Math 2331 Linear Algebra

Size: px
Start display at page:

Download "Math 2331 Linear Algebra"

Transcription

1 4.2 Null Spaces, Column Spaces, & Linear Transformations Math 233 Linear Algebra 4.2 Null Spaces, Column Spaces, & Linear Transformations Jiwen He Department of Mathematics, University of Houston math.uh.edu/ jiwenhe/math233 Jiwen He, University of Houston Math 233, Linear Algebra / 9

2 4.2 Null Spaces, Column Spaces, & Linear Transformations Null Spaces Definition Theorem Examples Column Spaces Definition Theorem Examples The Contrast Between Nul A and Col A Null Spaces & Column Spaces: Review Null Spaces & Column Spaces: Examples Kernal and Range of a Linear Transformation Jiwen He, University of Houston Math 233, Linear Algebra 2 / 9

3 Null Space Null Space The null space of an m n matrix A, written as Nul A, is the set of all solutions to the homogeneous equation Ax =. Nul A = {x : x is in R n and Ax = } (set notation) Theorem (2) The null space of an m n matrix A is a subspace of R n. Equivalently, the set of all solutions to a system Ax = of m homogeneous linear equations in n unknowns is a subspace of R n. Proof: Nul A is a subset of R n since A has n columns. Must verify properties a, b and c of the definition of a subspace. Property (a) Show that is in Nul A. Since, is in. Jiwen He, University of Houston Math 233, Linear Algebra 3 / 9

4 Null Space (cont.) Property (b) If u and v are in Nul A, show that u + v is in Nul A. Since u and v are in Nul A, Therefore and. A (u + v) = + = + =. Property (c) If u is in Nul A and c is a scalar, show that cu in Nul A: A (cu) = A (u) = c =. Since properties a, b and c hold, A is a subspace of R n. Solving Ax = yields an explicit description of Nul A. Jiwen He, University of Houston Math 233, Linear Algebra 4 / 9

5 Null Space: Example Example Find an explicit description of Nul A where [ ] A = Solution: Row reduce augmented matrix corresponding to Ax = : [ x x 2 x 3 x 4 x 5 = ] [ x 2 3x 4 33x 5 x 2 6x 4 + 5x 5 x 4 x 5 ] Jiwen He, University of Houston Math 233, Linear Algebra 5 / 9

6 Null Space: Example (cont.) Then = x x x 5 Nul A =span{u, v, w} 33 5 Jiwen He, University of Houston Math 233, Linear Algebra 6 / 9

7 Null Space: Observations Observations:. Spanning set of Nul A, found using the method in the last example, is automatically linearly independent: = c 2 + c c c = c 2 = c 3 = = 2. If Nul A {}, the the number of vectors in the spanning set for Nul A equals the number of free variables in Ax =. Jiwen He, University of Houston Math 233, Linear Algebra 7 / 9

8 Column Space Column Space The column space of an m n matrix A (Col A) is the set of all linear combinations of the columns of A. If A = [a... a n ], then Theorem (3) Col A =Span{a,..., a n } The column space of an m n matrix A is a subspace of R m. Why? (Theorem, page 94) Recall that if Ax = b, then b is a linear combination of the columns of A. Therefore Col A = {b : b =Ax for some x in R n } Jiwen He, University of Houston Math 233, Linear Algebra 8 / 9

9 Column Space: Example Example Find a matrix A such that W = Col A where x 2y W = 3y : x, y in R. x + y Solution: x 2y 3y x + y = = x + y [ x y ] 2 3 Jiwen He, University of Houston Math 233, Linear Algebra 9 / 9

10 Column Space: Example (cont.) Therefore A =. By Theorem 4 (Chapter ), The column space of an m n matrix A is all of R m if and only if the equation Ax = b has a solution for each b in R m. Jiwen He, University of Houston Math 233, Linear Algebra / 9

11 The Contrast Between Nul A and Col A Example Let A = (a) The column space of A is a subspace of R k where k =. (b) The null space of A is a subspace of R k where k =. (c) Find a nonzero vector in Col A. possibilities.) (There are infinitely many 3 7 = Jiwen He, University of Houston Math 233, Linear Algebra / 9

12 The Contrast Between Nul A and Col A (cont.) Example (cont.) (d) Find a nonzero vector in Nul A. solution row reduces to Solve Ax = and pick one 2 x = 2x 2 x 2 is free x 3 = = let x 2 = = x = x x 2 x 3 = Contrast Between Nul A and Col A where A is m n (see page 24) Jiwen He, University of Houston Math 233, Linear Algebra 2 / 9

