CSE 546, Fall, 2016 Homework 1

Size: px
Start display at page:

Download "CSE 546, Fall, 2016 Homework 1"

Transcription

1 CSE 546, Fall, 2016 Homework 1 Due at the beginning of class Thursday, Sept. 15 at 2:30pm. Accepted without penalty until Friday, noon, in my mailbox in the Dept. office, third floor of Jolley. Notes about homework: Whenever you are asked to present an algorithm,you should present three things: the algorithm, an informal proof of its correctness, and a derivation of its running time. Remember that your description is intended to be read by a human, not a compiler, so conciseness and clarity are preferred over technical details. Unless otherwise stated, you may use any results from class, or results from any standard algorithms text. Giving careful and rigorous proofs can be quite cumbersome in geometry, and so you are encouraged to use intuition and give illustrations whenever appropriate. Beware, however, that a poorly drawn figure can make certain erroneous hypotheses appear to be obviously correct. Throughout the semester, unless otherwise stated, you may assume that input objects are in general position. For example, you may assume that no two points have the same x-coordinate, no three points are collinear, no four points are co-circular. Also, unless otherwise stated, you may assume that any geometric primitive involving a constant number of objects each of constant complexity can be computed in O(1) time. Collaboration: and is listed here: The collaboration policy for this class is adopted from Jeremy Buhler s classes The short version of this policy is that you are allowed to discuss homework problems with other classmates, but you are not allowed to take away written notes from that discussion. All your work towards writing up homework solutions must be done on your own. Practice Problems: 1. A set Q R 2 is star-shaped if there exists a point c Q, such that for every point q Q, the line segment cq is contained in Q. Prove or disprove: (a) Every star-shaped set is convex. (b) Every convex set is star-shaped. (c) The union of two convex sets is convex. (d) The intersection of two convex sets is convex. (e) The intersection of two star-shaped sets is convex. (f) The intersection of a convex set and a star-shaped set is convex Solution: Counter examples for problems a,c,e,f are shown on the figure. Problem 1b: Every convex set is star shaped. Let S be any convex set. We need to prove that this is star shaped. The definition of convex is: x,y S the convex combination of x and y is also in S. Informally, if you pick any two points in S, all the points on the line segment between S are also in S.

2 Figure 1: Counter examples for parts of problem 1 So, pick any point of S. Any point at all. Call that point c. Because S is convex, then y S the convex combination of c and y is also in S. This is the definition of a star-shaped set with c as a center point. Since such a center point exists then S is star-shaped. In fact, any point of a convex set S can be a center point. Problem 1d: The intersection of two convex sets is convex. Let S 1 and S 2 each be a convex set. Let S be the intersection fo S 1 and S 2. Our goal is to prove that S is convex. Let x, y be any two points in S. Let z be any point on the convex combination of x, y. Then, z must be in S, because z is in S 1 (because x, y are in S 1, S 1 is convex, and z is on the convex combination of x, y, and because z is in S 2 (because x, y are in S 2, S 2 is convex, and z is on the convex combination of x, y. Since z is in both S 1 and S 2 it is in the intersection of S 1 and S 2. Therefore, S is convex, because for any points x, y in S every point z on the line from x, y is in S. 2. A polygon P is star-shaped if there exists a point q inside the polygon such that for every point p in the polygon P, the line pq is contained within P. You are given the polygon P as a counterclockwise list of vertices. Give an O(n) algorithm to compute the convex hull of P. Prove the correctness of your algorithm (at least argue that every edge of your output is actually on the convex hull). Solution: Our approach is to use Graham s Scan. Usually this is an O(n log n) algorithm because we need to sort the point (either by x-coordinate, or around some point). Since are given the order of the points around a star-shaped polygon, they are *already* sorted angularly around the center of the polygon.

3 We mimic Graham s scan: relabel points so that x 1 is the bottommost point and all the rest are still ordered counterclockwise around point q. make fake point x 0 =<, 0 >, so all points are above the line from that point to x 1 push x_0 push x_1 push x_2 for i = 3..n push x_i while size(stack)>2 and orient(stack.second, stack.first, x_i) = "right turn" pop stack end end Output the elements of the stack Correctness: Every point q is initially put on the hull. A point q is discarded from the convex hull if and only if it lies in counterclockwise order between points p i, p k and p i, q, p k is a right turn. Such a point q can never be on any convex hull. Runtime: The runtime for this is O(n) using the same argument that we used for Graham s Scan in class, except that we do not need the sorting step. In particular, everytime through the loop we perform 1 operation where we push something onto the stack, and a i operations where we pop 0 or more items off the stack. The sum: i a i cannot be more than n because we cannot ever pop more items off the stack than we ve pushed on, the total runtime is O(n). Evaluated Problems: 1. (10 points) Given n points in the plane, create an O(nlogn) algorithm that constructs a simple polygon having those points as vertices. Prove that your resulting polygon is simple (no self intersections), and uses all points. Prove the correctness and analyze the asymptotic running time of your algorithm. Solution Idea: Create a line from leftmost point to rightmost point. Connect all points above that line as the upper part of the polygon, and all points below as the lower part of the polygon. Algorithm: Sort all points by x-coordinate p 1, p n are the extreme points. Create Top List and Bottom List, and put p 1 on bottom list. for k = 2... (n 1) if orient(p 1, p n, p k ), add p k to Top List

