Normal Distribution. 6.4 Applications of Normal Distribution

Size: px
Start display at page:

Download "Normal Distribution. 6.4 Applications of Normal Distribution"

Transcription

1 Normal Distribution 6.4 Applications of Normal Distribution 1 /20

2 Homework Read Sec 6-4. Discussion question p316 Do p316 probs 1-10, 16-22, 31, 32, 34-37, 39 2 /20

3 3 /20

4 Objective Find the probabilities for a normally distributed variable using the standard normal curve. 4 /20

5 5 /20 Objective: Students will find the probabilities for a normally Probability If a variable is normally distributed, or sufficiently unimodal and symmetrically distributed, we can use the standard normal curve to find the percentile of a score, the probability of a score or range of scores. We can also find a score corresponding to a probability or percentile. member?, you member! z = x µ σ

6 Percentile To find probability, we might convert an observation raw score into a z-score and use the table or calculator. We can also use the calculator to find the probability directly from the observed value if we know the mean and standard deviation of the distribution from which the observation is drawn. For instance, intelligence measured by the Wechsler Adult Intelligence Scale (WAIS) has µ = 100 and σ = 15. Thus a person with an IQ of 120 would have a z-score of z = = What does this tell us? 6/20

7 Graph Looking in the table, or using the calculator, we find that z-score corresponds to the percentile. z = = P(z ) = normalcdf(-99, , 0, 1) =.9088 OR P(x 120) = normalcdf(-10^99, 120, 100, 15) = Note the probability notation σ.9088 You must always draw the normal probability distribution and calculate the z-score when doing these problems. -3σ -2σ -1σ 0 1σ 2σ 3σ 7/20

8 Applications When finding solutions to these probability distribution questions there are four (4) components I will grade for at least six (6) points. 1. Draw a picture. Draw the Normal Distribution and show the appropriately shaded area in the normal probability density curve. 2. Calculate z-scores. Even if you use the raw scores to find the probability, you must calculate the appropriate z-scores. 3. Probability statement. You must write (a) the probability you calculated, (b) how it was found, and (c) the actual value. (e.g. (a) p(x 120) = (b) normalcdf(-999,120,100,15) = (c).9088 or p(z 1.33) = normalcdf(-9,1.33,0,1) = Answer the question. Answer the question in a complete sentence. 8/20

9 So? In a student body of 3100 students, how many students can we expect to have IQs above 120? σ P(z ) = = x 3100 = σ -2σ -1σ 0 1σ 2σ 3σ We can expect about 282 students out of 3100 will have an IQ of 120 or better. Remember: I insist, and will grade, you draw a graph (with some accuracy) to help you visualize the area of probability. 9/20

10 Gifted The term gifted is usually accepted to indicate 130 2σ an individual with an IQ 2σ above the mean This would equate to an IQ of σ -2σ -1σ 0 1σ 2σ 3σ Using the calculator, table, or remembering the empirical rule, this translates to about 2.28% of the population. P(x 130) = normalcdf(130, 999, 100, 15) = P(z 2) = normalcdf(2, 99, 0, 1) = In our population of 3100 students we can expect 3100(.02275) 70 (70.525) gifted students. 10/20

11 11 /20 Objective: Students will find the probabilities for a normally Example The average height of the adult U.S. male is 69.7 with σ = 2.9. Find the probability of an randomly selected adult male being between and 6 6 in height. -3σ -2σ -1σ 0 1σ 2σ 3σ z 1 = =.7931 z 2 = = P(.7931 z ) = Normalcdf(.7931, , 0, 1) =.2118 P(72 x 78) = Normalcdf(72, 78, 69.7, 2.9) =.2118 The probability of a randomly selected adult male is between 6 and 6 6 is.2118 Ensure the probability matches your calculation

12 12/20 Objective: Students will find the probabilities for a normally Example The average height of the adult U.S. female is 63.7 with σ = Find the probability of an randomly selected adult female being between and 6 6 in height. -3σ -2σ -1σ 0 1σ 2σ 3σ z 1 = = z 2 = = P(3.074 z ) = Normalcdf(3.0741, , 0, 1) =.0011 P(72 x 78) = Normalcdf(72, 78, 63.7, 2.7) =.0011 The probability of an adult female being between 6 and 6 6 is.0011

13 Example 25 At a music store the average purchase is $25 with σ = $ Find the probability that the next customer 40 spends between $25 and $ µ= $25 z = 0-3σ -2σ -1σ 0 1σ 2σ 3σ $40 z = = P(0 z 1.875) = Normalcdf(0, 1.875, 0, 1) =.4696 P(25 x 40) = Normalcdf(25, 40, 25, 8) =.4696 The probability that the next customer spends between $25 and $40 is /20

