Quasilinear First-Order PDEs

Size: px
Start display at page:

Download "Quasilinear First-Order PDEs"

Transcription

1 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 16 Lecture 3 Quasilinear First-Order PDEs A first order quasilinear PDE is of the form a(x, y, z) + b(x, y, z) x y = c(x, y, z). (1) Such equations occur in a variety of nonlinear wave propagation problems. Let us assume that an integral surface z = z(x, y) of (1) can be found. Writing this integral surface in implicit form as F (x, y, z) = z(x, y) z = 0. Note that the gradient vector F = (z x, z y, 1) is normal to the integral surface F (x, y, z) = 0. The equation (1) may be written as az x + bz y c = (a, b, c) (z x, z y, 1) = 0. (2) This shows that the vector (a, b, c) and the gradient vector F are orthogonal. In other words, the vector (a, b, c) lies in the tangent plane of the integral surface z = z(x, y) at each point in the (x, y, z)-space where F 0. At each point (x, y, z), the vector (a, b, c) determines a direction in (x, y, z)-space is called the characteristic direction. We can construct a family of curves that have the characteristic direction at each point. If the parametric form of these curves is then we must have x = x(t), y = y(t), and z = z(t), (3) = a(x(t), y(t), z(t)), = b(x(t), y(t), z(t)), = c(x(t), y(t), z(t)), (4) because (/, /, /) is the tangent vector along the curves. The solutions of (4) are called the characteristic curves of the quasilinear equation (1). We assume that a(x, y, z), b(x, y, z), and c(x, y, z) are sufficiently smooth and do not all vanish at the same point. Then, the theory of ordinary differential equations ensures that a unique characteristic curve passes through each point (x 0, y 0, z 0 ). The IVP for (1) requires that z(x, y) be specified on a given curve in (x, y)-space which determines a curve C in (x, y, z)-space referred to as the initial curve. To solve this IVP, we pass a characteristic curve through each point of the initial curve C. If these curves generate a surface known as integral surface. This integral surface is the solution of the IVP.

2 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 17 REMARK 1. (i) The characteristic equations (4) for x and y are not, in general, uncoupled from the equation for z and hence differ from those in the linear case (cf. Eq. (3) of Lecture 2). (ii) The characteristics equations (4) can be expressed in the nonparametric form as a = b = c. (5) Below, we shall describe a method for finding the general solution of (1). This method is due to Lagrange hence it is usually referred to as the method of characteristics or the method of Lagrange. 1 The method of characteristics It is a method of solution of quasi-linear PDE which is stated in the following result. THEOREM 2. The general solution of the quasi-linear PDE (1) is F (u, v) = 0, (6) where F is an arbitrary function and u(x, y, z) = c 1 and v(x, y, z) = c 2 form a solution of the equations a = b = c. (7) Proof. If u(x, y, z) = c 1 and v(x, y, z) = c 2 satisfy the equations (1) then the equations are compatible with (7). Thus, we must have u x + u y + u z = 0, v x + v y + v z = 0 au x + bu y + cu z = 0, av x + bv y + cv z = 0. Solving these equations for a, b and c, we obtain a (u,v) (y,z) = b (u,v) (z,x) = c (u,v) (x,y) Differentiate F (u, v) = 0 with respect to x and y, respectively, to have { F u u x + u } + F { v x v x + v } = 0 x { F u u y + u } + F { v y v y + v } = 0. y. (8)

3 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 18 Eliminating F u and F v from these equations, we obtain (u, v) x (y, z) + (u, v) (u, v) = y (z, x) (x, y) (9) In view of (8), the equation (9) yields a x + b y = c. Thus, we find that F (u, v) = 0 is a solution of the equation (1). proof.. REMARK 3. This completes the All integral surfaces of the equation (1) are generated by the integral curves of the equations (4). All surfaces generated by integral curves of the equations (4) are integral surfaces of the equation (1). EXAMPLE 4. Find the general integral of xz x + yz y = z. Solution. The associated system of equations are From the first two relation we have Similarly, x = y = z. x = y = ln x = ln y + ln c 1 = x y = c 1. z = y = z y = c 2. Take u 1 = x y and u 2 = z y. The general integral is given by F ( x y, z y ) = 0. EXAMPLE 5. Find the general integral of the equation z(x + y)z x + z(x y)z y = x 2 + y 2. Solution. The characteristic equations are z(x + y) = Each of these ratio is equivalent to y + x z 0 z(x y) = = x 2 + y 2. x y z. 0