4 else add p k to Bottom List. Return the list of all points on the bottom list, then all the points on the top list (in reverse order). This gives a list of all points around the polygon in counter-clockwise order. Run-time: Sort: O(n log n) Each time through the loop: O(n) -- constant each loop iteration. Output: O(n) to iterate through Bottom list, O(n) to reverse top list. TOTAL: O(n log n). Correctness: We need to prove that this is a simple polygon and that no segments intersect. This is based on the combination of two claims. Claim 1: No edges between points on the top list can intersect with edges between points on the bottom list. This is true because the line from p 1 to p n separates those segments, so they can t intersect. Claim 2: No edges between points on the top list can intersect. This is true because the toplist is constructed between points with consecutive x-coordinates. Therefore it is monotonic in the x-direction any vertical line passes through at most 1 edge on the list, and therefore no two edges can intersect (because at the intersection point, at least, the vertical line would intersect two segments). The same argument applies to the bottom list. Since a segment cannot intersect with either another segment on its own list or the other list, there are no intersections. 2. (10 points) The convex hull is one description of the shape of a set of points. It has the problem that if there is one crazy point added to the dataset, that may dominate the shape of the hull. Another approach calculates multiple convex hulls as follows: First compute the convex hull of all the points, remove the vertices of the hull. Then compute the convex hull of the remaining points, and again remove the vertices of the hull. Repeat this until no more points remain. The final result is a collection of nested convex polygons (where the last one may degenerate to a single line segment or single point). Figure 2: A set of points and its nested set of hulls Given a set P of n points in the plane, create an O(n 2 ) time algorithm to compute this iterated sequence of hulls. Analyze the running time and prove the correctness of your algorithm. (Fact: O(n log n) is possible, but very complicated.)

5 Solution: There are many correct answers to this problem. One is based on using Graham s scan iteratively, taking advantage of the fact that Grahams scan is O(n) once you have sorted the points. Algorithm: Sort all points by x-coordinate, put into REMAINING-POINTS-LIST While REMAINING-POINTS-LIST not empty make an extra copy of REMAINING-POINTS-LIST. Run graham s scan algorithm using sorted REMAINING-POINTS-LIST (from class or the book) to find the convex hull. Remove all points used in this convex hull from the copy of REMAINING-POINTS- LIST and make this the new REMAINING POINTS LIST which is still sorted. Proof of Correctness: Every point is output on some convex hull, because points are only taken off the remaining points list when they are output on some hull. Running time. The initial sort step takes n log n. The remaining loop can happen at most n 3 times, and each iteration takes O(n) time, so the overall time is at most O(n 2 ). 3. (10 points) Let P be the polygonal path [v 1, v 2,...v n ], which has the property that at every vertex, the path turns left (that ie, v i+1 is always left of the ray from v i 1 to v i ). Give a linear time algorithm to check this path for self intersections. Prove the correctness and analyze the running time of your algorithm. Solution: Algorithm idea: We will walk through the points one at a time, and keep track of a very small number of things that have to be checked to make sure that there is no intersection. In Phase 1, while the path has the potential to grow, we keep track of a tangent line between the current point. When the path is shrinking, we keep track of the edge we currently aim at. There is a transition where this is more complicated. Updating these pointers will take overall O(n) amortized time, although individual steps may take longer. Initialization: Initialize c = 2 Initialize t = 0 % There is no intersection until the 3rd edge, so we have sefely gotten to % if the next edge is RIGHT of V_C, V_T then it is safe. Growing Phase: while c<n+1 AND orient(c,t,c+1)<0 "While not done and new line right of tangent" while orient(c+1,t,t+1)<0 "Update the tangent line if necessary" t = t+1 c=c+1 "Set up to go to the next point" % "We re either done, or a line has turned inside the tangent" % Assume we re not done, so find the segment that we are aiming at: Transition phase: % Find the closest edge that c,c+1 might hit while c<n+1 and t>0 "Check segment back from tangent

6 Figure 3: Initial tangent lines, point at which growth phase stops, and target while orient(c,c+1,t)>0 and t>0 t=t-1 if t>0 in this case, we actually found a target line. check intersection of edge (c,c+1), (t-1,t) c=c+1 %% Transition phase done, we never found a tangent as we were going backwards, so we must be % Let s find which line it actually is. Start with t past the line and walk back until we f t = c-2. while orient(c-1,c,t)>0 t = t-1. % ok, now set up for final push. while c<n+1 c = c + 1 while orient(c-1,c,t+1)>0 %while target is left, increment it. t = t+1 check intersection (c-1,c), (t,t+1), report if it exists and stop. Run Time: there are three loops. Collectively they go through all the points. Each loop also has a sub while loop. But that inner loop increments a tangent line or a target line which can only be incremented. While sometimes this may take many steps, that target line passes every veryex once, so overall run time is O(n). Proof of Correctness: In the initial phase, we maintain a tangent line from our current point to the set of all points seen so far. While we are growing, each new segment is to the right of this tangent line, which include no current point, so no intersection is possible. When the growing phase stops, each new segment adds a possible intersection. Our algorithm maintains a pointer to the closest possible segment. In the transition phase this closest possible segment may be on the outer edge of the expanding section, and in the shrinking phase it is the