14 Example At a music store the average purchase is $25 with σ = $8 Find the probability that the next customer will spend at least $ σ -2σ -1σ 0 1σ 2σ 3σ P(z 1.875) = Normalcdf(1.875, 9, 0, 1) =.0304 P(x 40) = Normalcdf(40, 999, 25, 8) =.0304 The probability that the next customer will spend at least $40 is Find the probability that the next customer will spend less than $40. P(z 1.875) = Normalcdf(-9, 1.875, 0, 1) =.9696 P(x 40) Normalcdf(-999, 40, 25, 8) =.9696 The probability that the next customer will spend less than $40 is /20

15 15/20 Objective: Students will find the probabilities for a normally Finding Zemo We can also find the z-score associated with a known probability. P z=? We then convert the z-score back to an observed (raw) score by using x = zσ + µ

16 IQR for a Normal Model The weights of three year old females closely follows a Normal distribution with a mean of 30.7 pounds and a standard deviation of 3.6 pounds. Find the IQR for the distribution of the weights for three year old females. IQR = Q 3 - Q 2 (the middle 50%). First we will find the z scores bounding the middle 50%. z = invnorm(.25, 0, 1) = z = invnorm(.75, 0, 1) = We can find the x values bounding the middle 50% two ways z=? z= z=? z=.6745 x = zσ + µ x=? x=28.27 x=33.13 x=? x = (3.6) = pounds. x = (3.6) = pounds. z = invnorm(.25, 30.7, 3.6) = z = invnorm(.75, 30.7, 3.6) = The IQR is Q 3 - Q 2 = = 4.86 pounds. 16/20

17 Example A pizza restaurant delivers in a mean time of 18.2 minutes, with a standard deviation of 3 minutes. The company wants to guarantee delivery time or the pizza is free. If the company is willing to give away no more than 5%.05 of its pizza deliveries (longer delivery time), what would be the time to deliver they should guarantee? z= z=? P(z z x ) =.05 t= First we find z. z = invnorm(.95, 0, 1) = Then we convert z to the raw score. x = = (3) = min. Or we could just go straight to the raw score. P(t x) =.05 x = invnorm(.95, 18.2, 3) = minutes The company should guarantee delivery in 24 minutes. 17/20

18 18/20 Objective: Students will find the probabilities for a normally The pizza restaurant delivers in a mean time of 18.2 minutes and wants to guarantee a delivery time of 20 minutes or the pizza is free. That would require improving the consistency of delivery times. If the company is willing to give away no more than 5% of its pizza deliveries (longer delivery time), what standard deviation must they obtain?.05 First we find z. z = invnorm(.95, 0, 1) = Next we find s by using that z = s s = = The company can guarantee delivery in 20 minutes, giving away no more than 5% of the pizzas if the standard deviation is reduced to 1.09 minutes.

19 Z-score If you choose to go straight to the actual value you must still calculate the z-score. 19/20

20 Is the data Normal? Using z-scores requires that data be normally, or sufficiently normally, distributed. The best test for normality is drawing a histogram to see the shape of the distribution. If the data looks about normal we are happy. This histogram is positively skewed, but sufficiently symmetric for purposes of using the normal model. 20/20

Data Analysis & Probability

Data Analysis & Probability Unit 5 Probability Distributions Name: Date: Hour: Section 7.2: The Standard Normal Distribution (Area under the curve) Notes By the end of this lesson, you will be able to Find the area under the standard

More information

CHAPTER 2 Modeling Distributions of Data

CHAPTER 2 Modeling Distributions of Data CHAPTER 2 Modeling Distributions of Data 2.2 Density Curves and Normal Distributions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers HW 34. Sketch

More information

Chapter 6. THE NORMAL DISTRIBUTION

Chapter 6. THE NORMAL DISTRIBUTION Chapter 6. THE NORMAL DISTRIBUTION Introducing Normally Distributed Variables The distributions of some variables like thickness of the eggshell, serum cholesterol concentration in blood, white blood cells

More information

The Normal Distribution

The Normal Distribution Chapter 6 The Normal Distribution Continuous random variables are used to approximate probabilities where there are many possibilities or an infinite number of possibilities on a given trial. One of the

More information

Chapter 2 Modeling Distributions of Data

Chapter 2 Modeling Distributions of Data Chapter 2 Modeling Distributions of Data Section 2.1 Describing Location in a Distribution Describing Location in a Distribution Learning Objectives After this section, you should be able to: FIND and

More information

CHAPTER 2 Modeling Distributions of Data

CHAPTER 2 Modeling Distributions of Data CHAPTER 2 Modeling Distributions of Data 2.2 Density Curves and Normal Distributions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Density Curves