13 Null Spaces & Column Spaces: Review Review A subspace of a vector space V is a subset H of V that has three properties: a. The zero vector of V is in H. b. For each u and v in H, u + v is in H. (In this case we say H is closed under vector addition.) c. For each u in H and each scalar c, cu is in H. (In this case we say H is closed under scalar multiplication.) If the subset H satisfies these three properties, then H itself is a vector space. Jiwen He, University of Houston Math 233, Linear Algebra 3 / 9

14 Null Spaces & Column Spaces: Review (cont.) Theorem (, 2 and 3 in Sections 4. & 4.2) If v,..., v p are in a vector space V, then Span{v,..., v p } is a subspace of V. The null space of an m n matrix A is a subspace of R n. The column space of an m n matrix A is a subspace of R m. Jiwen He, University of Houston Math 233, Linear Algebra 4 / 9

15 Null Spaces & Column Spaces: Examples Example Determine whether each of the following sets is a vector space or provide a counterexample. {[ ] } x (a) H = : x y = 4 y Solution: Since = is not in H, H is not a vector space. Jiwen He, University of Houston Math 233, Linear Algebra 5 / 9

16 Null Spaces & Column Spaces: Examples (cont.) Example (b) V = x y z : x y = y + z = Solution: Rewrite x y = as y + z = x y z [ So V =Nul A where A = subspace of R 2, V is a vector space. = [ ] ]. Since Nul A is a Jiwen He, University of Houston Math 233, Linear Algebra 6 / 9

17 Null Spaces & Column Spaces: Examples (cont.) Example (c) S = x + y 2x 3y 3y : x, y, z are real One Solution: Since x + y 2x 3y 3y = x 2 + y 3 3, S = span 2, 3 3 therefore S is a vector space by Theorem. ; Jiwen He, University of Houston Math 233, Linear Algebra 7 / 9

18 Null Spaces & Column Spaces: Examples (cont.) Another Solution: Since x + y 2x 3y = x 3y 2 + y S =Col A where A = therefore S is a vector space, since a column space is a vector space., ; Jiwen He, University of Houston Math 233, Linear Algebra 8 / 9

19 Kernal and Range of a Linear Transformation Linear Transformation A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector x in V a unique vector T (x) in W, such that. T (u + v) = T (u) +T (v) for all u, v in V ; 2. T (cu) =ct (u) for all u in V and all scalars c. Kernal and Range The kernel (or null space) of T is the set of all vectors u in V such that T (u) =. The range of T is the set of all vectors in W of the form T (u) where u is in V. So if T (x) =Ax, col A =range of T. Jiwen He, University of Houston Math 233, Linear Algebra 9 / 9

Lecture 13. Math 22 Summer 2017 July 17, 2017

Lecture 13. Math 22 Summer 2017 July 17, 2017 Lecture 13 Math 22 Summer 2017 July 17, 2017 Reminders/Announcements Midterm 1 Wednesday, July 19, Kemeny 008, 6pm-8pm Please respond to email if you have a conflict with this time! Kate is moving her

More information

Column and row space of a matrix

Column and row space of a matrix Column and row space of a matrix Recall that we can consider matrices as concatenation of rows or columns. c c 2 c 3 A = r r 2 r 3 a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 The space spanned by columns of

More information

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang Maths for Signals and Systems Linear Algebra in Engineering Some problems by Gilbert Strang Problems. Consider u, v, w to be non-zero vectors in R 7. These vectors span a vector space. What are the possible

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.2 Row Reduction and Echelon Forms ECHELON FORM A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero

More information

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0.

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0. ) Give a set-theoretic description of the given points as a subset W of R. a) The points on the plane x + y z =. x Solution: W = {x: x = [ x ], x + x x = }. x b) The points in the yz-plane. Solution: W

More information

CHAPTER 5 SYSTEMS OF EQUATIONS. x y

CHAPTER 5 SYSTEMS OF EQUATIONS. x y page 1 of Section 5.1 CHAPTER 5 SYSTEMS OF EQUATIONS SECTION 5.1 GAUSSIAN ELIMINATION matrix form of a system of equations The system 2x + 3y + 4z 1 5x + y + 7z 2 can be written as Ax where b 2 3 4 A [

