points at a

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

Notes in Computational Geometry Voronoi Diagrams

Notes in Computational Geometry Voronoi Diagrams Notes in Computational Geometry Voronoi Diagrams Prof. Sandeep Sen and Prof. Amit Kumar Indian Institute of Technology, Delhi Voronoi Diagrams In this lecture, we study Voronoi Diagrams, also known as

More information

Packing Two Disks into a Polygonal Environment

Packing Two Disks into a Polygonal Environment Packing Two Disks into a Polygonal Environment Prosenjit Bose, School of Computer Science, Carleton University. E-mail: jit@cs.carleton.ca Pat Morin, School of Computer Science, Carleton University. E-mail:

More information

Orthogonal Range Search and its Relatives

Orthogonal Range Search and its Relatives Orthogonal Range Search and its Relatives Coordinate-wise dominance and minima Definition: dominates Say that point (x,y) dominates (x', y') if x

More information

Planar union of rectangles with sides parallel to the coordinate axis

Planar union of rectangles with sides parallel to the coordinate axis 6 th International Conference on Applied Informatics Eger, Hungary, January 27 31, 2004. Planar union of rectangles with sides parallel to the coordinate axis Daniel Schmid, Hanspeter Bopp Department of

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Computational Geometry 1 David M. Mount Department of Computer Science University of Maryland Spring 2007 1 Copyright, David M. Mount, 2007, Dept. of Computer Science, University of Maryland,

More information

CSC Design and Analysis of Algorithms

CSC Design and Analysis of Algorithms CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

CS368: Geometric Algorithms Handout # 2 Design and Analysis Stanford University Monday, 17 April 2006

CS368: Geometric Algorithms Handout # 2 Design and Analysis Stanford University Monday, 17 April 2006 CS368: Geometric Algorithms Handout # 2 Design and Analysis Stanford University Monday, 17 April 2006 Homework #1: Arrangements, zones, straight and topological sweeps [70 points] Due Date: Monday, 1 May

More information

A 0 A 1... A i 1 A i,..., A min,..., A n 1 in their final positions the last n i elements After n 1 passes, the list is sorted.

A 0 A 1... A i 1 A i,..., A min,..., A n 1 in their final positions the last n i elements After n 1 passes, the list is sorted. CS6402 Design and Analysis of Algorithms _ Unit II 2.1 UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 2.1 BRUTE FORCE Brute force is a straightforward approach to solving a problem, usually directly based

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6 Critical Areas for Traditional Geometry Page 1 of 6 There are six critical areas (units) for Traditional Geometry: Critical Area 1: Congruence, Proof, and Constructions In previous grades, students were

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Addend any number or quantity being added addend + addend = sum Additive Property of Area the

More information

CSE 546, Fall, 2016 Homework 1

CSE 546, Fall, 2016 Homework 1 CSE 546, Fall, 2016 Homework 1 Due at the beginning of class Thursday, Sept. 15 at 2:30pm. Accepted without penalty until Friday, noon, in my mailbox in the Dept. office, third floor of Jolley. Notes about

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

Course Number: Course Title: Geometry

Course Number: Course Title: Geometry Course Number: 1206310 Course Title: Geometry RELATED GLOSSARY TERM DEFINITIONS (89) Altitude The perpendicular distance from the top of a geometric figure to its opposite side. Angle Two rays or two line

More information