More information

CHAPTER 2 Modeling Distributions of Data

CHAPTER 2 Modeling Distributions of Data CHAPTER 2 Modeling Distributions of Data 2.2 Density Curves and Normal Distributions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Density Curves

More information

7.2. The Standard Normal Distribution

7.2. The Standard Normal Distribution 7.2 The Standard Normal Distribution Standard Normal The standard normal curve is the one with mean μ = 0 and standard deviation σ = 1 We have related the general normal random variable to the standard

More information

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable Learning Objectives Continuous Random Variables & The Normal Probability Distribution 1. Understand characteristics about continuous random variables and probability distributions 2. Understand the uniform

More information

Chapter 6. THE NORMAL DISTRIBUTION

Chapter 6. THE NORMAL DISTRIBUTION Chapter 6. THE NORMAL DISTRIBUTION Introducing Normally Distributed Variables The distributions of some variables like thickness of the eggshell, serum cholesterol concentration in blood, white blood cells

More information

STA Module 4 The Normal Distribution

STA Module 4 The Normal Distribution STA 2023 Module 4 The Normal Distribution Learning Objectives Upon completing this module, you should be able to 1. Explain what it means for a variable to be normally distributed or approximately normally

More information

STA /25/12. Module 4 The Normal Distribution. Learning Objectives. Let s Look at Some Examples of Normal Curves

STA /25/12. Module 4 The Normal Distribution. Learning Objectives. Let s Look at Some Examples of Normal Curves STA 2023 Module 4 The Normal Distribution Learning Objectives Upon completing this module, you should be able to 1. Explain what it means for a variable to be normally distributed or approximately normally

More information

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 1.3 Homework Answers Assignment 5 1.80 If you ask a computer to generate "random numbers between 0 and 1, you uniform will

More information

MAT 102 Introduction to Statistics Chapter 6. Chapter 6 Continuous Probability Distributions and the Normal Distribution

MAT 102 Introduction to Statistics Chapter 6. Chapter 6 Continuous Probability Distributions and the Normal Distribution MAT 102 Introduction to Statistics Chapter 6 Chapter 6 Continuous Probability Distributions and the Normal Distribution 6.2 Continuous Probability Distributions Characteristics of a Continuous Probability

More information

BIOL Gradation of a histogram (a) into the normal curve (b)

BIOL Gradation of a histogram (a) into the normal curve (b) (التوزيع الطبيعي ( Distribution Normal (Gaussian) One of the most important distributions in statistics is a continuous distribution called the normal distribution or Gaussian distribution. Consider the

More information

Lecture 21 Section Fri, Oct 3, 2008

Lecture 21 Section Fri, Oct 3, 2008 Lecture 21 Section 6.3.1 Hampden-Sydney College Fri, Oct 3, 2008 Outline 1 2 3 4 5 6 Exercise 6.15, page 378. A young woman needs a 15-ampere fuse for the electrical system in her apartment and has decided

More information

Chapter 5: The standard deviation as a ruler and the normal model p131

Chapter 5: The standard deviation as a ruler and the normal model p131 Chapter 5: The standard deviation as a ruler and the normal model p131 Which is the better exam score? 67 on an exam with mean 50 and SD 10 62 on an exam with mean 40 and SD 12? Is it fair to say: 67 is

More information

Sec 6.3. Bluman, Chapter 6 1

Sec 6.3. Bluman, Chapter 6 1 Sec 6.3 Bluman, Chapter 6 1 Bluman, Chapter 6 2 Review: Find the z values; the graph is symmetrical. z = ±1. 96 z 0 z the total area of the shaded regions=5% Bluman, Chapter 6 3 Review: Find the z values;

More information

6-1 THE STANDARD NORMAL DISTRIBUTION

6-1 THE STANDARD NORMAL DISTRIBUTION 6-1 THE STANDARD NORMAL DISTRIBUTION The major focus of this chapter is the concept of a normal probability distribution, but we begin with a uniform distribution so that we can see the following two very

More information

Chapter 2: Modeling Distributions of Data

Chapter 2: Modeling Distributions of Data Chapter 2: Modeling Distributions of Data Section 2.2 The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE Chapter 2 Modeling Distributions of Data 2.1 Describing Location in a Distribution

More information

appstats6.notebook September 27, 2016

appstats6.notebook September 27, 2016 Chapter 6 The Standard Deviation as a Ruler and the Normal Model Objectives: 1.Students will calculate and interpret z scores. 2.Students will compare/contrast values from different distributions using

More information

Math 14 Lecture Notes Ch. 6.1

Math 14 Lecture Notes Ch. 6.1 6.1 Normal Distribution What is normal? a 10-year old boy that is 4' tall? 5' tall? 6' tall? a 25-year old woman with a shoe size of 5? 7? 9? an adult alligator that weighs 200 pounds? 500 pounds? 800