7 first edge (going backward from the current edge) whose endpoints are on either side of the current edge. These closest edges that we might intersect form a barrier; if we don t intersect these edges, we can t get past them to intersect any other edges. Therefore, the few edge intersections that we do check suffice.

Lecture 3: Art Gallery Problems and Polygon Triangulation

Lecture 3: Art Gallery Problems and Polygon Triangulation EECS 396/496: Computational Geometry Fall 2017 Lecture 3: Art Gallery Problems and Polygon Triangulation Lecturer: Huck Bennett In this lecture, we study the problem of guarding an art gallery (specified

More information

Computational Geometry

Computational Geometry Motivation Motivation Polygons and visibility Visibility in polygons Triangulation Proof of the Art gallery theorem Two points in a simple polygon can see each other if their connecting line segment is

More information

Computational geometry

Computational geometry Computational geometry Inge Li Gørtz CLRS Chapter 33.0, 33.1, 33.3. Computational Geometry Geometric problems (this course Euclidean plane). Does a set of line segments intersect, dividing plane into regions,

More information

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm GEOMETRY COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Computational

More information

Planar convex hulls (I) Computational Geometry [csci 3250] Laura Toma Bowdoin College

Planar convex hulls (I) Computational Geometry [csci 3250] Laura Toma Bowdoin College Planar convex hulls (I) Computational Geometry [csci 3250] Laura Toma Bowdoin College Convex Hull Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points

More information

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Spring, 2010

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Spring, 2010 UMass Lowell Computer Science 91.504 Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2010 Lecture 3 O Rourke Chapter 3: 2D Convex Hulls Thursday, 2/18/10 Chapter 3 2D Convex Hulls

More information

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel Computational Geometry (CS 236719) http://www.cs.tufts.edu/~barequet/teaching/cg Chapter 1 Introduction 1 Copyright 2002-2009 2009 Prof. Gill Barequet Center for Graphics and Geometric Computing Dept.

More information

Convex Hull Algorithms

Convex Hull Algorithms Convex Hull Algorithms Design and Analysis of Algorithms prof. F. Malucelli Villa Andrea e Ceriani Simone Outline Problem Definition Basic Concepts Bruteforce Algorithm Graham Scan Algorithm Divide and

More information

CS4733 Class Notes. 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles

CS4733 Class Notes. 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles CS4733 Class Notes 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles Reference: An Algorithm for Planning Collision Free Paths Among Poyhedral Obstacles by T. Lozano-Perez and M. Wesley. This

More information

Visibility Graph. How does a Mobile Robot get from A to B?

Visibility Graph. How does a Mobile Robot get from A to B? Robot Path Planning Things to Consider: Spatial reasoning/understanding: robots can have many dimensions in space, obstacles can be complicated Global Planning: Do we know the environment apriori? Online

More information

The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior. CS 312, Winter 2007 Project #1: Convex Hull Due Dates: See class schedule Overview: In this project, you will implement a divide and conquer algorithm for finding the convex hull of a set of points and

More information

CS6100: Topics in Design and Analysis of Algorithms

CS6100: Topics in Design and Analysis of Algorithms CS6100: Topics in Design and Analysis of Algorithms Guarding and Triangulating Polygons John Augustine CS6100 (Even 2012): Guarding and Triangulating Polygons The Art Gallery Problem A simple polygon is

More information

Notes and Answers to Homework Exam 1, Geometric Algorithms, 2017

Notes and Answers to Homework Exam 1, Geometric Algorithms, 2017 Notes and Answers to Homework Exam 1, Geometric Algorithms, 2017 Below are some notes and sketches of correct answers for the first homework exam. We have also included the most common mistakes that were

More information

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8!

