Averages and Variation

Size: px
Start display at page:

Download "Averages and Variation"

Transcription

1 Averages and Variation 3 Copyright Cengage Learning. All rights reserved

2 Section 3.1 Measures of Central Tendency: Mode, Median, and Mean Copyright Cengage Learning. All rights reserved

3 Focus Points Compute mean, median, and mode from raw data. Interpret what mean, median, and mode tell you. Explain how mean, median, and mode can be affected by extreme data values. Compute a weighted average

4 Arithmetic Mean Arithmetic Mean (Mean) the measure of center obtained by adding the values and dividing the total by the number of values What most people call an average. Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

5 Notation denotes the sum of a set of values. x n is the variable usually used to represent the individual data values. represents the number of data values in a sample. N represents the number of data values in a population. Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

6 Notation x is pronounced x-bar and denotes the mean of a set of sample values x x = n µ is pronounced mu and denotes the mean of all values in a population µ = x N Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

7 Mean Advantages Is relatively reliable, means of samples drawn from the same population don t vary as much as other measures of center Takes every data value into account Disadvantage Is sensitive to every data value, one extreme value can affect it dramatically; is not a resistant measure of center Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

8 Trimmed mean(optional part) A measure of center that is more resistant than the mean but still sensitive to specific data values is the trimmed mean. A trimmed mean is the mean of the data values left after trimming a specified percentage of the smallest and largest data values from the data set

9 Trimmed Mean Usually a 5% trimmed mean is used. This implies that we trim the lowest 5% of the data as well as the highest 5% of the data. A similar procedure is used for a 10% trimmed mean. Procedure: 3.1-9

10 Median Median the middle value when the original data values are arranged in order of increasing (or decreasing) magnitude often denoted by x ~ (pronounced x-tilde ) is not affected by an extreme value - is a resistant measure of the center Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

11 Finding the Median First sort the values (arrange them in order), the follow one of these 1. If the number of data values is odd, the median is the number located in the exact middle of the list. 2. If the number of data values is even, the median is found by computing the mean of the two middle numbers. Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

12 (in order - even number of values no exact middle shared by two numbers) MEDIAN is (in order - odd number of values) exact middle MEDIAN is 0.73 Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

13 Mode Mode the value that occurs with the greatest frequency Data set can have one, more than one, or no mode Bimodal two data values occur with the same greatest frequency Multimodal more than two data values occur with the same greatest frequency No Mode no data value is repeated Mode is the only measure of central tendency that can be used with nominal data Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

14 Mode - Examples a b c Mode is 1.10 Bimodal - 27 & 55 No Mode Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

15 Definition Midrange the value midway between the maximum and minimum values in the original data set Midrange = maximum value + minimum value 2 Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

16 Midrange Sensitive to extremes because it uses only the maximum and minimum values, so rarely used Redeeming Features (1) very easy to compute (2) reinforces that there are several ways to define the center (3) Avoids confusion with median Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

17 Round-off Rule for Measures of Center Carry one more decimal place than is present in the original set of values. Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

18 Critical Thinking Think about whether the results are reasonable. Think about the method used to collect the sample data. Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

19 Weighted Average

20 Weighted Average Sometimes we wish to average numbers, but we want to assign more importance, or weight, to some of the numbers. For instance, suppose your professor tells you that your grade will be based on a midterm and a final exam, each of which is based on 100 possible points. However, the final exam will be worth 60% of the grade and the midterm only 40%. How could you determine an average score that would reflect these different weights?

21 Weighted Average The average you need is the weighted average

22 Example Weighted Average Suppose your midterm test score is 83 and your final exam score is 95. Using weights of 40% for the midterm and 60% for the final exam, compute the weighted average of your scores. If the minimum average for an A is 90, will you earn an A? Solution: By the formula, we multiply each score by its weight and add the results together

23 Example Solution cont d Then we divide by the sum of all the weights. Converting the percentages to decimal notation, we get Your average is high enough to earn an A

24 Example 2 Weighted Mean In her first semester of college, a student of the author took five courses. Her final grades along with the number of credits for each course were A (3 credits), A (4 credits), B (3 credits), C (3 credits), and F (1 credit). The grading system assigns quality points to letter grades as follows: A = 4; B = 3; C = 2; D = 1; F = 0. Compute her grade point average. Solution Use the numbers of credits as the weights: w = 3, 4, 3, 3, 1. Replace the letters grades of A, A, B, C, and F with the corresponding quality points: x = 4, 4, 3, 2,

25 Example 2 Weighted Mean Solution x w x w

26 Mean from a Frequency Distribution Assume that all sample values in each class are equal to the class midpoint. Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

27 Mean from a Frequency Distribution use class midpoint of classes for variable x Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

28 Example Estimate the mean from the IQ scores in Chapter 2. x ( f x) f

29 Best Measure of Center Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

30 Skewed and Symmetric Symmetric distribution of data is symmetric if the left half of its histogram is roughly a mirror image of its right half Skewed distribution of data is skewed if it is not symmetric and extends more to one side than the other Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

31 Skewed Left or Right Skewed to the left (also called negatively skewed) have a longer left tail, mean and median are to the left of the mode Skewed to the right (also called positively skewed) have a longer right tail, mean and median are to the right of the mode Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

32 Shape of the Distribution The mean and median cannot always be used to identify the shape of the distribution. Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

33 Skewness Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

34 Section 3.2 Measures of Variation Copyright Cengage Learning. All rights reserved

35 Focus Points Find the range, variance, and standard deviation. Compute the coefficient of variation from raw data. Why is the coefficient of variation important?