More information

Lecture 19. Section 5.6 Indefinite Integrals Section 5.7 The u-substitution. Jiwen He. Department of Mathematics, University of Houston

Lecture 19. Section 5.6 Indefinite Integrals Section 5.7 The u-substitution. Jiwen He. Department of Mathematics, University of Houston Lecture 19 Section 5.6 Indefinite Integrals Section 5.7 The u-substitution Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math1431 November 11, 2008

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Math 355: Linear Algebra: Midterm 1 Colin Carroll June 25, 2011

Math 355: Linear Algebra: Midterm 1 Colin Carroll June 25, 2011 Rice University, Summer 20 Math 355: Linear Algebra: Midterm Colin Carroll June 25, 20 I have adhered to the Rice honor code in completing this test. Signature: Name: Date: Time: Please read the following

More information

Math 2B Linear Algebra Test 2 S13 Name Write all responses on separate paper. Show your work for credit.

Math 2B Linear Algebra Test 2 S13 Name Write all responses on separate paper. Show your work for credit. Math 2B Linear Algebra Test 2 S3 Name Write all responses on separate paper. Show your work for credit.. Construct a matrix whose a. null space consists of all combinations of (,3,3,) and (,2,,). b. Left

More information

Introduction to Mathematical Programming IE406. Lecture 4. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 4. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 4 Dr. Ted Ralphs IE406 Lecture 4 1 Reading for This Lecture Bertsimas 2.2-2.4 IE406 Lecture 4 2 The Two Crude Petroleum Example Revisited Recall the

More information

ft-uiowa-math2550 Assignment HW8fall14 due 10/23/2014 at 11:59pm CDT 3. (1 pt) local/library/ui/fall14/hw8 3.pg Given the matrix

ft-uiowa-math2550 Assignment HW8fall14 due 10/23/2014 at 11:59pm CDT 3. (1 pt) local/library/ui/fall14/hw8 3.pg Given the matrix me me Assignment HW8fall4 due /23/24 at :59pm CDT ft-uiowa-math255 466666666666667 2 Calculate the determinant of 6 3-4 -3 D - E F 2 I 4 J 5 C 2 ( pt) local/library/ui/fall4/hw8 2pg Evaluate the following

More information

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where LP Geometry: outline I Polyhedra I Extreme points, vertices, basic feasible solutions I Degeneracy I Existence of extreme points I Optimality of extreme points IOE 610: LP II, Fall 2013 Geometry of Linear

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

2. Use elementary row operations to rewrite the augmented matrix in a simpler form (i.e., one whose solutions are easy to find).

2. Use elementary row operations to rewrite the augmented matrix in a simpler form (i.e., one whose solutions are easy to find). Section. Gaussian Elimination Our main focus in this section is on a detailed discussion of a method for solving systems of equations. In the last section, we saw that the general procedure for solving

More information

Solving Systems Using Row Operations 1 Name

Solving Systems Using Row Operations 1 Name The three usual methods of solving a system of equations are graphing, elimination, and substitution. While these methods are excellent, they can be difficult to use when dealing with three or more variables.

More information

Math 308 Autumn 2016 MIDTERM /18/2016

Math 308 Autumn 2016 MIDTERM /18/2016 Name: Math 38 Autumn 26 MIDTERM - 2 /8/26 Instructions: The exam is 9 pages long, including this title page. The number of points each problem is worth is listed after the problem number. The exam totals

More information

Section 3.1 Gaussian Elimination Method (GEM) Key terms

Section 3.1 Gaussian Elimination Method (GEM) Key terms Section 3.1 Gaussian Elimination Method (GEM) Key terms Rectangular systems Consistent system & Inconsistent systems Rank Types of solution sets RREF Upper triangular form & back substitution Nonsingular

More information

Shifting Network Tomography Toward A Practical Goal

Shifting Network Tomography Toward A Practical Goal École Polytechnique Fédérale de Lausanne Shifting Network Tomography Toward A Practical Goal Denisa Ghita, Can Karakus, Katerina Argyraki, Patrick Thiran CoNext 2011, Tokyo, Japan 1 The ISP Curious About

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

Functions 3.6. Fall Math (Math 1010) M / 13

Functions 3.6. Fall Math (Math 1010) M / 13 Functions 3.6 Fall 2013 - Math 1010 (Math 1010) M 1010 3.6 1 / 13 Roadmap 3.6 - Functions: Relations, Functions 3.6 - Evaluating Functions, Finding Domains and Ranges (Math 1010) M 1010 3.6 2 / 13 3.6