4 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 19 Consequently, we have Integrating we obtain two integrals d{xy z2 2 } = 0 and d{1 2 (x2 y 2 z 2 )} = 0. 2xy z 2 = c 1 and x 2 y 2 z 2 = c 2, where c 1 and c 2 are arbitrary constants. Thus, the general solution is where F is an arbitrary function. F (2xy z 2, x 2 y 2 z 2 ) = 0, Next, we shall discuss a method for solving a Cauchy problem for the first-order quasilinear PDE (1). The following theorem gives conditions under which a unique solution of the initial value problem for (1) can be obtained. THEOREM 6. Let a(x, y, z), b(x, y, z) and c(x, y, z) in (1) have continuous partial derivatives with respect to x, y and z variables. Let the initial curve C be described parametrically as x = x(s), y = y(s), and z = z(x(s), y(s)). The initial curve C has a continuous tangent vector and J(s) = a[x(s), y(s), z(s)] b(x(s), y(s), z(s)] 0 (10) ds ds on C. Then, there exists a unique solution z = z(x, y), defined in some neighborhood of the initial curve C, satisfies (1) and the initial condition z(x(s), y(s)) = z(s). Proof. The characteristic system (4) with initial conditions at t = 0 given as x = x(s), y = y(s), and z = z(s) has a unique solution of the form with continuous derivatives in s and t, and x = x(s, t), y = y(s, t), z = z(s, t), x(s, 0) = x(s), y(s, 0) = y(s), z(s, 0) = z(s). This follows from the existence and uniqueness theory for ODEs. The Jacobian of the transformation x = x(s, t), y = y(s, t) at t = 0 is x x s t J(s) = J(s, t) t=0 = = t=0 y s y t [ y t a x ] t b 0. (11) t=0

5 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 20 in view of (10). By the continuity assumption, the Jacobian J 0 in a neighborhood of the initial curve. Thus, by the implicit function theorem, we can solve for s and t as functions of x and y near the initial curve. Then z(s, t) = z(s(x, y), t(x, y)) = Z(x, y). a solution of (1), which can be easily seen as c = = x + y = a x + b y, where we have used (4). The uniqueness of the solution follows from the fact that any two integral surfaces that contain the same initial curve must coincide along all the characteristic curves passing through the initial curve. This is a consequence of the uniqueness theorem for the IVP for (4). This completes our proof.. EXAMPLE 7. Consider the IVP: where f(x) is a given smooth function. y + z x = 0 z(x, 0) = f(x), Solution. We solve this problem using the following steps. Step 1. (Finding characteristic curves) To solve the IVP, we parameterize the initial curve as The characteristic equations are x = s, y = 0, z = f(s). = z, = 1, = 0. Let the solutions be denoted as x(s, t), t(s, t), and z(s, t). We immediately find that x(s, t) = zt + c 1 (s), y(s, t) = t + c 2 (s), z(s, t) = c 3 (s), where c i, i = 1, 2, 3 are constants to be determined using IC. Step 2. (Applying IC) The initial conditions at s = 0 are given by x(s, 0) = s, y(s, 0) = 0, z(s, 0) = f(s).

6 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 21 Using these condition, we obtain x(s, t) = zt + s, y(s, t) = t, z(s, t) = f(s). Step 3. (Writing the parametric form of the solution) The solutions are thus given by x(s, t) = zt + s = f(s)t + s, y(s, t) = t, z(s, t) = f(s). Step 4. (Expressing z(s, t) in terms of z(x, y)) Applying the condition (10), we find that J(s) = 1 0, along the entire initial curve. We can immediately solve for s(x, y) and t(x, y) to obtain s(x, y) = x tf(s), t(x, y) = y. Since t = y and s = x tf(s) = x yz, the solution can also be given in implicit form as z = f(x yz). EXAMPLE 8. Solve the following quasi-linear PDE: zz x + yz y = x, (x, y) R 2 subject to the initial condition z(x, 1) = 2x, x R. Solution. Here a(x, y, z) = z, b(x, y, z) = y, c(x, y, z) = x. The characteristics equations are On solving the above ODEs, we obtain = z, x(s, 0) = s, = y, y(s, 0) = 1, = x, z(s, 0) = 2s. x(s, t) = s 2 (3et e t ), y(s, t) = e t, z(s, t) = s 2 (3et + e t ). Solving for (s, t) in terms of (x, y), we obtain s(x, y) = 2xy 3y 2 1, t(x, y) = ln(y), z(x, y) = z(s(x, y), t(x, y)) = (3y2 + 1)x (3y 2 1).