36 Definition The range of a set of data values is the difference between the maximum data value and the minimum data value. Range = (maximum value) (minimum value) Example: Range of {1, 3, 14} is 14-1=13. It is very sensitive to extreme values; therefore not as useful as other measures of variation. Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

37 Round-Off Rule for Measures of Variation When rounding the value of a measure of variation, carry one more decimal place than is present in the original set of data. Round only the final answer, not values in the middle of a calculation. Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

38 Definition The standard deviation of a set of sample values, denoted by s, is a measure of variation of values about the mean. Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

39 Sample Standard Deviation Formula (x x) 2 s = n 1 Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

40 Sample Standard Deviation (Shortcut Formula) s = n x 2 ) ( x) 2 n (n 1) Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

41 Example Use either formula to find the standard deviation of these numbers of a sample of chocolate chips: 22, 22, 26,

42 Example x x n s x x n

43 Another Example: Publix checkout waiting times in minutes Dataset: {1, 4, 10}. Find the sample mean and sample standard deviation. Using the shortcut 2 x x x 2 ( x x) formula: 15 x 5.0 min 3 s n=3 x x n = x ( x x) x x min s 2 n x 21 n( n 1) 3(117) 15 3(3 1) min 2 x

44 Standard Deviation - Important Properties The standard deviation is a measure of variation of all values from the mean. The value of the standard deviation s is usually positive. The value of the standard deviation s can increase dramatically with the inclusion of one or more outliers (data values far away from all others). The units of the standard deviation s are the same as the units of the original data values. Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

45 Comparing Variation in Different Samples It s a good practice to compare two sample standard deviations only when the sample means are approximately the same. When comparing variation in samples with very different means, it is better to use the coefficient of variation, which is defined later in this section. Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

46 Population Standard Deviation = 2 (x µ) N This formula is similar to the previous formula, but instead, the population mean and population size are used. Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

47 Variance The variance of a set of values is a measure of variation equal to the square of the standard deviation. Sample variance: s 2 - Square of the sample standard deviation s Population variance: 2 - Square of the population standard deviation Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

48 Unbiased Estimator The sample variance s 2 is an unbiased estimator of the population variance 2, which means values of s 2 tend to target the value of 2 instead of systematically tending to overestimate or underestimate 2. Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

49 Variance - Notation s = sample standard deviation s 2 = sample variance = population standard deviation 2 = population variance Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

50 Properties of the Standard Deviation Measures the variation among data values Values close together have a small standard deviation, but values with much more variation have a larger standard deviation Has the same units of measurement as the original data Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

51 Properties of the Standard Deviation For many data sets, a value is unusual if it differs from the mean by more than two standard deviations Compare standard deviations of two different data sets only if the they use the same scale and units, and they have means that are approximately the same Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

52 Coefficient of Variation The coefficient of variation (or CV) for a set of nonnegative sample or population data, expressed as a percent, describes the standard deviation relative to the mean. Sample Population s CV = 100% x CV = 100% m Copyright 2010, Pearson 2007, 2004 Education Pearson Education, Inc. All Rights Reserved

53 Example: How to compare the variability in heights and weights of men? Sample: 40 males were randomly selected. The summarized statistics are given below. Sample mean Height in 3.02 in Weight lb lb Sample standard deviation Solution: Use CV to compare the variability Heights: CV s x s x 100% % 4.42% Weights: CV 100% 100% 15.26% Conclusion: Heights (with CV=4.42%) have considerably less variation than weights (with CV=15.26%)

54 Section 3.3 Percentiles and Box-and-Whisker Plots Copyright Cengage Learning. All rights reserved

55 Focus Points Interpret the meaning of percentile scores. Compute the median, quartiles, and five-number summary from raw data. Make a box-and-whisker plot. Interpret the results. Describe how a box-and-whisker plot indicates spread of data about the median

56 Percentiles and Box-and-Whisker Plots We ve seen measures of central tendency and spread for a set of data. The arithmetic mean x and the standard deviation s will be very useful in later work. However, because they each utilize every data value, they can be heavily influenced by one or two extreme data values. In cases where our data distributions are heavily skewed or even bimodal, we often get a better summary of the distribution by utilizing relative position of data rather than exact values

57 Percentiles and Box-and-Whisker Plots We know that the median is an average computed by using relative position of the data. If we are told that 81 is the median score on a biology test, we know that after the data have been ordered, 50% of the data fall at or below the median value of 81. The median is an example of a percentile; in fact, it is the 50th percentile. The general definition of the P th percentile follows

58 Percentiles and Box-and-Whisker Plots In Figure 3-3, we see the 60th percentile marked on a histogram. We see that 60% of the data lie below the mark and 40% lie above it. A Histogram with the 60th Percentile Shown Figure

59 Percentiles and Box-and-Whisker Plots There are 99 percentiles, and in an ideal situation, the 99 percentiles divide the data set into 100 equal parts. (See Figure 3-4.) However, if the number of data elements is not exactly divisible by 100, the percentiles will not divide the data into equal parts. Percentiles Figure

60 Percentiles and Box-and-Whisker Plots There are several widely used conventions for finding percentiles. They lead to slightly different values for different situations, but these values are close together. For all conventions, the data are first ranked or ordered from smallest to largest. A natural way to find the Pth percentile is to then find a value such that P% of the data fall at or below it. This will not always be possible, so we take the nearest value satisfying the criterion. It is at this point that there is a variety of processes to determine the exact value of the percentile

61 Percentiles and Box-and-Whisker Plots We will not be very concerned about exact procedures for evaluating percentiles in general. However, quartiles are special percentiles used so frequently that we want to adopt a specific procedure for their computation. Quartiles are those percentiles that divide the data into fourths

62 Percentiles and Box-and-Whisker Plots The first quartile Q 1 is the 25th percentile, the second quartile Q 2 is the median, and the third quartile Q 3 is the 75th percentile. (See Figure 3-5.) Quartiles Figure 3-5 Again, several conventions are used for computing quartiles, but the convention on next page utilizes the median and is widely adopted