More information

The Normal Distribution & z-scores

The Normal Distribution & z-scores & z-scores Distributions: Who needs them? Why are we interested in distributions? Important link between distributions and probabilities of events If we know the distribution of a set of events, then we

More information

The Normal Distribution

The Normal Distribution The Normal Distribution Lecture 20 Section 6.3.1 Robb T. Koether Hampden-Sydney College Wed, Sep 28, 2011 Robb T. Koether (Hampden-Sydney College) The Normal Distribution Wed, Sep 28, 2011 1 / 41 Outline

More information

6.2 Areas under the curve 2018.notebook January 18, 2018

6.2 Areas under the curve 2018.notebook January 18, 2018 More details about z scores * A z score is the number of standard deviations between a measurement and its mean. * Use z scores to make comparisons of measurements from different distributions (if the

More information

Density Curve (p52) Density curve is a curve that - is always on or above the horizontal axis.

Density Curve (p52) Density curve is a curve that - is always on or above the horizontal axis. 1.3 Density curves p50 Some times the overall pattern of a large number of observations is so regular that we can describe it by a smooth curve. It is easier to work with a smooth curve, because the histogram

More information

Section 2.2 Normal Distributions

Section 2.2 Normal Distributions Section 2.2 Mrs. Daniel AP Statistics We abbreviate the Normal distribution with mean µ and standard deviation σ as N(µ,σ). Any particular Normal distribution is completely specified by two numbers: its

More information

Key: 5 9 represents a team with 59 wins. (c) The Kansas City Royals and Cleveland Indians, who both won 65 games.

Key: 5 9 represents a team with 59 wins. (c) The Kansas City Royals and Cleveland Indians, who both won 65 games. AP statistics Chapter 2 Notes Name Modeling Distributions of Data Per Date 2.1A Distribution of a variable is the a variable takes and it takes that value. When working with quantitative data we can calculate

More information

Chapter 6 Normal Probability Distributions

Chapter 6 Normal Probability Distributions Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard Normal Distribution 6-3 Applications of Normal Distributions 6-4 Sampling Distributions and Estimators 6-5 The Central

More information

Chapter 6. The Normal Distribution. McGraw-Hill, Bluman, 7 th ed., Chapter 6 1

Chapter 6. The Normal Distribution. McGraw-Hill, Bluman, 7 th ed., Chapter 6 1 Chapter 6 The Normal Distribution McGraw-Hill, Bluman, 7 th ed., Chapter 6 1 Bluman, Chapter 6 2 Chapter 6 Overview Introduction 6-1 Normal Distributions 6-2 Applications of the Normal Distribution 6-3

More information

CHAPTER 2: Describing Location in a Distribution

CHAPTER 2: Describing Location in a Distribution CHAPTER 2: Describing Location in a Distribution 2.1 Goals: 1. Compute and use z-scores given the mean and sd 2. Compute and use the p th percentile of an observation 3. Intro to density curves 4. More

More information

Chapter 2: The Normal Distributions

Chapter 2: The Normal Distributions Chapter 2: The Normal Distributions Measures of Relative Standing & Density Curves Z-scores (Measures of Relative Standing) Suppose there is one spot left in the University of Michigan class of 2014 and

More information

Chapter 1. Looking at Data-Distribution

Chapter 1. Looking at Data-Distribution Chapter 1. Looking at Data-Distribution Statistics is the scientific discipline that provides methods to draw right conclusions: 1)Collecting the data 2)Describing the data 3)Drawing the conclusions Raw

More information

Chapter 2: The Normal Distribution

Chapter 2: The Normal Distribution Chapter 2: The Normal Distribution 2.1 Density Curves and the Normal Distributions 2.2 Standard Normal Calculations 1 2 Histogram for Strength of Yarn Bobbins 15.60 16.10 16.60 17.10 17.60 18.10 18.60

More information

Lecture 3 Questions that we should be able to answer by the end of this lecture:

Lecture 3 Questions that we should be able to answer by the end of this lecture: Lecture 3 Questions that we should be able to answer by the end of this lecture: Which is the better exam score? 67 on an exam with mean 50 and SD 10 or 62 on an exam with mean 40 and SD 12 Is it fair

More information

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order.