More information

ARTIN S THEOREM: FOR THE STUDENT SEMINAR

ARTIN S THEOREM: FOR THE STUDENT SEMINAR ARTIN S THEOREM: FOR THE STUDENT SEMINAR VIPUL NAIK Abstract. This is a write-up of Artin s theorem for the student seminar in the course on Representation Theory of Finite Groups. Much of the material

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Projective 3D Geometry (Back to Chapter 2) Lecture 6 2 Singular Value Decomposition Given a

More information

Solving Systems of Equations Using Matrices With the TI-83 or TI-84

Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Dimensions of a matrix: The dimensions of a matrix are the number of rows by the number of columns in the matrix. rows x columns *rows

More information

Matlab and Coordinate Systems

Matlab and Coordinate Systems Matlab and Coordinate Systems Math 45 Linear Algebra David Arnold David-Arnold@Eureka.redwoods.cc.ca.us Abstract In this exercise we will introduce the concept of a coordinate system for a vector space.

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Introduction to Vector Space Models

Introduction to Vector Space Models Vector Span, Subspaces, and Basis Vectors Linear Combinations (Review) A linear combination is constructed from a set of terms v, v 2,..., v p by multiplying each term by a constant and adding the result:

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.2 Direct Proof and Counterexample II: Rational Numbers Copyright Cengage Learning. All

More information

On Unbounded Tolerable Solution Sets

On Unbounded Tolerable Solution Sets Reliable Computing (2005) 11: 425 432 DOI: 10.1007/s11155-005-0049-9 c Springer 2005 On Unbounded Tolerable Solution Sets IRENE A. SHARAYA Institute of Computational Technologies, 6, Acad. Lavrentiev av.,

More information

A Poorly Conditioned System. Matrix Form

A Poorly Conditioned System. Matrix Form Possibilities for Linear Systems of Equations A Poorly Conditioned System A Poorly Conditioned System Results No solution (inconsistent) Unique solution (consistent) Infinite number of solutions (consistent)

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Matlab and Coordinate Systems

Matlab and Coordinate Systems Math 45 Linear Algebra David Arnold David-Arnold@Eureka.redwoods.cc.ca.us Abstract In this exercise we will introduce the concept of a coordinate system for a vector space. The map from the vector space

More information

Orthogonal complements

Orthogonal complements Roberto s Notes on Linear Algebra Chapter 9: Orthogonality Section 3 Orthogonal complements What you need to know already: What orthogonal and orthonormal bases are. What you can learn here: How we can

More information

Summer School: Mathematical Methods in Robotics

Summer School: Mathematical Methods in Robotics Summer School: Mathematical Methods in Robotics Part IV: Projective Geometry Harald Löwe TU Braunschweig, Institute Computational Mathematics 2009/07/16 Löwe (TU Braunschweig) Math. robotics 2009/07/16

More information

Error-Detecting and Error-Correcting Codes

Error-Detecting and Error-Correcting Codes Error-Detecting and Error-Correcting Codes In this set of exercises, a method for detecting and correcting errors made in the transmission of encoded messages is constructed. It will turn out that abstract

More information

Vector Algebra Transformations. Lecture 4

Vector Algebra Transformations. Lecture 4 Vector Algebra Transformations Lecture 4 Cornell CS4620 Fall 2008 Lecture 4 2008 Steve Marschner 1 Geometry A part of mathematics concerned with questions of size, shape, and relative positions of figures

More information

A-SSE.1.1, A-SSE.1.2-

A-SSE.1.1, A-SSE.1.2- Putnam County Schools Curriculum Map Algebra 1 2016-2017 Module: 4 Quadratic and Exponential Functions Instructional Window: January 9-February 17 Assessment Window: February 20 March 3 MAFS Standards

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 5B: Computer Vision II Lecturer: Ben Ochoa Scribes: San Nguyen, Ben Reineman, Arturo Flores LECTURE Guest Lecture.. Brief bio Ben Ochoa received the B.S., M.S., and Ph.D. degrees in electrical engineering

More information

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer:

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer: Understand the relationships between statements that are equivalent to the invertibility of a square matrix (Theorem 1.5.3). Use the inversion algorithm to find the inverse of an invertible matrix. Express