63 Percentiles and Box-and-Whisker Plots Procedure

64 Percentiles and Box-and-Whisker Plots In short, all we do to find the quartiles is find three medians. The median, or second quartile, is a popular measure of the center utilizing relative position. A useful measure of data spread utilizing relative position is the interquartile range (IQR). It is simply the difference between the third and first quartiles. Interquartile range = Q 3 Q 1 The interquartile range tells us the spread of the middle half of the data. Now let s look at an example to see how to compute all of these quantities

65 Example Quartiles In a hurry? On the run? Hungry as well? How about an ice cream bar as a snack? Ice cream bars are popular among all age groups. Consumer Reports did a study of ice cream bars. Twenty-seven bars with taste ratings of at least fair were listed, and cost per bar was included in the report. Just how much does an ice cream bar cost? The data, expressed in dollars, appear in Table 3-4. Cost of Ice Cream Bars (in dollars) Table

66 Example Quartiles cont d As you can see, the cost varies quite a bit, partly because the bars are not of uniform size. (a) Find the quartiles. Solution: We first order the data from smallest to largest. Table 3-5 shows the data in order. Ordered Cost of Ice Cream Bars (in dollars) Table

67 Example Solution cont d Next, we find the median. Since the number of data values is 27, there are an odd number of data, and the median is simply the center or 14th value. The value is shown boxed in Table 3-5. Median = Q 2 = 0.50 There are 13 values below the median position, and Q 1 is the median of these values

68 Example Solution cont d It is the middle or seventh value and is shaded in Table 3-5. First quartile = Q 1 = 0.33 There are also 13 values above the median position. The median of these is the seventh value from the right end. This value is also shaded in Table 3-5. Third quartile = Q 3 =

69 Example Quartiles cont d (b) Find the interquartile range. Solution: IQR = Q 3 Q 1 = = 0.67 This means that the middle half of the data has a cost spread of

70 Box-and-Whisker Plots

71 Box-and-Whisker Plots The quartiles together with the low and high data values give us a very useful five-number summary of the data and their spread. We will use these five numbers to create a graphic sketch of the data called a box-and-whisker plot. Box-and-whisker plots provide another useful technique from exploratory data analysis (EDA) for describing data

72 Box-and-Whisker Plots Procedure Box-and-Whisker Plot Figure 3-6 The next example demonstrates the process of making a box-and-whisker plot

73 Example Box-and-whisker plot Make a box-and-whisker plot showing the calories in vanilla-flavored ice cream bars. Use the plot to make observations about the distribution of calories. (a) We ordered the data (see Table 3-7) and found the values of the median, Q 1, and Q 3. Ordered Data Table

74 Example Box-and-whisker plot cont d From this previous work we have the following fivenumber summary: low value = 111; Q 1 = 182; median = 221.5; Q 3 = 319; high value =

75 Example Box-and-whisker plot cont d (b) We select an appropriate vertical scale and make the plot (Figure 3-7). Box-and-Whisker Plot for Calories in Vanilla-Flavored Ice Cream Bars Figure

76 Example Box-and-whisker plot cont d (c) Interpretation A quick glance at the box-and-whisker plot reveals the following: (i) The box tells us where the middle half of the data lies, so we see that half of the ice cream bars have between 182 and 319 calories, with an interquartile range of 137 calories. (ii) The median is slightly closer to the lower part of the box. This means that the lower calorie counts are more concentrated. The calorie counts above the median are more spread out, indicating that the distribution is slightly skewed toward the higher values

77 Example Box-and-whisker plot cont d (iii) The upper whisker is longer than the lower, which again emphasizes skewness toward the higher values

Chapter 2 Describing, Exploring, and Comparing Data

Chapter 2 Describing, Exploring, and Comparing Data Slide 1 Chapter 2 Describing, Exploring, and Comparing Data Slide 2 2-1 Overview 2-2 Frequency Distributions 2-3 Visualizing Data 2-4 Measures of Center 2-5 Measures of Variation 2-6 Measures of Relative

More information

3.2-Measures of Center

3.2-Measures of Center 3.2-Measures of Center Characteristics of Center: Measures of center, including mean, median, and mode are tools for analyzing data which reflect the value at the center or middle of a set of data. We

More information

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order.

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order. Chapter 2 2.1 Descriptive Statistics A stem-and-leaf graph, also called a stemplot, allows for a nice overview of quantitative data without losing information on individual observations. It can be a good

More information

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures STA 2023 Module 3 Descriptive Measures Learning Objectives Upon completing this module, you should be able to: 1. Explain the purpose of a measure of center. 2. Obtain and interpret the mean, median, and

More information

STA Module 2B Organizing Data and Comparing Distributions (Part II)

STA Module 2B Organizing Data and Comparing Distributions (Part II) STA 2023 Module 2B Organizing Data and Comparing Distributions (Part II) Learning Objectives Upon completing this module, you should be able to 1 Explain the purpose of a measure of center 2 Obtain and

More information

STA Learning Objectives. Learning Objectives (cont.) Module 2B Organizing Data and Comparing Distributions (Part II)

STA Learning Objectives. Learning Objectives (cont.) Module 2B Organizing Data and Comparing Distributions (Part II) STA 2023 Module 2B Organizing Data and Comparing Distributions (Part II) Learning Objectives Upon completing this module, you should be able to 1 Explain the purpose of a measure of center 2 Obtain and

More information

15 Wyner Statistics Fall 2013

15 Wyner Statistics Fall 2013 15 Wyner Statistics Fall 2013 CHAPTER THREE: CENTRAL TENDENCY AND VARIATION Summary, Terms, and Objectives The two most important aspects of a numerical data set are its central tendencies and its variation.