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order. Chapter 2 2.1 Descriptive Statistics A stem-and-leaf graph, also called a stemplot, allows for a nice overview of quantitative data without losing information on individual observations. It can be a good

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.6 Descriptive Statistics (Graphical) Copyright Cengage Learning. All rights reserved. Objectives Data in Categories Histograms

More information

Lecture 3 Questions that we should be able to answer by the end of this lecture:

Lecture 3 Questions that we should be able to answer by the end of this lecture: Lecture 3 Questions that we should be able to answer by the end of this lecture: Which is the better exam score? 67 on an exam with mean 50 and SD 10 or 62 on an exam with mean 40 and SD 12 Is it fair

More information

Ch6: The Normal Distribution

Ch6: The Normal Distribution Ch6: The Normal Distribution Introduction Review: A continuous random variable can assume any value between two endpoints. Many continuous random variables have an approximately normal distribution, which

More information

Section 7.2: Applications of the Normal Distribution

Section 7.2: Applications of the Normal Distribution Section 7.2: Applications of the Normal Distribution Objectives By the end of this lesson, you will be able to... 1. find and interpret the area under a normal curve 2. find the value of a normal random

More information

The Normal Distribution & z-scores

The Normal Distribution & z-scores & z-scores Distributions: Who needs them? Why are we interested in distributions? Important link between distributions and probabilities of events If we know the distribution of a set of events, then we

More information

Probability Distributions

Probability Distributions Unit 5 Probability Distributions Section 7.3A: Applications of the Normal Distribution Notes By the end of this lesson, you will be able to Find and interpret the area under a normal curve Find the value

More information

Chapter 6 The Standard Deviation as Ruler and the Normal Model

Chapter 6 The Standard Deviation as Ruler and the Normal Model ST 305 Chapter 6 Reiland The Standard Deviation as Ruler and the Normal Model Chapter Objectives: At the end of this chapter you should be able to: 1) describe how adding or subtracting the same value

More information

Chapter 3 - Displaying and Summarizing Quantitative Data

Chapter 3 - Displaying and Summarizing Quantitative Data Chapter 3 - Displaying and Summarizing Quantitative Data 3.1 Graphs for Quantitative Data (LABEL GRAPHS) August 25, 2014 Histogram (p. 44) - Graph that uses bars to represent different frequencies or relative

More information

Lecture 6: Chapter 6 Summary

Lecture 6: Chapter 6 Summary 1 Lecture 6: Chapter 6 Summary Z-score: Is the distance of each data value from the mean in standard deviation Standardizes data values Standardization changes the mean and the standard deviation: o Z

More information

Averages and Variation

Averages and Variation Averages and Variation 3 Copyright Cengage Learning. All rights reserved. 3.1-1 Section 3.1 Measures of Central Tendency: Mode, Median, and Mean Copyright Cengage Learning. All rights reserved. 3.1-2 Focus

More information

MAT 110 WORKSHOP. Updated Fall 2018

MAT 110 WORKSHOP. Updated Fall 2018 MAT 110 WORKSHOP Updated Fall 2018 UNIT 3: STATISTICS Introduction Choosing a Sample Simple Random Sample: a set of individuals from the population chosen in a way that every individual has an equal chance

More information

23.2 Normal Distributions

23.2 Normal Distributions 1_ Locker LESSON 23.2 Normal Distributions Common Core Math Standards The student is expected to: S-ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate

More information

STP 226 ELEMENTARY STATISTICS NOTES PART 2 - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES

STP 226 ELEMENTARY STATISTICS NOTES PART 2 - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES STP 6 ELEMENTARY STATISTICS NOTES PART - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES Chapter covered organizing data into tables, and summarizing data with graphical displays. We will now use

More information

The Normal Distribution & z-scores

The Normal Distribution & z-scores & z-scores Distributions: Who needs them? Why are we interested in distributions? Important link between distributions and probabilities of events If we know the distribution of a set of events, then we

More information

Chapter 2: Statistical Models for Distributions

Chapter 2: Statistical Models for Distributions Chapter 2: Statistical Models for Distributions 2.2 Normal Distributions In Chapter 2 of YMS, we learn that distributions of data can be approximated by a mathematical model known as a density curve. In

More information

Section 2.2 Normal Distributions. Normal Distributions

Section 2.2 Normal Distributions. Normal Distributions Section 2.2 Normal Distributions Normal Distributions One particularly important class of density curves are the Normal curves, which describe Normal distributions. All Normal curves are symmetric, single-peaked,

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 6.2-1

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 6.2-1 Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Section 6.2-1 Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard

More information

The Normal Curve. June 20, Bryan T. Karazsia, M.A.

The Normal Curve. June 20, Bryan T. Karazsia, M.A. The Normal Curve June 20, 2006 Bryan T. Karazsia, M.A. Overview Hand-in Homework Why are distributions so important (particularly the normal distribution)? What is the normal distribution? Z-scores Using

More information

AP Statistics. Study Guide

AP Statistics. Study Guide Measuring Relative Standing Standardized Values and z-scores AP Statistics Percentiles Rank the data lowest to highest. Counting up from the lowest value to the select data point we discover the percentile

More information

So..to be able to make comparisons possible, we need to compare them with their respective distributions.