7 MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 22 Note that the characteristics variables imply that y must be positive (y = e t ). In fact, the solution z is valid only for 3y 2 1 > 0, i.e., for y > 1 3 > 0. Observe that the change of variables is valid only where x s (s, t) x t (s, t) y s (s, t) y t (s, t) 0. It is easy to verify that this condition leads to y 1/ 3. Practice Problems 1. Find a solution of the PDE z x + zz y = 6x satisfying the condition z(0, y) = 3y. 2. Find the general integral of the PDE (2xy 1)z x + (z 2x 2 )z y = 2(x yz) and also the particular integral which passes through the line x = 1, y = Solve z x + zz y = 2x, z(0, y) = f(y). 4. Find the solution of the equation z x + zz y = 1 with the data x(s, 0) = 2s, y(s, 0) = s 2, z(0, s 2 ) = s. 5. Find the characteristics of the equation z x z y = z, and determine the integral surface which passes through the parabola x = 0, y 2 = z.

Linear First-Order PDEs

Linear First-Order PDEs MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 9 Lecture 2 Linear First-Orer PDEs The most general first-orer linear PDE has the form a(x, y)z x + b(x, y)z y + c(x, y)z = (x, y), (1) where a, b,

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

Surfaces and Integral Curves

Surfaces and Integral Curves MODULE 1: MATHEMATICAL PRELIMINARIES 16 Lecture 3 Surfaces and Integral Curves In Lecture 3, we recall some geometrical concepts that are essential for understanding the nature of solutions of partial

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Let and be a differentiable function. Let Then be the level surface given by

Let and be a differentiable function. Let Then be the level surface given by Module 12 : Total differential, Tangent planes and normals Lecture 35 : Tangent plane and normal [Section 35.1] > Objectives In this section you will learn the following : The notion tangent plane to a

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES SOLUTIONS ) 3-1. Find, for the following functions: a) fx, y) x cos x sin y. b) fx, y) e xy. c) fx, y) x + y ) lnx + y ). CHAPTER 3: Partial derivatives

More information

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Rafikul Alam Department of Mathematics IIT Guwahati Chain rule Theorem-A: Let x : R R n be differentiable at t 0 and f : R n R be differentiable

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral.

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral. 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Equation of tangent plane: for implicitly defined surfaces section 12.9

Equation of tangent plane: for implicitly defined surfaces section 12.9 Equation of tangent plane: for implicitly defined surfaces section 12.9 Some surfaces are defined implicitly, such as the sphere x 2 + y 2 + z 2 = 1. In general an implicitly defined surface has the equation

More information

Constrained Optimization and Lagrange Multipliers

Constrained Optimization and Lagrange Multipliers Constrained Optimization and Lagrange Multipliers MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Constrained Optimization In the previous section we found the local or absolute

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

. 1. Chain rules. Directional derivative. Gradient Vector Field. Most Rapid Increase. Implicit Function Theorem, Implicit Differentiation

. 1. Chain rules. Directional derivative. Gradient Vector Field. Most Rapid Increase. Implicit Function Theorem, Implicit Differentiation 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra MTHSC 206 Section 15.6 Directional Derivatives and the Gradient Vector Definition We define the directional derivative of the function f (x, y) at the point (x 0, y 0 ) in the direction of the unit vector

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

Math 209, Fall 2009 Homework 3

Math 209, Fall 2009 Homework 3 Math 209, Fall 2009 Homework 3 () Find equations of the tangent plane and the normal line to the given surface at the specified point: x 2 + 2y 2 3z 2 = 3, P (2,, ). Solution Using implicit differentiation

More information

LECTURE 13, THURSDAY APRIL 1, 2004

LECTURE 13, THURSDAY APRIL 1, 2004 LECTURE 13, THURSDAY APRIL 1, 2004 FRANZ LEMMERMEYER 1. Parametrizing Curves of Genus 0 As a special case of the theorem that curves of genus 0, in particular those with the maximal number of double points,

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

(1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives.

(1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives. Section 11.3 Partial Derivatives (1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives. MATH 127 (Section 11.3) Partial Derivatives The University of Kansas

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2)

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2) Sphere Definition: A sphere is the locus of a point which remains at a constant distance from a fixed point. The fixed point is called the centre and the constant distance is the radius of the sphere.