More information

Measures of Central Tendency

Measures of Central Tendency Page of 6 Measures of Central Tendency A measure of central tendency is a value used to represent the typical or average value in a data set. The Mean The sum of all data values divided by the number of

More information

STP 226 ELEMENTARY STATISTICS NOTES PART 2 - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES

STP 226 ELEMENTARY STATISTICS NOTES PART 2 - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES STP 6 ELEMENTARY STATISTICS NOTES PART - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES Chapter covered organizing data into tables, and summarizing data with graphical displays. We will now use

More information

10.4 Measures of Central Tendency and Variation

10.4 Measures of Central Tendency and Variation 10.4 Measures of Central Tendency and Variation Mode-->The number that occurs most frequently; there can be more than one mode ; if each number appears equally often, then there is no mode at all. (mode

More information

10.4 Measures of Central Tendency and Variation

10.4 Measures of Central Tendency and Variation 10.4 Measures of Central Tendency and Variation Mode-->The number that occurs most frequently; there can be more than one mode ; if each number appears equally often, then there is no mode at all. (mode

More information

CHAPTER 3: Data Description

CHAPTER 3: Data Description CHAPTER 3: Data Description You ve tabulated and made pretty pictures. Now what numbers do you use to summarize your data? Ch3: Data Description Santorico Page 68 You ll find a link on our website to a

More information

CHAPTER 2: SAMPLING AND DATA

CHAPTER 2: SAMPLING AND DATA CHAPTER 2: SAMPLING AND DATA This presentation is based on material and graphs from Open Stax and is copyrighted by Open Stax and Georgia Highlands College. OUTLINE 2.1 Stem-and-Leaf Graphs (Stemplots),

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency lowest value + highest value midrange The word average: is very ambiguous and can actually refer to the mean,

More information

Measures of Central Tendency. A measure of central tendency is a value used to represent the typical or average value in a data set.

Measures of Central Tendency. A measure of central tendency is a value used to represent the typical or average value in a data set. Measures of Central Tendency A measure of central tendency is a value used to represent the typical or average value in a data set. The Mean the sum of all data values divided by the number of values in

More information

Chapter 2. Descriptive Statistics: Organizing, Displaying and Summarizing Data

Chapter 2. Descriptive Statistics: Organizing, Displaying and Summarizing Data Chapter 2 Descriptive Statistics: Organizing, Displaying and Summarizing Data Objectives Student should be able to Organize data Tabulate data into frequency/relative frequency tables Display data graphically

More information

Name: Date: Period: Chapter 2. Section 1: Describing Location in a Distribution

Name: Date: Period: Chapter 2. Section 1: Describing Location in a Distribution Name: Date: Period: Chapter 2 Section 1: Describing Location in a Distribution Suppose you earned an 86 on a statistics quiz. The question is: should you be satisfied with this score? What if it is the

More information

September 11, Unit 2 Day 1 Notes Measures of Central Tendency.notebook

September 11, Unit 2 Day 1 Notes Measures of Central Tendency.notebook Measures of Central Tendency: Mean, Median, Mode and Midrange A Measure of Central Tendency is a value that represents a typical or central entry of a data set. Four most commonly used measures of central

More information

Chapter 3 - Displaying and Summarizing Quantitative Data

Chapter 3 - Displaying and Summarizing Quantitative Data Chapter 3 - Displaying and Summarizing Quantitative Data 3.1 Graphs for Quantitative Data (LABEL GRAPHS) August 25, 2014 Histogram (p. 44) - Graph that uses bars to represent different frequencies or relative

More information

Math 214 Introductory Statistics Summer Class Notes Sections 3.2, : 1-21 odd 3.3: 7-13, Measures of Central Tendency

Math 214 Introductory Statistics Summer Class Notes Sections 3.2, : 1-21 odd 3.3: 7-13, Measures of Central Tendency Math 14 Introductory Statistics Summer 008 6-9-08 Class Notes Sections 3, 33 3: 1-1 odd 33: 7-13, 35-39 Measures of Central Tendency odd Notation: Let N be the size of the population, n the size of the

More information

Vocabulary. 5-number summary Rule. Area principle. Bar chart. Boxplot. Categorical data condition. Categorical variable.

Vocabulary. 5-number summary Rule. Area principle. Bar chart. Boxplot. Categorical data condition. Categorical variable. 5-number summary 68-95-99.7 Rule Area principle Bar chart Bimodal Boxplot Case Categorical data Categorical variable Center Changing center and spread Conditional distribution Context Contingency table

More information

UNIT 1A EXPLORING UNIVARIATE DATA

UNIT 1A EXPLORING UNIVARIATE DATA A.P. STATISTICS E. Villarreal Lincoln HS Math Department UNIT 1A EXPLORING UNIVARIATE DATA LESSON 1: TYPES OF DATA Here is a list of important terms that we must understand as we begin our study of statistics

More information

CHAPTER 2 DESCRIPTIVE STATISTICS

CHAPTER 2 DESCRIPTIVE STATISTICS CHAPTER 2 DESCRIPTIVE STATISTICS 1. Stem-and-Leaf Graphs, Line Graphs, and Bar Graphs The distribution of data is how the data is spread or distributed over the range of the data values. This is one of

More information

Measures of Dispersion

Measures of Dispersion Measures of Dispersion 6-3 I Will... Find measures of dispersion of sets of data. Find standard deviation and analyze normal distribution. Day 1: Dispersion Vocabulary Measures of Variation (Dispersion

More information

Descriptive Statistics

Descriptive Statistics Chapter 2 Descriptive Statistics 2.1 Descriptive Statistics 1 2.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Display data graphically and interpret graphs:

More information

2.1 Objectives. Math Chapter 2. Chapter 2. Variable. Categorical Variable EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES

2.1 Objectives. Math Chapter 2. Chapter 2. Variable. Categorical Variable EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES Chapter 2 2.1 Objectives 2.1 What Are the Types of Data? www.managementscientist.org 1. Know the definitions of a. Variable b. Categorical versus quantitative

More information

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies.