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

Precalculus Notes: Unit 7 Systems of Equations and Matrices

Precalculus Notes: Unit 7 Systems of Equations and Matrices Date: 7.1, 7. Solving Systems of Equations: Graphing, Substitution, Elimination Syllabus Objectives: 8.1 The student will solve a given system of equations or system of inequalities. Solution of a System

More information

Mutation-linear algebra and universal geometric cluster algebras

Mutation-linear algebra and universal geometric cluster algebras Mutation-linear algebra and universal geometric cluster algebras Nathan Reading NC State University Mutation-linear ( µ-linear ) algebra Universal geometric cluster algebras The mutation fan Universal

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

CS6015 / LARP ACK : Linear Algebra and Its Applications - Gilbert Strang

CS6015 / LARP ACK : Linear Algebra and Its Applications - Gilbert Strang Solving and CS6015 / LARP 2018 ACK : Linear Algebra and Its Applications - Gilbert Strang Introduction Chapter 1 concentrated on square invertible matrices. There was one solution to Ax = b and it was

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Extended and generalized weight enumerators

Extended and generalized weight enumerators Extended and generalized weight enumerators Relinde Jurrius Ruud Pellikaan Eindhoven University of Technology, The Netherlands International Workshop on Coding and Cryptography, 2009 1/23 Outline Previous

More information

Describe the two most important ways in which subspaces of F D arise. (These ways were given as the motivation for looking at subspaces.

Describe the two most important ways in which subspaces of F D arise. (These ways were given as the motivation for looking at subspaces. Quiz Describe the two most important ways in which subspaces of F D arise. (These ways were given as the motivation for looking at subspaces.) What are the two subspaces associated with a matrix? Describe

More information

MATH 2000 Gauss-Jordan Elimination and the TI-83 [Underlined bold terms are defined in the glossary]

MATH 2000 Gauss-Jordan Elimination and the TI-83 [Underlined bold terms are defined in the glossary] x y z 0 0 3 4 5 MATH 000 Gauss-Jordan Elimination and the TI-3 [Underlined bold terms are defined in the glossary] 3z = A linear system such as x + 4y z = x + 5y z = can be solved algebraically using ordinary

More information

Topological properties of convex sets

Topological properties of convex sets Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 5: Topological properties of convex sets 5.1 Interior and closure of convex sets Let

More information

Lesson 17. Geometry and Algebra of Corner Points

Lesson 17. Geometry and Algebra of Corner Points SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

More information

Select the Points You ll Use. Tech Assignment: Find a Quadratic Function for College Costs

Select the Points You ll Use. Tech Assignment: Find a Quadratic Function for College Costs In this technology assignment, you will find a quadratic function that passes through three of the points on each of the scatter plots you created in an earlier technology assignment. You will need the

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

Chapter 1: Number and Operations

Chapter 1: Number and Operations Chapter 1: Number and Operations 1.1 Order of operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply

More information

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C).

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C). 4. Planes and distances How do we represent a plane Π in R 3? In fact the best way to specify a plane is to give a normal vector n to the plane and a point P 0 on the plane. Then if we are given any point

More information

LAB 2: Linear Equations and Matrix Algebra. Preliminaries

LAB 2: Linear Equations and Matrix Algebra. Preliminaries Math 250C, Section C2 Hard copy submission Matlab # 2 1 Revised 07/13/2016 LAB 2: Linear Equations and Matrix Algebra In this lab you will use Matlab to study the following topics: Solving a system of

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

For example, the system. 22 may be represented by the augmented matrix

For example, the system. 22 may be represented by the augmented matrix Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural of matrix) may be

More information

Geometric Algebra for Computer Graphics

Geometric Algebra for Computer Graphics John Vince Geometric Algebra for Computer Graphics 4u Springer Contents Preface vii 1 Introduction 1 1.1 Aims and objectives of this book 1 1.2 Mathematics for CGI software 1 1.3 The book's structure 2

More information

Graphs of Equations. MATH 160, Precalculus. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Graphs of Equations

Graphs of Equations. MATH 160, Precalculus. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Graphs of Equations Graphs of Equations MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: sketch the graphs of equations, find the x- and y-intercepts

More information

Unit II-2. Orthogonal projection. Orthogonal projection. Orthogonal projection. the scalar is called the component of u along v. two vectors u,v are

Unit II-2. Orthogonal projection. Orthogonal projection. Orthogonal projection. the scalar is called the component of u along v. two vectors u,v are Orthogonal projection Unit II-2 Orthogonal projection the scalar is called the component of u along v in real ips this may be a positive or negative value in complex ips this may have any complex value