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

Functions of Several Variables

Functions of Several Variables Jim Lambers MAT 280 Spring Semester 2009-10 Lecture 2 Notes These notes correspond to Section 11.1 in Stewart and Section 2.1 in Marsden and Tromba. Functions of Several Variables Multi-variable calculus

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Lecture 25 February 28, 2007 Recall Fact Recall Fact If f is a dierentiable function of x and y, then f has a directional derivative in the direction

More information

A1:Orthogonal Coordinate Systems

A1:Orthogonal Coordinate Systems A1:Orthogonal Coordinate Systems A1.1 General Change of Variables Suppose that we express x and y as a function of two other variables u and by the equations We say that these equations are defining a

More information

1 Vector Functions and Space Curves

1 Vector Functions and Space Curves ontents 1 Vector Functions and pace urves 2 1.1 Limits, Derivatives, and Integrals of Vector Functions...................... 2 1.2 Arc Length and urvature..................................... 2 1.3 Motion

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

Kevin James. MTHSC 206 Section 14.5 The Chain Rule

Kevin James. MTHSC 206 Section 14.5 The Chain Rule MTHSC 206 Section 14.5 The Chain Rule Theorem (Chain Rule - Case 1) Suppose that z = f (x, y) is a differentiable function and that x(t) and y(t) are both differentiable functions as well. Then, dz dt

More information

(a) Find the equation of the plane that passes through the points P, Q, and R.

(a) Find the equation of the plane that passes through the points P, Q, and R. Math 040 Miterm Exam 1 Spring 014 S o l u t i o n s 1 For given points P (, 0, 1), Q(, 1, 0), R(3, 1, 0) an S(,, 0) (a) Fin the equation of the plane that passes through the points P, Q, an R P Q = 0,

More information

Math 326A Exercise 4. Due Wednesday, October 24, 2012.

Math 326A Exercise 4. Due Wednesday, October 24, 2012. Math 36A Exercise 4. Due Wednesday, October 4, 01. Implicit Function Theorem: Suppose that F(x, y, z) has continuous partial derivatives, and that the gradient P F is nonzero at a point P. Consider the

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

Differentiability and Tangent Planes October 2013

Differentiability and Tangent Planes October 2013 Differentiability and Tangent Planes 14.4 04 October 2013 Differentiability in one variable. Recall for a function of one variable, f is differentiable at a f (a + h) f (a) lim exists and = f (a) h 0 h

More information

Calculus 234. Problems. May 15, 2003

Calculus 234. Problems. May 15, 2003 alculus 234 Problems May 15, 23 A book reference marked [TF] indicates this semester s official text; a book reference marked [VPR] indicates the official text for next semester. These are [TF] Thomas

More information

ds dt ds 1 dt 1 dt v v v dt ds and the normal vector is given by N

ds dt ds 1 dt 1 dt v v v dt ds and the normal vector is given by N Normal Vectors and Curvature In the last section, we stated that reparameterization by arc length would help us analyze the twisting and turning of a curve. In this section, we ll see precisely how to

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

GEOMETRY IN THREE DIMENSIONS

GEOMETRY IN THREE DIMENSIONS 1 CHAPTER 5. GEOMETRY IN THREE DIMENSIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW GEOMETRY IN THREE DIMENSIONS Contents 1 Geometry in R 3 2 1.1 Lines...............................................

More information

Optimizations and Lagrange Multiplier Method

Optimizations and Lagrange Multiplier Method Introduction Applications Goal and Objectives Reflection Questions Once an objective of any real world application is well specified as a function of its control variables, which may subject to a certain

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

Summer 2017 MATH Suggested Solution to Exercise Find the tangent hyperplane passing the given point P on each of the graphs: (a)

Summer 2017 MATH Suggested Solution to Exercise Find the tangent hyperplane passing the given point P on each of the graphs: (a) Smmer 2017 MATH2010 1 Sggested Soltion to Exercise 6 1 Find the tangent hyperplane passing the given point P on each of the graphs: (a) z = x 2 y 2 ; y = z log x z P (2, 3, 5), P (1, 1, 1), (c) w = sin(x

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 35 2005 B.G. Pachpatte EXPLICIT BOUNDS ON SOME RETARDED INTEGRAL INEQUALITIES Abstract: In this paper we establish some new retarded integral inequalities which

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

Math 326A Exercise 4. Due Wednesday, October 24, 2012.