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8! CS 410/584, Algorithm Design & Analysis, Computational Geometry! Algorithms for manipulation of geometric objects We will concentrate on 2-D geometry Numerically robust try to avoid division Round-off

More information

Advanced Algorithm Homework 4 Results and Solutions

Advanced Algorithm Homework 4 Results and Solutions Advanced Algorithm Homework 4 Results and Solutions ID 1 2 3 4 5 Av Ex 2554 6288 9919 10 6 10 10 9.5 8.9 10-1 4208 10 10 9 8.5 10 9.5 9 0996 10 10 10 10 10 10 10 8239 10 10 10 10 10 10 10 7388 8 8.5 9

More information

Computational Geometry

Computational Geometry Lecture 1: Introduction and convex hulls Geometry: points, lines,... Geometric objects Geometric relations Combinatorial complexity Computational geometry Plane (two-dimensional), R 2 Space (three-dimensional),

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Geometric Algorithms. 1. Objects

Geometric Algorithms. 1. Objects Geometric Algorithms 1. Definitions 2. Line-Segment properties 3. Inner Points of polygons 4. Simple polygons 5. Convex hulls 6. Closest pair of points 7. Diameter of a point set 1. Objects 2-dimensional

More information

Rubber bands. Chapter Rubber band representation

Rubber bands. Chapter Rubber band representation Chapter 1 Rubber bands In the previous chapter, we already used the idea of looking at the graph geometrically, by placing its nodes on the line and replacing the edges by rubber bands. Since, however,

More information

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8 CS 410/584,, Computational Geometry Algorithms for manipulation of geometric objects We will concentrate on 2-D geometry Numerically robust try to avoid division Round-off error Divide-by-0 checks Techniques

More information

CS 6463: AT Computational Geometry Spring 2006 Convex Hulls Carola Wenk

CS 6463: AT Computational Geometry Spring 2006 Convex Hulls Carola Wenk CS 6463: AT Computational Geometry Spring 2006 Convex Hulls Carola Wenk 8/29/06 CS 6463: AT Computational Geometry 1 Convex Hull Problem Given a set of pins on a pinboard and a rubber band around them.

More information

Computational Geometry Overview from Cormen, et al.

Computational Geometry Overview from Cormen, et al. UMass Lowell Computer Science 91.503 Graduate Algorithms Prof. Karen Daniels Spring, 2014 Computational Geometry Overview from Cormen, et al. Chapter 33 (with additional material from other sources) 1

More information

Computational Geometry

Computational Geometry Casting a polyhedron CAD/CAM systems CAD/CAM systems allow you to design objects and test how they can be constructed Many objects are constructed used a mold Casting Casting A general question: Given

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Computational Geometry 1 David M. Mount Department of Computer Science University of Maryland Fall 2005 1 Copyright, David M. Mount, 2005, Dept. of Computer Science, University of Maryland, College

More information

Polygon Triangulation

Polygon Triangulation If triangles had a god, they would give him three sides. Charles Louis de Secondat Montesquie (1721) Down with Euclid! Death to triangles! Jean Dieudonné (1959) P Polygon Triangulation P.1 Introduction

More information

Connected Components of Underlying Graphs of Halving Lines

Connected Components of Underlying Graphs of Halving Lines arxiv:1304.5658v1 [math.co] 20 Apr 2013 Connected Components of Underlying Graphs of Halving Lines Tanya Khovanova MIT November 5, 2018 Abstract Dai Yang MIT In this paper we discuss the connected components

More information

CS S Lecture February 13, 2017

CS S Lecture February 13, 2017 CS 6301.008.18S Lecture February 13, 2017 Main topics are #Voronoi-diagrams, #Fortune. Quick Note about Planar Point Location Last week, I started giving a difficult analysis of the planar point location

More information

CSE 5311 Notes 13: Computational Geometry

CSE 5311 Notes 13: Computational Geometry CSE 5311 Notes 13: Computational Geometry (Last updated 4/17/17 4:39 PM) SMALLEST ENCLOSING DISK See section 4.7 of de Berg ( http://dx.doi.org.ezproxy.uta.edu/10.1007/978-3-540-77974-2 ) Algorithm MINIDISC(P)

More information

1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls

1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls 1/60 Geometric Algorithms Lecture 1: Introduction Convex Hulls Geometric algorithms scope 2/60 Geometry algorithms (practice): Study of geometric problems that arise in various applications and how algorithms

More information

SAMPLING AND THE MOMENT TECHNIQUE. By Sveta Oksen

SAMPLING AND THE MOMENT TECHNIQUE. By Sveta Oksen SAMPLING AND THE MOMENT TECHNIQUE By Sveta Oksen Overview - Vertical decomposition - Construction - Running time analysis - The bounded moments theorem - General settings - The sampling model - The exponential

More information

2D Geometry. Pierre Alliez Inria Sophia Antipolis

2D Geometry. Pierre Alliez Inria Sophia Antipolis 2D Geometry Pierre Alliez Inria Sophia Antipolis Outline Sample problems Polygons Graphs Convex hull Voronoi diagram Delaunay triangulation Sample Problems Line Segment Intersection Theorem: Segments (p

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

Homework 2. Sample Solution. Due Date: Thursday, May 31, 11:59 pm

Homework 2. Sample Solution. Due Date: Thursday, May 31, 11:59 pm Homework Sample Solution Due Date: Thursday, May 31, 11:59 pm Directions: Your solutions should be typed and submitted as a single pdf on Gradescope by the due date. L A TEX is preferred but not required.