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES RACHEL CARANDANG Abstract. This paper provides an overview of the homology groups of a 2- dimensional complex. It then demonstrates a proof of the Invariance

More information

Topic 1.6: Lines and Planes

Topic 1.6: Lines and Planes Math 275 Notes (Ultman) Topic 1.6: Lines and Planes Textbook Section: 12.5 From the Toolbox (what you need from previous classes): Plotting points, sketching vectors. Be able to find the component form

More information

Ma/CS 6b Class 13: Counting Spanning Trees

Ma/CS 6b Class 13: Counting Spanning Trees Ma/CS 6b Class 13: Counting Spanning Trees By Adam Sheffer Reminder: Spanning Trees A spanning tree is a tree that contains all of the vertices of the graph. A graph can contain many distinct spanning

More information

Unit 2: Function Transformation Chapter 1. Basic Transformations Reflections Inverses

Unit 2: Function Transformation Chapter 1. Basic Transformations Reflections Inverses Unit 2: Function Transformation Chapter 1 Basic Transformations Reflections Inverses Section 1.1: Horizontal and Vertical Transformations A transformation of a function alters the equation and any combination

More information

Monday, 12 November 12. Matrices

Monday, 12 November 12. Matrices Matrices Matrices Matrices are convenient way of storing multiple quantities or functions They are stored in a table like structure where each element will contain a numeric value that can be the result

More information

DRAFT: Mathematical Background for Three-Dimensional Computer Graphics. Jonathan R. Senning Gordon College

DRAFT: Mathematical Background for Three-Dimensional Computer Graphics. Jonathan R. Senning Gordon College DRAFT: Mathematical Background for Three-Dimensional Computer Graphics Jonathan R. Senning Gordon College September 2006 ii Contents Introduction 2 Affine Geometry 3 2. Affine Space...................................

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Interpolation & Polynomial Approximation. Cubic Spline Interpolation II

Interpolation & Polynomial Approximation. Cubic Spline Interpolation II Interpolation & Polynomial Approximation Cubic Spline Interpolation II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

On the maximum rank of completions of entry pattern matrices

On the maximum rank of completions of entry pattern matrices Linear Algebra and its Applications 525 (2017) 1 19 Contents lists available at ScienceDirect Linear Algebra and its Applications wwwelseviercom/locate/laa On the maximum rank of completions of entry pattern

More information

MH2800/MAS183 - Linear Algebra and Multivariable Calculus

MH2800/MAS183 - Linear Algebra and Multivariable Calculus MH28/MAS83 - Linear Algebra and Multivariable Calculus SEMESTER II EXAMINATION 2-22 Solved by Tao Biaoshuai Email: taob@e.ntu.edu.sg QESTION Let A 2 2 2. Solve the homogeneous linear system Ax and write

More information

Transformations with Matrices Moved by Matrices

Transformations with Matrices Moved by Matrices Transformations with Matrices SUGGESTED LEARNING STRATEGIES: Interactive Word Wall, Marking the Text, Summarize/Paraphrase/Retell, Think/Pair/Share, Create Representations ACTIVITY 5.7 Instead of using

More information

A Survey of Mathematics with Applications 8 th Edition, 2009

A Survey of Mathematics with Applications 8 th Edition, 2009 A Correlation of A Survey of Mathematics with Applications 8 th Edition, 2009 South Carolina Discrete Mathematics Sample Course Outline including Alternate Topics and Related Objectives INTRODUCTION This

More information

Numerical Methods 5633

Numerical Methods 5633 Numerical Methods 5633 Lecture 7 Marina Krstic Marinkovic mmarina@maths.tcd.ie School of Mathematics Trinity College Dublin Marina Krstic Marinkovic 1 / 10 5633-Numerical Methods Organisational To appear

More information

Lecture 7: Support Vector Machine

Lecture 7: Support Vector Machine Lecture 7: Support Vector Machine Hien Van Nguyen University of Houston 9/28/2017 Separating hyperplane Red and green dots can be separated by a separating hyperplane Two classes are separable, i.e., each

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

Array Accessing and Strings ENGR 1181 MATLAB 3

Array Accessing and Strings ENGR 1181 MATLAB 3 Array Accessing and Strings ENGR 1181 MATLAB 3 Array Accessing In The Real World Recall from the previously class that seismic data is important in structural design for civil engineers. Accessing data