So..to be able to make comparisons possible, we need to compare them with their respective distributions. Unit 3 ~ Modeling Distributions of Data 1 ***Section 2.1*** Measures of Relative Standing and Density Curves (ex) Suppose that a professional soccer team has the money to sign one additional player and

More information

Chapter 6: Continuous Random Variables & the Normal Distribution. 6.1 Continuous Probability Distribution

Chapter 6: Continuous Random Variables & the Normal Distribution. 6.1 Continuous Probability Distribution Chapter 6: Continuous Random Variables & the Normal Distribution 6.1 Continuous Probability Distribution and the Normal Probability Distribution 6.2 Standardizing a Normal Distribution 6.3 Applications

More information

Chapter 3: Data Description - Part 3. Homework: Exercises 1-21 odd, odd, odd, 107, 109, 118, 119, 120, odd

Chapter 3: Data Description - Part 3. Homework: Exercises 1-21 odd, odd, odd, 107, 109, 118, 119, 120, odd Chapter 3: Data Description - Part 3 Read: Sections 1 through 5 pp 92-149 Work the following text examples: Section 3.2, 3-1 through 3-17 Section 3.3, 3-22 through 3.28, 3-42 through 3.82 Section 3.4,

More information

Today s Topics. Percentile ranks and percentiles. Standardized scores. Using standardized scores to estimate percentiles

Today s Topics. Percentile ranks and percentiles. Standardized scores. Using standardized scores to estimate percentiles Today s Topics Percentile ranks and percentiles Standardized scores Using standardized scores to estimate percentiles Using µ and σ x to learn about percentiles Percentiles, standardized scores, and the

More information

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures STA 2023 Module 3 Descriptive Measures Learning Objectives Upon completing this module, you should be able to: 1. Explain the purpose of a measure of center. 2. Obtain and interpret the mean, median, and

More information

1. The Normal Distribution, continued

1. The Normal Distribution, continued Math 1125-Introductory Statistics Lecture 16 10/9/06 1. The Normal Distribution, continued Recall that the standard normal distribution is symmetric about z = 0, so the area to the right of zero is 0.5000.

More information

Normal Data ID1050 Quantitative & Qualitative Reasoning

Normal Data ID1050 Quantitative & Qualitative Reasoning Normal Data ID1050 Quantitative & Qualitative Reasoning Histogram for Different Sample Sizes For a small sample, the choice of class (group) size dramatically affects how the histogram appears. Say we

More information

Sections 4.3 and 4.4

Sections 4.3 and 4.4 Sections 4.3 and 4.4 Timothy Hanson Department of Statistics, University of South Carolina Stat 205: Elementary Statistics for the Biological and Life Sciences 1 / 32 4.3 Areas under normal densities Every

More information

Chapter 5snow year.notebook March 15, 2018

Chapter 5snow year.notebook March 15, 2018 Chapter 5: Statistical Reasoning Section 5.1 Exploring Data Measures of central tendency (Mean, Median and Mode) attempt to describe a set of data by identifying the central position within a set of data

More information

CHAPTER 2: SAMPLING AND DATA

CHAPTER 2: SAMPLING AND DATA CHAPTER 2: SAMPLING AND DATA This presentation is based on material and graphs from Open Stax and is copyrighted by Open Stax and Georgia Highlands College. OUTLINE 2.1 Stem-and-Leaf Graphs (Stemplots),

More information

Math 167 Pre-Statistics. Chapter 4 Summarizing Data Numerically Section 3 Boxplots

Math 167 Pre-Statistics. Chapter 4 Summarizing Data Numerically Section 3 Boxplots Math 167 Pre-Statistics Chapter 4 Summarizing Data Numerically Section 3 Boxplots Objectives 1. Find quartiles of some data. 2. Find the interquartile range of some data. 3. Construct a boxplot to describe

More information

4.3 The Normal Distribution

4.3 The Normal Distribution 4.3 The Normal Distribution Objectives. Definition of normal distribution. Standard normal distribution. Specialties of the graph of the standard normal distribution. Percentiles of the standard normal

More information

Distributions of Continuous Data

Distributions of Continuous Data C H A P T ER Distributions of Continuous Data New cars and trucks sold in the United States average about 28 highway miles per gallon (mpg) in 2010, up from about 24 mpg in 2004. Some of the improvement

More information

Chapter 6: DESCRIPTIVE STATISTICS

Chapter 6: DESCRIPTIVE STATISTICS Chapter 6: DESCRIPTIVE STATISTICS Random Sampling Numerical Summaries Stem-n-Leaf plots Histograms, and Box plots Time Sequence Plots Normal Probability Plots Sections 6-1 to 6-5, and 6-7 Random Sampling

More information

CHAPTER 3: Data Description

CHAPTER 3: Data Description CHAPTER 3: Data Description You ve tabulated and made pretty pictures. Now what numbers do you use to summarize your data? Ch3: Data Description Santorico Page 68 You ll find a link on our website to a