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies. Instructions: You are given the following data below these instructions. Your client (Courtney) wants you to statistically analyze the data to help her reach conclusions about how well she is teaching.

More information

To calculate the arithmetic mean, sum all the values and divide by n (equivalently, multiple 1/n): 1 n. = 29 years.

To calculate the arithmetic mean, sum all the values and divide by n (equivalently, multiple 1/n): 1 n. = 29 years. 3: Summary Statistics Notation Consider these 10 ages (in years): 1 4 5 11 30 50 8 7 4 5 The symbol n represents the sample size (n = 10). The capital letter X denotes the variable. x i represents the

More information

Frequency Distributions

Frequency Distributions Displaying Data Frequency Distributions After collecting data, the first task for a researcher is to organize and summarize the data so that it is possible to get a general overview of the results. Remember,

More information

STA Module 4 The Normal Distribution

STA Module 4 The Normal Distribution STA 2023 Module 4 The Normal Distribution Learning Objectives Upon completing this module, you should be able to 1. Explain what it means for a variable to be normally distributed or approximately normally

More information

STA /25/12. Module 4 The Normal Distribution. Learning Objectives. Let s Look at Some Examples of Normal Curves

STA /25/12. Module 4 The Normal Distribution. Learning Objectives. Let s Look at Some Examples of Normal Curves STA 2023 Module 4 The Normal Distribution Learning Objectives Upon completing this module, you should be able to 1. Explain what it means for a variable to be normally distributed or approximately normally

More information

Data can be in the form of numbers, words, measurements, observations or even just descriptions of things.

Data can be in the form of numbers, words, measurements, observations or even just descriptions of things. + What is Data? Data is a collection of facts. Data can be in the form of numbers, words, measurements, observations or even just descriptions of things. In most cases, data needs to be interpreted and

More information

Exploratory Data Analysis

Exploratory Data Analysis Chapter 10 Exploratory Data Analysis Definition of Exploratory Data Analysis (page 410) Definition 12.1. Exploratory data analysis (EDA) is a subfield of applied statistics that is concerned with the investigation

More information

AND NUMERICAL SUMMARIES. Chapter 2

AND NUMERICAL SUMMARIES. Chapter 2 EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES Chapter 2 2.1 What Are the Types of Data? 2.1 Objectives www.managementscientist.org 1. Know the definitions of a. Variable b. Categorical versus quantitative

More information

appstats6.notebook September 27, 2016

appstats6.notebook September 27, 2016 Chapter 6 The Standard Deviation as a Ruler and the Normal Model Objectives: 1.Students will calculate and interpret z scores. 2.Students will compare/contrast values from different distributions using

More information

Section 6.3: Measures of Position

Section 6.3: Measures of Position Section 6.3: Measures of Position Measures of position are numbers showing the location of data values relative to the other values within a data set. They can be used to compare values from different

More information

MAT 142 College Mathematics. Module ST. Statistics. Terri Miller revised July 14, 2015

MAT 142 College Mathematics. Module ST. Statistics. Terri Miller revised July 14, 2015 MAT 142 College Mathematics Statistics Module ST Terri Miller revised July 14, 2015 2 Statistics Data Organization and Visualization Basic Terms. A population is the set of all objects under study, a sample

More information

Chapter 6: DESCRIPTIVE STATISTICS

Chapter 6: DESCRIPTIVE STATISTICS Chapter 6: DESCRIPTIVE STATISTICS Random Sampling Numerical Summaries Stem-n-Leaf plots Histograms, and Box plots Time Sequence Plots Normal Probability Plots Sections 6-1 to 6-5, and 6-7 Random Sampling

More information

Lecture 3: Chapter 3

Lecture 3: Chapter 3 Lecture 3: Chapter 3 C C Moxley UAB Mathematics 12 September 16 3.2 Measurements of Center Statistics involves describing data sets and inferring things about them. The first step in understanding a set

More information

Measures of Central Tendency

Measures of Central Tendency Measures of Central Tendency MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Introduction Measures of central tendency are designed to provide one number which

More information

CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1. Daphne Skipper, Augusta University (2016)

CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1. Daphne Skipper, Augusta University (2016) CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1 Daphne Skipper, Augusta University (2016) 1. Stem-and-Leaf Graphs, Line Graphs, and Bar Graphs The distribution of data is

More information

MATH& 146 Lesson 8. Section 1.6 Averages and Variation

MATH& 146 Lesson 8. Section 1.6 Averages and Variation MATH& 146 Lesson 8 Section 1.6 Averages and Variation 1 Summarizing Data The distribution of a variable is the overall pattern of how often the possible values occur. For numerical variables, three summary

More information

Univariate Statistics Summary

Univariate Statistics Summary Further Maths Univariate Statistics Summary Types of Data Data can be classified as categorical or numerical. Categorical data are observations or records that are arranged according to category. For example:

More information

Lecture 3 Questions that we should be able to answer by the end of this lecture:

Lecture 3 Questions that we should be able to answer by the end of this lecture: Lecture 3 Questions that we should be able to answer by the end of this lecture: Which is the better exam score? 67 on an exam with mean 50 and SD 10 or 62 on an exam with mean 40 and SD 12 Is it fair

More information

Lecture 3 Questions that we should be able to answer by the end of this lecture:

Lecture 3 Questions that we should be able to answer by the end of this lecture: Lecture 3 Questions that we should be able to answer by the end of this lecture: Which is the better exam score? 67 on an exam with mean 50 and SD 10 or 62 on an exam with mean 40 and SD 12 Is it fair

More information

Basic Statistical Terms and Definitions

Basic Statistical Terms and Definitions I. Basics Basic Statistical Terms and Definitions Statistics is a collection of methods for planning experiments, and obtaining data. The data is then organized and summarized so that professionals can

More information

CHAPTER 1. Introduction. Statistics: Statistics is the science of collecting, organizing, analyzing, presenting and interpreting data.