Math 326A Exercise 4. Due Wednesday, October 24, 2012. Math 326A Exercise 4. Due Wednesday, October 24, 2012. Implicit Function Theorem: Suppose that F(x, y, z) has continuous partial derivatives, and that the gradient P F is nonzero at a point P. Consider

More information

Directional Derivatives as Vectors

Directional Derivatives as Vectors Directional Derivatives as Vectors John Ganci 1 Al Lehnen 2 1 Richland College Dallas, TX jganci@dcccd.edu 2 Madison Area Technical College Madison, WI alehnen@matcmadison.edu Statement of problem We are

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Review 1. Richard Koch. April 23, 2005

Review 1. Richard Koch. April 23, 2005 Review Richard Koch April 3, 5 Curves From the chapter on curves, you should know. the formula for arc length in section.;. the definition of T (s), κ(s), N(s), B(s) in section.4. 3. the fact that κ =

More information

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2 Topic 5.1: Line Elements and Scalar Line Integrals Textbook: Section 16.2 Warm-Up: Derivatives of Vector Functions Suppose r(t) = x(t) î + y(t) ĵ + z(t) ˆk parameterizes a curve C. The vector: is: r (t)

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Week 5: Geometry and Applications

Week 5: Geometry and Applications Week 5: Geometry and Applications Introduction Now that we have some tools from differentiation, we can study geometry, motion, and few other issues associated with functions of several variables. Much

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Focusing properties of spherical and parabolic mirrors

Focusing properties of spherical and parabolic mirrors Physics 5B Winter 008 Focusing properties of spherical and parabolic mirrors 1 General considerations Consider a curved mirror surface that is constructed as follows Start with a curve, denoted by y()

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Finite difference methods

Finite difference methods Finite difference methods Siltanen/Railo/Kaarnioja Spring 8 Applications of matrix computations Applications of matrix computations Finite difference methods Spring 8 / Introduction Finite difference methods

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Workbook. MAT 397: Calculus III

Workbook. MAT 397: Calculus III Workbook MAT 397: Calculus III Instructor: Caleb McWhorter Name: Summer 2017 Contents Preface..................................................... 2 1 Spatial Geometry & Vectors 3 1.1 Basic n Euclidean

More information

Math 5BI: Problem Set 2 The Chain Rule

Math 5BI: Problem Set 2 The Chain Rule Math 5BI: Problem Set 2 The Chain Rule April 5, 2010 A Functions of two variables Suppose that γ(t) = (x(t), y(t), z(t)) is a differentiable parametrized curve in R 3 which lies on the surface S defined

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Marius Ionescu October 26, 2012 Marius Ionescu () Directional Derivatives and the Gradient Vector Part October 2 26, 2012 1 / 12 Recall Fact Marius

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Quiz 6 Practice Problems

Quiz 6 Practice Problems Quiz 6 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not

More information

Three-Dimensional Coordinate Systems

Three-Dimensional Coordinate Systems Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 17 Notes These notes correspond to Section 10.1 in the text. Three-Dimensional Coordinate Systems Over the course of the next several lectures, we will

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k I.f Tangent Planes and Normal Lines Again we begin by: Recall: (1) Given two vectors A = a 1 i + a 2 j + a 3 k, B = b 1 i + b 2 j + b 3 k then A B is a vector perpendicular to both A and B. Then length

More information

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Introduction to PDEs: Notation, Terminology and Key Concepts

Introduction to PDEs: Notation, Terminology and Key Concepts Chapter 1 Introduction to PDEs: Notation, Terminology and Key Concepts 1.1 Review 1.1.1 Goal The purpose of this section is to briefly review notation as well as basic concepts from calculus. We will also

More information

TO DUY ANH SHIP CALCULATION

TO DUY ANH SHIP CALCULATION TO DUY ANH SHIP CALCULATION Ship Calculattion (1)-Space Cuvers 3D-curves play an important role in the engineering, design and manufature in Shipbuilding. Prior of the development of mathematical and computer

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

EM225 Projective Geometry Part 2

EM225 Projective Geometry Part 2 EM225 Projective Geometry Part 2 eview In projective geometry, we regard figures as being the same if they can be made to appear the same as in the diagram below. In projective geometry: a projective point

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 55 Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from the

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Directional Derivatives and the Gradient Vector Philippe B Laval KSU April 7, 2012 Philippe B Laval (KSU) Functions of Several Variables April 7, 2012 1 / 19 Introduction

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information