More information

Polygon Partitioning. Lecture03

Polygon Partitioning. Lecture03 1 Polygon Partitioning Lecture03 2 History of Triangulation Algorithms 3 Outline Monotone polygon Triangulation of monotone polygon Trapezoidal decomposition Decomposition in monotone mountain Convex decomposition

More information

Last time. Today: Convex Hull Brute Force Inside(q,abc) Intersect(ab,cd) Orient(a,b,c).

Last time. Today: Convex Hull Brute Force Inside(q,abc) Intersect(ab,cd) Orient(a,b,c). Last time Convex Hull Brute Force Inside(q,abc) Intersect(ab,cd) Orient(a,b,c). Today: More efficient convex hull algorithms and absolute bounds. Two (of many) algorithms. One (of one) interesting reduction.

More information

Line Arrangements. Applications

Line Arrangements. Applications Computational Geometry Chapter 9 Line Arrangements 1 Line Arrangements Applications On the Agenda 2 1 Complexity of a Line Arrangement Given a set L of n lines in the plane, their arrangement A(L) is the

More information

Lecture 7: Computational Geometry

Lecture 7: Computational Geometry Lecture 7: Computational Geometry CS 491 CAP Uttam Thakore Friday, October 7 th, 2016 Credit for many of the slides on solving geometry problems goes to the Stanford CS 97SI course lecture on computational

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

Flavor of Computational Geometry. Voronoi Diagrams. Shireen Y. Elhabian Aly A. Farag University of Louisville

Flavor of Computational Geometry. Voronoi Diagrams. Shireen Y. Elhabian Aly A. Farag University of Louisville Flavor of Computational Geometry Voronoi Diagrams Shireen Y. Elhabian Aly A. Farag University of Louisville March 2010 Pepperoni Sparse Pizzas Olive Sparse Pizzas Just Two Pepperonis A person gets the

More information

Week 8 Voronoi Diagrams

Week 8 Voronoi Diagrams 1 Week 8 Voronoi Diagrams 2 Voronoi Diagram Very important problem in Comp. Geo. Discussed back in 1850 by Dirichlet Published in a paper by Voronoi in 1908 3 Voronoi Diagram Fire observation towers: an

More information

CS 373: Combinatorial Algorithms, Fall Name: Net ID: Alias: U 3 / 4 1

CS 373: Combinatorial Algorithms, Fall Name: Net ID: Alias: U 3 / 4 1 CS 373: Combinatorial Algorithms, Fall 2000 Homework 1 (due November 16, 2000 at midnight) Starting with Homework 1, homeworks may be done in teams of up to three people. Each team turns in just one solution,

More information

Computational Geometry TOPICS Preliminaries Point in a Polygon Polygon Construction Convex Hulls

Computational Geometry TOPICS Preliminaries Point in a Polygon Polygon Construction Convex Hulls Computational Geometry TOPICS Preliminaries Point in a Polygon Polygon Construction Convex Hulls CSE5311 Kumar 1 Geometric Algorithms Geometric Algorithms find applications in such areas as Computer Graphics

More information

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples :

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples : 3. Voronoi Diagrams Examples : 1. Fire Observation Towers Imagine a vast forest containing a number of fire observation towers. Each ranger is responsible for extinguishing any fire closer to her tower

More information

Lecture 11 Combinatorial Planning: In the Plane

Lecture 11 Combinatorial Planning: In the Plane CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University Lecture 11 Combinatorial Planning: In the Plane Instructor: Jingjin Yu Outline Convex shapes, revisited Combinatorial planning

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

The Running Time of Programs

The Running Time of Programs The Running Time of Programs The 90 10 Rule Many programs exhibit the property that most of their running time is spent in a small fraction of the source code. There is an informal rule that states 90%

More information

Lectures 19: The Gauss-Bonnet Theorem I. Table of contents

Lectures 19: The Gauss-Bonnet Theorem I. Table of contents Math 348 Fall 07 Lectures 9: The Gauss-Bonnet Theorem I Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

Computer Science Spring 2005 Final Examination, May 12, 2005

Computer Science Spring 2005 Final Examination, May 12, 2005 Computer Science 302 00 Spring 2005 Final Examination, May 2, 2005 Name: No books, notes, or scratch paper. Use pen or pencil, any color. Use the backs of the pages for scratch paper. If you need more

More information

Polygon decomposition. Motivation: Art gallery problem

Polygon decomposition. Motivation: Art gallery problem CG Lecture 3 Polygon decomposition 1. Polygon triangulation Triangulation theory Monotone polygon triangulation 2. Polygon decomposition into monotone pieces 3. Trapezoidal decomposition 4. Convex decomposition

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 4 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 4 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 4 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes January 23 (1) HW2 due tomorrow

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Computational Geometry 1 David M. Mount Department of Computer Science University of Maryland Fall 2016 1 Copyright, David M. Mount, 2016, Dept. of Computer Science, University of Maryland, College

More information

[Ba] Bykat, A., Convex hull of a finite set of points in two dimensions, Info. Proc. Lett. 7 (1978),