CHAPTER 1. Introduction. Statistics: Statistics is the science of collecting, organizing, analyzing, presenting and interpreting data. 1 CHAPTER 1 Introduction Statistics: Statistics is the science of collecting, organizing, analyzing, presenting and interpreting data. Variable: Any characteristic of a person or thing that can be expressed

More information

Measures of Position

Measures of Position Measures of Position In this section, we will learn to use fractiles. Fractiles are numbers that partition, or divide, an ordered data set into equal parts (each part has the same number of data entries).

More information

Table of Contents (As covered from textbook)

Table of Contents (As covered from textbook) Table of Contents (As covered from textbook) Ch 1 Data and Decisions Ch 2 Displaying and Describing Categorical Data Ch 3 Displaying and Describing Quantitative Data Ch 4 Correlation and Linear Regression

More information

Chapter 3: Describing, Exploring & Comparing Data

Chapter 3: Describing, Exploring & Comparing Data Chapter 3: Describing, Exploring & Comparing Data Section Title Notes Pages 1 Overview 1 2 Measures of Center 2 5 3 Measures of Variation 6 12 4 Measures of Relative Standing & Boxplots 13 16 3.1 Overview

More information

Chpt 3. Data Description. 3-2 Measures of Central Tendency /40

Chpt 3. Data Description. 3-2 Measures of Central Tendency /40 Chpt 3 Data Description 3-2 Measures of Central Tendency 1 /40 Chpt 3 Homework 3-2 Read pages 96-109 p109 Applying the Concepts p110 1, 8, 11, 15, 27, 33 2 /40 Chpt 3 3.2 Objectives l Summarize data using

More information

Lecture Notes 3: Data summarization

Lecture Notes 3: Data summarization Lecture Notes 3: Data summarization Highlights: Average Median Quartiles 5-number summary (and relation to boxplots) Outliers Range & IQR Variance and standard deviation Determining shape using mean &

More information

The Normal Distribution

The Normal Distribution 14-4 OBJECTIVES Use the normal distribution curve. The Normal Distribution TESTING The class of 1996 was the first class to take the adjusted Scholastic Assessment Test. The test was adjusted so that the

More information

+ Statistical Methods in

+ Statistical Methods in 9/4/013 Statistical Methods in Practice STA/MTH 379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Discovering Statistics

More information

Day 4 Percentiles and Box and Whisker.notebook. April 20, 2018

Day 4 Percentiles and Box and Whisker.notebook. April 20, 2018 Day 4 Box & Whisker Plots and Percentiles In a previous lesson, we learned that the median divides a set a data into 2 equal parts. Sometimes it is necessary to divide the data into smaller more precise

More information

STA 570 Spring Lecture 5 Tuesday, Feb 1

STA 570 Spring Lecture 5 Tuesday, Feb 1 STA 570 Spring 2011 Lecture 5 Tuesday, Feb 1 Descriptive Statistics Summarizing Univariate Data o Standard Deviation, Empirical Rule, IQR o Boxplots Summarizing Bivariate Data o Contingency Tables o Row

More information

No. of blue jelly beans No. of bags

No. of blue jelly beans No. of bags Math 167 Ch5 Review 1 (c) Janice Epstein CHAPTER 5 EXPLORING DATA DISTRIBUTIONS A sample of jelly bean bags is chosen and the number of blue jelly beans in each bag is counted. The results are shown in

More information

Chapter 3. Descriptive Measures. Slide 3-2. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 3. Descriptive Measures. Slide 3-2. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 3 Descriptive Measures Slide 3-2 Section 3.1 Measures of Center Slide 3-3 Definition 3.1 Mean of a Data Set The mean of a data set is the sum of the observations divided by the number of observations.

More information

LESSON 3: CENTRAL TENDENCY

LESSON 3: CENTRAL TENDENCY LESSON 3: CENTRAL TENDENCY Outline Arithmetic mean, median and mode Ungrouped data Grouped data Percentiles, fractiles, and quartiles Ungrouped data Grouped data 1 MEAN Mean is defined as follows: Sum

More information

DAY 52 BOX-AND-WHISKER

DAY 52 BOX-AND-WHISKER DAY 52 BOX-AND-WHISKER VOCABULARY The Median is the middle number of a set of data when the numbers are arranged in numerical order. The Range of a set of data is the difference between the highest and

More information

Slide Copyright 2005 Pearson Education, Inc. SEVENTH EDITION and EXPANDED SEVENTH EDITION. Chapter 13. Statistics Sampling Techniques

Slide Copyright 2005 Pearson Education, Inc. SEVENTH EDITION and EXPANDED SEVENTH EDITION. Chapter 13. Statistics Sampling Techniques SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide - Chapter Statistics. Sampling Techniques Statistics Statistics is the art and science of gathering, analyzing, and making inferences from numerical information

More information

2.1: Frequency Distributions and Their Graphs

2.1: Frequency Distributions and Their Graphs 2.1: Frequency Distributions and Their Graphs Frequency Distribution - way to display data that has many entries - table that shows classes or intervals of data entries and the number of entries in each

More information

MATH 1070 Introductory Statistics Lecture notes Descriptive Statistics and Graphical Representation

MATH 1070 Introductory Statistics Lecture notes Descriptive Statistics and Graphical Representation MATH 1070 Introductory Statistics Lecture notes Descriptive Statistics and Graphical Representation Objectives: 1. Learn the meaning of descriptive versus inferential statistics 2. Identify bar graphs,

More information

The main issue is that the mean and standard deviations are not accurate and should not be used in the analysis. Then what statistics should we use?