More information

Chapter 3 Analyzing Normal Quantitative Data

Chapter 3 Analyzing Normal Quantitative Data Chapter 3 Analyzing Normal Quantitative Data Introduction: In chapters 1 and 2, we focused on analyzing categorical data and exploring relationships between categorical data sets. We will now be doing

More information

Measures of Dispersion

Measures of Dispersion Lesson 7.6 Objectives Find the variance of a set of data. Calculate standard deviation for a set of data. Read data from a normal curve. Estimate the area under a curve. Variance Measures of Dispersion

More information

Section 1.2. Displaying Quantitative Data with Graphs. Mrs. Daniel AP Stats 8/22/2013. Dotplots. How to Make a Dotplot. Mrs. Daniel AP Statistics

Section 1.2. Displaying Quantitative Data with Graphs. Mrs. Daniel AP Stats 8/22/2013. Dotplots. How to Make a Dotplot. Mrs. Daniel AP Statistics Section. Displaying Quantitative Data with Graphs Mrs. Daniel AP Statistics Section. Displaying Quantitative Data with Graphs After this section, you should be able to CONSTRUCT and INTERPRET dotplots,

More information

Unit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys

Unit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys Unit 7 Statistics AFM Mrs. Valentine 7.1 Samples and Surveys v Obj.: I will understand the different methods of sampling and studying data. I will be able to determine the type used in an example, and

More information

UNIT 1A EXPLORING UNIVARIATE DATA

UNIT 1A EXPLORING UNIVARIATE DATA A.P. STATISTICS E. Villarreal Lincoln HS Math Department UNIT 1A EXPLORING UNIVARIATE DATA LESSON 1: TYPES OF DATA Here is a list of important terms that we must understand as we begin our study of statistics

More information

What s Normal Anyway?

What s Normal Anyway? Name Class Problem 1 A Binomial Experiment 1. When rolling a die, what is the theoretical probability of rolling a 3? 2. When a die is rolled 100 times, how many times do you expect that a 3 will be rolled?

More information

Normal Curves and Sampling Distributions

Normal Curves and Sampling Distributions Normal Curves and Sampling Distributions 6 Copyright Cengage Learning. All rights reserved. Section 6.2 Standard Units and Areas Under the Standard Normal Distribution Copyright Cengage Learning. All rights

More information

IT 403 Practice Problems (1-2) Answers

IT 403 Practice Problems (1-2) Answers IT 403 Practice Problems (1-2) Answers #1. Using Tukey's Hinges method ('Inclusionary'), what is Q3 for this dataset? 2 3 5 7 11 13 17 a. 7 b. 11 c. 12 d. 15 c (12) #2. How do quartiles and percentiles

More information

Name: Date: Period: Chapter 2. Section 1: Describing Location in a Distribution

Name: Date: Period: Chapter 2. Section 1: Describing Location in a Distribution Name: Date: Period: Chapter 2 Section 1: Describing Location in a Distribution Suppose you earned an 86 on a statistics quiz. The question is: should you be satisfied with this score? What if it is the

More information

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution Stat 528 (Autumn 2008) Density Curves and the Normal Distribution Reading: Section 1.3 Density curves An example: GRE scores Measures of center and spread The normal distribution Features of the normal

More information

Distributions of random variables

Distributions of random variables Chapter 3 Distributions of random variables 31 Normal distribution Among all the distributions we see in practice, one is overwhelmingly the most common The symmetric, unimodal, bell curve is ubiquitous

More information

Measures of Dispersion

Measures of Dispersion Measures of Dispersion 6-3 I Will... Find measures of dispersion of sets of data. Find standard deviation and analyze normal distribution. Day 1: Dispersion Vocabulary Measures of Variation (Dispersion

More information

Example 1. Find the x value that has a left tail area of.1131 P ( x <??? ) =. 1131

Example 1. Find the x value that has a left tail area of.1131 P ( x <??? ) =. 1131 Section 6 4D: Finding a Value of x with a Given tail arae Label the shaded area for both graphs. Find the value for z and label the z axis. Find the value for x for the given area under the normal curve

More information

CHAPTER 1. Introduction. Statistics: Statistics is the science of collecting, organizing, analyzing, presenting and interpreting data.