[Ba] Bykat, A., Convex hull of a finite set of points in two dimensions, Info. Proc. Lett. 7 (1978), [Ba] Bykat, A., Convex hull of a finite set of points in two dimensions, Info. Proc. Lett. 7 (1978), 296-298. [Ch] [CI] [EET] [ET] [FM] [GJPT] [Gr] [HM] [KKT] Chazelle, B., A theorem on polygon cutting

More information

Algorithms and Data Structures

Algorithms and Data Structures Charles A. Wuethrich Bauhaus-University Weimar - CogVis/MMC June 8, 2017 1/27 Introduction Closed path Convex Hull Convex hull: Wrapping Convex hull: Graham s Scan Inner elimination Geometric Cut 2/27

More information

Computer Science 62. Bruce/Mawhorter Fall 16. Midterm Examination. October 5, Question Points Score TOTAL 52 SOLUTIONS. Your name (Please print)

Computer Science 62. Bruce/Mawhorter Fall 16. Midterm Examination. October 5, Question Points Score TOTAL 52 SOLUTIONS. Your name (Please print) Computer Science 62 Bruce/Mawhorter Fall 16 Midterm Examination October 5, 2016 Question Points Score 1 15 2 10 3 10 4 8 5 9 TOTAL 52 SOLUTIONS Your name (Please print) 1. Suppose you are given a singly-linked

More information

Chapter 3. Sukhwinder Singh

Chapter 3. Sukhwinder Singh Chapter 3 Sukhwinder Singh PIXEL ADDRESSING AND OBJECT GEOMETRY Object descriptions are given in a world reference frame, chosen to suit a particular application, and input world coordinates are ultimately

More information

CMSC351 - Fall 2014, Homework #2

CMSC351 - Fall 2014, Homework #2 CMSC351 - Fall 2014, Homework #2 Due: October 8th at the start of class Name: Section: Grades depend on neatness and clarity. Write your answers with enough detail about your approach and concepts used,

More information

Computational Geometry [csci 3250]

Computational Geometry [csci 3250] Computational Geometry [csci 3250] Laura Toma Bowdoin College Polygon Triangulation Polygon Triangulation The problem: Triangulate a given polygon. (output a set of diagonals that partition the polygon

More information

COS 226 Lecture 15: Geometric algorithms. Warning: intuition may mislead (continued)

COS 226 Lecture 15: Geometric algorithms. Warning: intuition may mislead (continued) CS 226 ecture 15: eometric algorithms Warning: intuition may mislead (continued) Important applications involve geometry models of physical world computer graphics mathematical models x: Find intersections

More information

Line segment intersection. Family of intersection problems

Line segment intersection. Family of intersection problems CG Lecture 2 Line segment intersection Intersecting two line segments Line sweep algorithm Convex polygon intersection Boolean operations on polygons Subdivision overlay algorithm 1 Family of intersection

More information

Why Graham-Scan Needs to Sort Vertices Before Scanning

Why Graham-Scan Needs to Sort Vertices Before Scanning Why Graham-Scan Needs to Sort Vertices Before Scanning Bill Thies November 12, 2004 6.046 Recitation Supplement Graham Scan: Sorting Step The first stage of Graham-Scan sorts the points by their polar

More information

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College 3D convex hulls Computational Geometry [csci 3250] Laura Toma Bowdoin College Convex Hulls The problem: Given a set P of points, compute their convex hull 2D 3D 2D 3D polygon polyhedron Polyhedron region

More information

Lecture 1: September 6, 2001

Lecture 1: September 6, 2001 Lecture 1: September 6, 2001 Welcome to 6.838J, Geometric Computation! Introductions Overview and Goals General Information Syllabus 2D Convex Hull Signup sheets (return by end of class) MIT 6.838J/4.214J

More information

Trapezoidal decomposition:

Trapezoidal decomposition: Trapezoidal decomposition: Motivation: manipulate/analayze a collection of segments e.g. detect segment intersections e.g., point location data structure Definition. Draw verticals at all points binary

More information

Motion Planning. O Rourke, Chapter 8

Motion Planning. O Rourke, Chapter 8 O Rourke, Chapter 8 Outline Translating a polygon Moving a ladder Shortest Path (Point-to-Point) Goal: Given disjoint polygons in the plane, and given positions s and t, find the shortest path from s to

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

Triangulation by Ear Clipping

Triangulation by Ear Clipping Triangulation by Ear Clipping David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To

More information

MISCELLANEOUS SHAPES

MISCELLANEOUS SHAPES MISCELLANEOUS SHAPES 4.1. INTRODUCTION Five generic shapes of polygons have been usefully distinguished in the literature: convex, orthogonal, star, spiral, and monotone. 1 Convex polygons obviously do

More information

A NOTE ON BLOCKING VISIBILITY BETWEEN POINTS

A NOTE ON BLOCKING VISIBILITY BETWEEN POINTS A NOTE ON BLOCKING VISIBILITY BETWEEN POINTS Adrian Dumitrescu János Pach Géza Tóth Abstract Given a finite point set P in the plane, let b(p) be the smallest number of points q 1,q 2,... not belonging