The main issue is that the mean and standard deviations are not accurate and should not be used in the analysis. Then what statistics should we use? Chapter 4 Analyzing Skewed Quantitative Data Introduction: In chapter 3, we focused on analyzing bell shaped (normal) data, but many data sets are not bell shaped. How do we analyze quantitative data when

More information

Chapter 3 Analyzing Normal Quantitative Data

Chapter 3 Analyzing Normal Quantitative Data Chapter 3 Analyzing Normal Quantitative Data Introduction: In chapters 1 and 2, we focused on analyzing categorical data and exploring relationships between categorical data sets. We will now be doing

More information

MAT 110 WORKSHOP. Updated Fall 2018

MAT 110 WORKSHOP. Updated Fall 2018 MAT 110 WORKSHOP Updated Fall 2018 UNIT 3: STATISTICS Introduction Choosing a Sample Simple Random Sample: a set of individuals from the population chosen in a way that every individual has an equal chance

More information

CHAPTER-13. Mining Class Comparisons: Discrimination between DifferentClasses: 13.4 Class Description: Presentation of Both Characterization and

CHAPTER-13. Mining Class Comparisons: Discrimination between DifferentClasses: 13.4 Class Description: Presentation of Both Characterization and CHAPTER-13 Mining Class Comparisons: Discrimination between DifferentClasses: 13.1 Introduction 13.2 Class Comparison Methods and Implementation 13.3 Presentation of Class Comparison Descriptions 13.4

More information

Chapter 1. Looking at Data-Distribution

Chapter 1. Looking at Data-Distribution Chapter 1. Looking at Data-Distribution Statistics is the scientific discipline that provides methods to draw right conclusions: 1)Collecting the data 2)Describing the data 3)Drawing the conclusions Raw

More information

Things you ll know (or know better to watch out for!) when you leave in December: 1. What you can and cannot infer from graphs.

Things you ll know (or know better to watch out for!) when you leave in December: 1. What you can and cannot infer from graphs. 1 2 Things you ll know (or know better to watch out for!) when you leave in December: 1. What you can and cannot infer from graphs. 2. How to construct (in your head!) and interpret confidence intervals.

More information

L E A R N I N G O B JE C T I V E S

L E A R N I N G O B JE C T I V E S 2.2 Measures of Central Location L E A R N I N G O B JE C T I V E S 1. To learn the concept of the center of a data set. 2. To learn the meaning of each of three measures of the center of a data set the

More information

Math 155. Measures of Central Tendency Section 3.1

Math 155. Measures of Central Tendency Section 3.1 Math 155. Measures of Central Tendency Section 3.1 The word average can be used in a variety of contexts: for example, your average score on assignments or the average house price in Riverside. This is

More information

MATH& 146 Lesson 10. Section 1.6 Graphing Numerical Data

MATH& 146 Lesson 10. Section 1.6 Graphing Numerical Data MATH& 146 Lesson 10 Section 1.6 Graphing Numerical Data 1 Graphs of Numerical Data One major reason for constructing a graph of numerical data is to display its distribution, or the pattern of variability

More information

Downloaded from

Downloaded from UNIT 2 WHAT IS STATISTICS? Researchers deal with a large amount of data and have to draw dependable conclusions on the basis of data collected for the purpose. Statistics help the researchers in making

More information

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables Further Maths Notes Common Mistakes Read the bold words in the exam! Always check data entry Remember to interpret data with the multipliers specified (e.g. in thousands) Write equations in terms of variables

More information

MAT 155. Z score. August 31, S3.4o3 Measures of Relative Standing and Boxplots

MAT 155. Z score. August 31, S3.4o3 Measures of Relative Standing and Boxplots MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3 1 Review and Preview 3 2 Measures of Center 3 3 Measures of Variation 3 4 Measures

More information

Unit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys

Unit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys Unit 7 Statistics AFM Mrs. Valentine 7.1 Samples and Surveys v Obj.: I will understand the different methods of sampling and studying data. I will be able to determine the type used in an example, and

More information

Applied Statistics for the Behavioral Sciences

Applied Statistics for the Behavioral Sciences Applied Statistics for the Behavioral Sciences Chapter 2 Frequency Distributions and Graphs Chapter 2 Outline Organization of Data Simple Frequency Distributions Grouped Frequency Distributions Graphs

More information

MATH NATION SECTION 9 H.M.H. RESOURCES

MATH NATION SECTION 9 H.M.H. RESOURCES MATH NATION SECTION 9 H.M.H. RESOURCES SPECIAL NOTE: These resources were assembled to assist in student readiness for their upcoming Algebra 1 EOC. Although these resources have been compiled for your

More information

Chapter 6 Normal Probability Distributions

Chapter 6 Normal Probability Distributions Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard Normal Distribution 6-3 Applications of Normal Distributions 6-4 Sampling Distributions and Estimators 6-5 The Central

More information

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BBA240 STATISTICS/ QUANTITATIVE METHODS FOR BUSINESS AND ECONOMICS

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BBA240 STATISTICS/ QUANTITATIVE METHODS FOR BUSINESS AND ECONOMICS SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BBA240 STATISTICS/ QUANTITATIVE METHODS FOR BUSINESS AND ECONOMICS Unit Two Moses Mwale e-mail: moses.mwale@ictar.ac.zm ii Contents Contents UNIT 2: Numerical

More information

Understanding and Comparing Distributions. Chapter 4

Understanding and Comparing Distributions. Chapter 4 Understanding and Comparing Distributions Chapter 4 Objectives: Boxplot Calculate Outliers Comparing Distributions Timeplot The Big Picture We can answer much more interesting questions about variables

More information

Chapter 2 Modeling Distributions of Data

Chapter 2 Modeling Distributions of Data Chapter 2 Modeling Distributions of Data Section 2.1 Describing Location in a Distribution Describing Location in a Distribution Learning Objectives After this section, you should be able to: FIND and

More information

Chapter 3: Data Description - Part 3. Homework: Exercises 1-21 odd, odd, odd, 107, 109, 118, 119, 120, odd

Chapter 3: Data Description - Part 3. Homework: Exercises 1-21 odd, odd, odd, 107, 109, 118, 119, 120, odd Chapter 3: Data Description - Part 3 Read: Sections 1 through 5 pp 92-149 Work the following text examples: Section 3.2, 3-1 through 3-17 Section 3.3, 3-22 through 3.28, 3-42 through 3.82 Section 3.4,

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.5 Descriptive Statistics (Numerical) Copyright Cengage Learning. All rights reserved. Objectives Measures of Central Tendency:

More information

Chapter2 Description of samples and populations. 2.1 Introduction.