CHAPTER 1. Introduction. Statistics: Statistics is the science of collecting, organizing, analyzing, presenting and interpreting data. 1 CHAPTER 1 Introduction Statistics: Statistics is the science of collecting, organizing, analyzing, presenting and interpreting data. Variable: Any characteristic of a person or thing that can be expressed

More information

CHAPTER 6. The Normal Probability Distribution

CHAPTER 6. The Normal Probability Distribution The Normal Probability Distribution CHAPTER 6 The normal probability distribution is the most widely used distribution in statistics as many statistical procedures are built around it. The central limit

More information

3.5 Applying the Normal Distribution: Z-Scores

3.5 Applying the Normal Distribution: Z-Scores 3.5 Applying the Normal Distribution: Z-Scores In the previous section, you learned about the normal curve and the normal distribution. You know that the area under any normal curve is 1, and that 68%

More information

IQR = number. summary: largest. = 2. Upper half: Q3 =

IQR = number. summary: largest. = 2. Upper half: Q3 = Step by step box plot Height in centimeters of players on the 003 Women s Worldd Cup soccer team. 157 1611 163 163 164 165 165 165 168 168 168 170 170 170 171 173 173 175 180 180 Determine the 5 number

More information

L E A R N I N G O B JE C T I V E S

L E A R N I N G O B JE C T I V E S 2.2 Measures of Central Location L E A R N I N G O B JE C T I V E S 1. To learn the concept of the center of a data set. 2. To learn the meaning of each of three measures of the center of a data set the

More information

Chpt 3. Data Description. 3-2 Measures of Central Tendency /40

Chpt 3. Data Description. 3-2 Measures of Central Tendency /40 Chpt 3 Data Description 3-2 Measures of Central Tendency 1 /40 Chpt 3 Homework 3-2 Read pages 96-109 p109 Applying the Concepts p110 1, 8, 11, 15, 27, 33 2 /40 Chpt 3 3.2 Objectives l Summarize data using

More information

CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1. Daphne Skipper, Augusta University (2016)

CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1. Daphne Skipper, Augusta University (2016) CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1 Daphne Skipper, Augusta University (2016) 1. Stem-and-Leaf Graphs, Line Graphs, and Bar Graphs The distribution of data is

More information

AP Statistics Prerequisite Packet

AP Statistics Prerequisite Packet Types of Data Quantitative (or measurement) Data These are data that take on numerical values that actually represent a measurement such as size, weight, how many, how long, score on a test, etc. For these

More information

CHAPTER 2 DESCRIPTIVE STATISTICS

CHAPTER 2 DESCRIPTIVE STATISTICS CHAPTER 2 DESCRIPTIVE STATISTICS 1. Stem-and-Leaf Graphs, Line Graphs, and Bar Graphs The distribution of data is how the data is spread or distributed over the range of the data values. This is one of

More information

10.4 Measures of Central Tendency and Variation

10.4 Measures of Central Tendency and Variation 10.4 Measures of Central Tendency and Variation Mode-->The number that occurs most frequently; there can be more than one mode ; if each number appears equally often, then there is no mode at all. (mode

More information

10.4 Measures of Central Tendency and Variation

10.4 Measures of Central Tendency and Variation 10.4 Measures of Central Tendency and Variation Mode-->The number that occurs most frequently; there can be more than one mode ; if each number appears equally often, then there is no mode at all. (mode

More information

MATH NATION SECTION 9 H.M.H. RESOURCES

MATH NATION SECTION 9 H.M.H. RESOURCES MATH NATION SECTION 9 H.M.H. RESOURCES SPECIAL NOTE: These resources were assembled to assist in student readiness for their upcoming Algebra 1 EOC. Although these resources have been compiled for your

More information

Section 10.4 Normal Distributions

Section 10.4 Normal Distributions Section 10.4 Normal Distributions Random Variables Suppose a bank is interested in improving its services to customers. The manager decides to begin by finding the amount of time tellers spend on each

More information

How individual data points are positioned within a data set.

How individual data points are positioned within a data set. Section 3.4 Measures of Position Percentiles How individual data points are positioned within a data set. P k is the value such that k% of a data set is less than or equal to P k. For example if we said

More information

Ms Nurazrin Jupri. Frequency Distributions

Ms Nurazrin Jupri. Frequency Distributions Frequency Distributions Frequency Distributions After collecting data, the first task for a researcher is to organize and simplify the data so that it is possible to get a general overview of the results.

More information

MATH& 146 Lesson 10. Section 1.6 Graphing Numerical Data

MATH& 146 Lesson 10. Section 1.6 Graphing Numerical Data MATH& 146 Lesson 10 Section 1.6 Graphing Numerical Data 1 Graphs of Numerical Data One major reason for constructing a graph of numerical data is to display its distribution, or the pattern of variability

More information

Slide 1 / 96. Linear Relations and Functions

Slide 1 / 96. Linear Relations and Functions Slide 1 / 96 Linear Relations and Functions Slide 2 / 96 Scatter Plots Table of Contents Step, Absolute Value, Piecewise, Identity, and Constant Functions Graphing Inequalities Slide 3 / 96 Scatter Plots

More information