More information

Cross products. p 2 p. p p1 p2. p 1. Line segments The convex combination of two distinct points p1 ( x1, such that for some real number with 0 1,

Cross products. p 2 p. p p1 p2. p 1. Line segments The convex combination of two distinct points p1 ( x1, such that for some real number with 0 1, CHAPTER 33 Comutational Geometry Is the branch of comuter science that studies algorithms for solving geometric roblems. Has alications in many fields, including comuter grahics robotics, VLSI design comuter

More information

Computational Geometry. Lecture 17

Computational Geometry. Lecture 17 Computational Geometry Lecture 17 Computational geometry Algorithms for solving geometric problems in 2D and higher. Fundamental objects: Basic structures: point line segment line point set polygon L17.2

More information

Lecture 11 Unbounded Arrays

Lecture 11 Unbounded Arrays Lecture 11 Unbounded Arrays 15-122: Principles of Imperative Computation (Spring 2018) Rob Simmons, Frank Pfenning Arrays have efficient O(1) access to elements given an index, but their size is set at

More information

Geometric Computation: Introduction

Geometric Computation: Introduction : Introduction Piotr Indyk Welcome to 6.838! Overview and goals Course Information Syllabus 2D Convex hull Signup sheet Geometric computation occurs everywhere: Geographic Information Systems (GIS): nearest

More information

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College 3D convex hulls Computational Geometry [csci 3250] Laura Toma Bowdoin College Convex Hull in 3D The problem: Given a set P of points in 3D, compute their convex hull convex polyhedron 2D 3D polygon

More information

Solutions to problem set 1

Solutions to problem set 1 Massachusetts Institute of Technology Handout 5 6.838: Geometric Computation October 4, 2001 Professors Piotr Indyk and Seth Teller Solutions to problem set 1 (mostly taken from the solution set of Jan

More information

Computational Geometry 2D Convex Hulls

Computational Geometry 2D Convex Hulls Computational Geometry 2D Convex Hulls Joseph S. B. Mitchell Stony Brook University Chapter 2: Devadoss-O Rourke Convexity p p Set X is convex if p,q X pq X q q convex non-convex Point p X is an extreme

More information

(Refer Slide Time: 00:02:00)

(Refer Slide Time: 00:02:00) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 18 Polyfill - Scan Conversion of a Polygon Today we will discuss the concepts

More information

Assignment 6: Ray Tracing

Assignment 6: Ray Tracing Assignment 6: Ray Tracing Programming Lab Due: Monday, April 20 (midnight) 1 Introduction Throughout this semester you have written code that manipulated shapes and cameras to prepare a scene for rendering.

More information

Geometry. Zachary Friggstad. Programming Club Meeting

Geometry. Zachary Friggstad. Programming Club Meeting Geometry Zachary Friggstad Programming Club Meeting Points #i n c l u d e typedef complex p o i n t ; p o i n t p ( 1. 0, 5. 7 ) ; p. r e a l ( ) ; // x component p. imag ( ) ; // y component

More information

CIS 390 Fall 2015 Robotics: Planning and Perception Kostas Daniilidis Homework 6

CIS 390 Fall 2015 Robotics: Planning and Perception Kostas Daniilidis Homework 6 CIS 390 Fall 2015 Robotics: Planning and Perception Kostas Daniilidis Homework 6 Lab session: Thursday October 27, 2016 10:30 AM, 2016 Code submission: Friday October 28, 2016 23:59 PM 1 Introduction In

More information

Computational Geometry 2D Convex Hulls. Joseph S. B. Mitchell Stony Brook University

Computational Geometry 2D Convex Hulls. Joseph S. B. Mitchell Stony Brook University Computational Geometry 2D Convex Hulls Joseph S. B. Mitchell Stony Brook University Comparing O(n), O(n log n), O(n 2 ) n n log n n² 2 10 10³ 10 2 10 10 4 2 20 10 6 2 20 10 6 20 2 20 2 10 7 2 40 10 12

More information

Convex Hulls in Three Dimensions. Polyhedra

Convex Hulls in Three Dimensions. Polyhedra Convex Hulls in Three Dimensions Polyhedra Polyhedron 1.A polyhedron is the generalization of a 2- D polygon to 3-D A finite number of flat polygonal faces The boundary or surface of a polyhedron - Zero-dimensional

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

Flavor of Computational Geometry. Convex Hull in 2D. Shireen Y. Elhabian Aly A. Farag University of Louisville

Flavor of Computational Geometry. Convex Hull in 2D. Shireen Y. Elhabian Aly A. Farag University of Louisville Flavor of Computational Geometry Convex Hull in 2D Shireen Y. Elhabian Aly A. Farag University of Louisville February 2010 Agenda Introduction Definitions of Convexity and Convex Hulls Naïve Algorithms

More information

1 Topological sweep. Topological Sweep

1 Topological sweep. Topological Sweep Comp 163: Computational Geometry Tufts University, Spring 2005 Professor Diane Souvaine Scribe: Heather Wong Topological Sweep 1 Topological sweep Let H be a set of n lines in the plane. Assume that no