Chapter2 Description of samples and populations. 2.1 Introduction. Chapter2 Description of samples and populations. 2.1 Introduction. Statistics=science of analyzing data. Information collected (data) is gathered in terms of variables (characteristics of a subject that

More information

Numerical Summaries of Data Section 14.3

Numerical Summaries of Data Section 14.3 MATH 11008: Numerical Summaries of Data Section 14.3 MEAN mean: The mean (or average) of a set of numbers is computed by determining the sum of all the numbers and dividing by the total number of observations.

More information

Math 167 Pre-Statistics. Chapter 4 Summarizing Data Numerically Section 3 Boxplots

Math 167 Pre-Statistics. Chapter 4 Summarizing Data Numerically Section 3 Boxplots Math 167 Pre-Statistics Chapter 4 Summarizing Data Numerically Section 3 Boxplots Objectives 1. Find quartiles of some data. 2. Find the interquartile range of some data. 3. Construct a boxplot to describe

More information

Box Plots. OpenStax College

Box Plots. OpenStax College Connexions module: m46920 1 Box Plots OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License 3.0 Box plots (also called box-and-whisker

More information

1.2. Pictorial and Tabular Methods in Descriptive Statistics

1.2. Pictorial and Tabular Methods in Descriptive Statistics 1.2. Pictorial and Tabular Methods in Descriptive Statistics Section Objectives. 1. Stem-and-Leaf displays. 2. Dotplots. 3. Histogram. Types of histogram shapes. Common notation. Sample size n : the number

More information

How individual data points are positioned within a data set.

How individual data points are positioned within a data set. Section 3.4 Measures of Position Percentiles How individual data points are positioned within a data set. P k is the value such that k% of a data set is less than or equal to P k. For example if we said

More information

IT 403 Practice Problems (1-2) Answers

IT 403 Practice Problems (1-2) Answers IT 403 Practice Problems (1-2) Answers #1. Using Tukey's Hinges method ('Inclusionary'), what is Q3 for this dataset? 2 3 5 7 11 13 17 a. 7 b. 11 c. 12 d. 15 c (12) #2. How do quartiles and percentiles

More information

Unit I Supplement OpenIntro Statistics 3rd ed., Ch. 1

Unit I Supplement OpenIntro Statistics 3rd ed., Ch. 1 Unit I Supplement OpenIntro Statistics 3rd ed., Ch. 1 KEY SKILLS: Organize a data set into a frequency distribution. Construct a histogram to summarize a data set. Compute the percentile for a particular

More information

Let s take a closer look at the standard deviation.

Let s take a closer look at the standard deviation. For this illustration, we have selected 2 random samples of 500 respondents each from the voter.xls file we have been using in class. We recorded the ages of each of the 500 respondents and computed the

More information

1.3 Graphical Summaries of Data

1.3 Graphical Summaries of Data Arkansas Tech University MATH 3513: Applied Statistics I Dr. Marcel B. Finan 1.3 Graphical Summaries of Data In the previous section we discussed numerical summaries of either a sample or a data. In this

More information

ECLT 5810 Data Preprocessing. Prof. Wai Lam

ECLT 5810 Data Preprocessing. Prof. Wai Lam ECLT 5810 Data Preprocessing Prof. Wai Lam Why Data Preprocessing? Data in the real world is imperfect incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate

More information

Learning Log Title: CHAPTER 7: PROPORTIONS AND PERCENTS. Date: Lesson: Chapter 7: Proportions and Percents

Learning Log Title: CHAPTER 7: PROPORTIONS AND PERCENTS. Date: Lesson: Chapter 7: Proportions and Percents Chapter 7: Proportions and Percents CHAPTER 7: PROPORTIONS AND PERCENTS Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 7: Proportions and Percents Date: Lesson: Learning Log

More information

Mean,Median, Mode Teacher Twins 2015

Mean,Median, Mode Teacher Twins 2015 Mean,Median, Mode Teacher Twins 2015 Warm Up How can you change the non-statistical question below to make it a statistical question? How many pets do you have? Possible answer: What is your favorite type

More information

a. divided by the. 1) Always round!! a) Even if class width comes out to a, go up one.

a. divided by the. 1) Always round!! a) Even if class width comes out to a, go up one. Probability and Statistics Chapter 2 Notes I Section 2-1 A Steps to Constructing Frequency Distributions 1 Determine number of (may be given to you) a Should be between and classes 2 Find the Range a The

More information

M7D1.a: Formulate questions and collect data from a census of at least 30 objects and from samples of varying sizes.

M7D1.a: Formulate questions and collect data from a census of at least 30 objects and from samples of varying sizes. M7D1.a: Formulate questions and collect data from a census of at least 30 objects and from samples of varying sizes. Population: Census: Biased: Sample: The entire group of objects or individuals considered

More information

Section 3.2 Measures of Central Tendency MDM4U Jensen

Section 3.2 Measures of Central Tendency MDM4U Jensen Section 3.2 Measures of Central Tendency MDM4U Jensen Part 1: Video This video will review shape of distributions and introduce measures of central tendency. Answer the following questions while watching.

More information