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Independent systems consist of x

Independent systems consist of x 5.1 Simultaneous Linear Equations In consistent equations, *Find the solution to each system by graphing. 1. y Independent systems consist of x Three Cases: A. consistent and independent 2. y B. inconsistent

More information

EXTENSION. a 1 b 1 c 1 d 1. Rows l a 2 b 2 c 2 d 2. a 3 x b 3 y c 3 z d 3. This system can be written in an abbreviated form as

EXTENSION. a 1 b 1 c 1 d 1. Rows l a 2 b 2 c 2 d 2. a 3 x b 3 y c 3 z d 3. This system can be written in an abbreviated form as EXTENSION Using Matrix Row Operations to Solve Systems The elimination method used to solve systems introduced in the previous section can be streamlined into a systematic method by using matrices (singular:

More information

Lecture 16 October 23, 2014

Lecture 16 October 23, 2014 CS 224: Advanced Algorithms Fall 2014 Prof. Jelani Nelson Lecture 16 October 23, 2014 Scribe: Colin Lu 1 Overview In the last lecture we explored the simplex algorithm for solving linear programs. While

More information

MATH 567: Mathematical Techniques in Data Science Support vector machines

MATH 567: Mathematical Techniques in Data Science Support vector machines 1/8 MATH 567: Mathematical Techniques in Data Science Support vector machines Dominique Guillot Departments of Mathematical Sciences University of Delaware March 13, 2016 Hyperplanes 2/8 Recall: A hyperplane

More information

Wits Maths Connect Secondary Project Card-sorting Activities

Wits Maths Connect Secondary Project Card-sorting Activities Project Card-sorting Activities This pack consists of card-sorting activities which focus on working with different representations. Activities and focus on points while Activity focuses on the linear

More information

1.1 - Introduction to Sets

1.1 - Introduction to Sets 1.1 - Introduction to Sets Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University January 18, 2018 Blake Boudreaux (Texas A&M University) 1.1 - Introduction to Sets January 18, 2018

More information

arxiv: v1 [math.co] 25 Sep 2015

arxiv: v1 [math.co] 25 Sep 2015 A BASIS FOR SLICING BIRKHOFF POLYTOPES TREVOR GLYNN arxiv:1509.07597v1 [math.co] 25 Sep 2015 Abstract. We present a change of basis that may allow more efficient calculation of the volumes of Birkhoff

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

Linear Models. Lecture Outline: Numeric Prediction: Linear Regression. Linear Classification. The Perceptron. Support Vector Machines

Linear Models. Lecture Outline: Numeric Prediction: Linear Regression. Linear Classification. The Perceptron. Support Vector Machines Linear Models Lecture Outline: Numeric Prediction: Linear Regression Linear Classification The Perceptron Support Vector Machines Reading: Chapter 4.6 Witten and Frank, 2nd ed. Chapter 4 of Mitchell Solving

More information

Division of the Humanities and Social Sciences. Convex Analysis and Economic Theory Winter Separation theorems

Division of the Humanities and Social Sciences. Convex Analysis and Economic Theory Winter Separation theorems Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 8: Separation theorems 8.1 Hyperplanes and half spaces Recall that a hyperplane in

More information

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs in MATLAB NOTE: For your

More information

8.NS.1 8.NS.2. 8.EE.7.a 8.EE.4 8.EE.5 8.EE.6

8.NS.1 8.NS.2. 8.EE.7.a 8.EE.4 8.EE.5 8.EE.6 Standard 8.NS.1 8.NS.2 8.EE.1 8.EE.2 8.EE.3 8.EE.4 8.EE.5 8.EE.6 8.EE.7 8.EE.7.a Jackson County Core Curriculum Collaborative (JC4) 8th Grade Math Learning Targets in Student Friendly Language I can identify

More information

Visualizing Quaternions

Visualizing Quaternions Visualizing Quaternions Andrew J. Hanson Computer Science Department Indiana University Siggraph 1 Tutorial 1 GRAND PLAN I: Fundamentals of Quaternions II: Visualizing Quaternion Geometry III: Quaternion

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

Open and Closed Sets

Open and Closed Sets Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

More information

Linear Modeling Elementary Education 4

Linear Modeling Elementary Education 4 Linear Modeling Elementary Education 4 Mathematical modeling is simply the act of building a model (usually in the form of graphs) which provides a picture of a numerical situation. Linear Modeling is

More information