More information

H 2 H 3 H 4. (a) (b) (c)

H 2 H 3 H 4. (a) (b) (c) CMSC 754:Spring 2012 Dave Mount Homework 1: Convex Hulls, Plane Sweep, and More Handed out Tuesday, Feb 14. Due at the start of class Tuesday, Feb 21. Late homeworks will not be accepted so turn in whatever

More information

Triangulation and Convex Hull. 8th November 2018

Triangulation and Convex Hull. 8th November 2018 Triangulation and Convex Hull 8th November 2018 Agenda 1. Triangulation. No book, the slides are the curriculum 2. Finding the convex hull. Textbook, 8.6.2 2 Triangulation and terrain models Here we have

More information

The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards

The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards Nicole Chesnokov May 16, 2018 Contents 1 Introduction 2 2 The Art Gallery Problem 3 2.1 Proof..................................

More information

Analyze the obvious algorithm, 5 points Here is the most obvious algorithm for this problem: (LastLargerElement[A[1..n]:

Analyze the obvious algorithm, 5 points Here is the most obvious algorithm for this problem: (LastLargerElement[A[1..n]: CSE 101 Homework 1 Background (Order and Recurrence Relations), correctness proofs, time analysis, and speeding up algorithms with restructuring, preprocessing and data structures. Due Thursday, April

More information

Problem Set 6 Solutions

Problem Set 6 Solutions Introduction to Algorithms November 15, 2002 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi oldwasser Handout 22 Problem Set 6 Solutions (Exercises were not to be

More information

Intersecting Simple Surfaces. Dr. Scott Schaefer

Intersecting Simple Surfaces. Dr. Scott Schaefer Intersecting Simple Surfaces Dr. Scott Schaefer 1 Types of Surfaces Infinite Planes Polygons Convex Ray Shooting Winding Number Spheres Cylinders 2/66 Infinite Planes Defined by a unit normal n and a point

More information

EULER S FORMULA AND THE FIVE COLOR THEOREM

EULER S FORMULA AND THE FIVE COLOR THEOREM EULER S FORMULA AND THE FIVE COLOR THEOREM MIN JAE SONG Abstract. In this paper, we will define the necessary concepts to formulate map coloring problems. Then, we will prove Euler s formula and apply

More information

Chapter 6. Planar Orientations. 6.1 Numberings of Digraphs

Chapter 6. Planar Orientations. 6.1 Numberings of Digraphs Chapter 6 Planar Orientations In this chapter we will focus on algorithms and techniques used for drawing planar graphs. The algorithms we will use are based on numbering the vertices and orienting the

More information

CS3110 Spring 2017 Lecture 14: Computational Geometry and Convex Hulls

CS3110 Spring 2017 Lecture 14: Computational Geometry and Convex Hulls CS3110 Spring 2017 Lecture 14: Computational Geometry and Convex Hulls Robert Constable 1 Lecture Plan 1. Cantor s Theorem, as stated by Bishop [1]. 2. Background for geometry 3. Finding the convex hull

More information

Polygon Triangulation

Polygon Triangulation Polygon Triangulation The problem: Triangulate a given polygon. (output a set of diagonals that partition the polygon into triangles). Computational Geometry [csci 3250] Polygon Triangulation Laura Toma

More information

Trapezoidal Maps. Notes taken from CG lecture notes of Mount (pages 60 69) Course page has a copy

Trapezoidal Maps. Notes taken from CG lecture notes of Mount (pages 60 69) Course page has a copy Trapezoidal Maps Notes taken from CG lecture notes of Mount (pages 60 69) Course page has a copy Trapezoidal Maps S={s 1,s 2,..., s n } is the set of line segments segments don t intersect, but can touch

More information

Lecture 14: Computational Geometry Steven Skiena. skiena

Lecture 14: Computational Geometry Steven Skiena.   skiena Lecture 14: Computational Geometry Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Line Segments Arbitrary closed curves

More information

Lecture 2: Divide and Conquer

Lecture 2: Divide and Conquer Lecture 2: Divide and Conquer Paradigm Convex Hull Median finding Paradigm Given a problem of size n divide it into subproblems of size n, a 1, b >1. Solve each b subproblem recursively. Combine solutions

More information

Algorithm Analysis. Jordi Cortadella and Jordi Petit Department of Computer Science

Algorithm Analysis. Jordi Cortadella and Jordi Petit Department of Computer Science Algorithm Analysis Jordi Cortadella and Jordi Petit Department of Computer Science What do we expect from an algorithm? Correct Easy to understand Easy to implement Efficient: Every algorithm requires

More information

Computational Geometry. HKU ACM ICPC Training 2010

Computational Geometry. HKU ACM ICPC Training 2010 Computational Geometry HKU ACM ICPC Training 2010 1 What is Computational Geometry? Deals with geometrical structures Points, lines, line segments, vectors, planes, etc. A relatively boring class of problems

More information