1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0.

Size: px
Start display at page:

Download "1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0."

Transcription

1 ) Give a set-theoretic description of the given points as a subset W of R. a) The points on the plane x + y z =. x Solution: W = {x: x = [ x ], x + x x = }. x b) The points in the yz-plane. Solution: W = {x: x = [ x ], x, x R}. x ) In each case, determine whether W is a subspace of R. a) W = {x: x = x } i. θ W since = (). ii. Let u, v W, where u = [ u u ], v = [ v v ]. Then u + v = [ u + v u + v ] where u = u and v = v. Thus, u + v = u + v = (u + v ). So, the first entry in u + v is twice the second, and therefore u + v W. iii. Finally, au = a [ u u ] = [ au au ], where au = a(u ) = (au ). The first entry in au is twice the second, so therefore au W. Since θ W, u + v W, and au W, we can say that W is a subspace of R. b) W = {x: x + x = }. W is not a subspace since θ W ( + ). ) In each case, determine whether W is a subspace of R. a) W = {x: x = x x } i. θ W since = (). u v u + v ii. Let u, v W, where u = [ u ], v = [ v ]. Then u + v = [ u + v ] where u = u u u v u + v and v = v v. Thus, u + v = u u + v v = (u + v ) (u + v ). So, the third entry in u + v is twice the first minus the second. Therefore, u + v W. u au iii. Finally, au = a [ u ] = [ au ], where au = a(u u ) = (au ) au. The third u au entry in au is twice the first minus the second, so therefore au W. Since θ W, u + v W, and au W, we can say that W is a subspace of R.

2 b) W = {x: x x = x }. Solution: W is not a subspace. Consider u = [ ] and v = [ ]. Clearly, both u and v are elements 4 of W, however u + v = [ ] W since ()() 5. 5 c) W = {x: x = x, x = x } i. θ W since = () and =. u v u + v ii. Let u, v W, where u = [ u ], v = [ v ]. Then u + v = [ u + v ] where u = u, u v u + v u = u, and v = v, v = v. Thus, u + v = u + v = (u + v ), and u + v = u v = (u + v ). So, the first entry in u + v is twice the third, and the second entry is the negative of the third. Therefore, u + v W. u au iii. Finally, au = a [ u ] = [ au ], where au = a(u ) = (au ) and au = a( u ) = u au au. The first entry in au is twice the third, and the second entry is the negative of the third. Therefore au W. Since θ W, u + v W, and au W, we can say that W is a subspace of R. 4) Let U and V be subspaces of R n. Prove that the intersection, U V, is also a subspace of R n. Solution: U V = {x: x U and x V}. Let x, y U V. Then x, y U and x, y V. Now, since U and V are subspaces, x + y U and x + y V. Thus, x + y U V. Further, ax U and ax V (again since U and V are subspaces), so ax U V. Thus, U V is a subspace. 5) Given w = [ ], x = [ ], y = [ ]. Let S = {w, x, y}. Give an algebraic specification for Sp(S). Solution: The span of S is the set of all linear combinations of the vectors in S. To find an algebraic specification for Sp(S), we must solve c w + c x + c y = b. This is the same as c b solving Ac = b, where A = [w, x, y] and c = [ c ]. This gives [ c b ], which reduces b b to [ b ]. This matrix is consistent for all b R, thus Sp(S) = R. (b + b )

3 6) Give an algebraic specification for the null space and the range of the given matrix A. Solution ( st matrix): A = [ ]. For the null space, solve Ax = θ. This gives [ 6 4 ], x which means x = x and x =. Thus, N(A) = {x: x = [ x ] = x [ ], x R}. For the range, solve Ax = b. That is, reduce the matrix [ b 6 4 b ] to get [ 4b b b + b ]. Since this matrix is consistent for all b R, we can conclude that R(A) = R. For the range, you can also notice that A is a matrix, so n =. Also, notice that Null(A) = since there is only basis vector (for example, [ ] T ) in N(A). Further, since Null(A) + Rank(A) =, this means that Rank(A) =. Any vector b R(A) must be an element of R, and since Rank(A) =, we can conclude that R(A) = R. nd matrix: A = [ 7]. For the null space, solve Ax = θ. This gives [ ], which means 5 x = x =. Only θ = [ ] N(A), so N(A) = {θ}. For the range, solve Ax = b. That is, b b reduce the matrix [ 7 b ] to get [ b b ]. This matrix is only consistent if 5 b b b + b b b + b =. Thus, R(A) = {x: x = [ ], x x + x = }. x x x rd matrix: A = [ 5 4]. For the null space, solve Ax = θ. This gives [ ], which 4 means x = x = x =. Only θ = [ ] N(A), so N(A) = {θ}. Here, we have a matrix, so n =. Since Null(A) =, this means Rank(A) =. Any vector b R(A) must be an element of R, so we can conclude that R(A) = R. 7) This question is the same as Problem from section.4. You can find the detailed solution here.

4 8) For the given set S: a) Find a subset W of S that is a basis for Sp(S) using the first technique to find a basis. b) Find a basis for Sp(S) using the second technique to find a basis. Solution: For part a), the first technique to find a basis requires that we reduce the matrix [A θ], where A is the matrix with the four given vectors as its columns. This gives [ ] rref [ ] Since the matrix reduces to [I θ], there are no unconstrained variables and therefore the given set S is linearly independent and is therefore already a basis for Sp(S). For part b), reducing A T will give the identity matrix I (which is its own transpose), so another basis for Sp(S) is W = {e, e, e, e 4 }. 9) Given w = [ ], x = [ ], y = [ ]. Let S = {w, x, y}, determine whether S is a basis for R. Solution: For a matrix A = [w, x, y] and check to see if it is row equivalent to I. If it is, then the vectors in S are linearly independent, and thus for a basis for R (because there are three of them). Reducing the matrix A does indeed give I, so S is a basis for R. ) Find a basis for N(A), R(A), and give the nullity and rank of A. Solution: For the each matrix, we can find a basis for the null space by reducing the matrix [A θ]. For the first matrix, this gives [ ], so x = x x 4 and x = x + x 4. The x x 4 x + x 4 null space is N(A) = {x: x = [ x ] = x [ ] + x 4 [ x 4 ], x, x 4 R}. If we let u = [ ] and u = [ ], then a basis for N(A) is {u, u }. For a basis for the range, remember that the range is the same as the span of the vectors that make up the columns of A, so we can find a basis for the range in the same way that we find a basis for the span of a set of vectors. That is, we can either reduce the matrix [A θ] and delete the columns that correspond to unconstrained variables, or we can reduce A T to get a matrix B T and then use the nonzero columns of B for our basis. Since we have already reduced the matrix [A θ], we can see that the variables x and x 4 are unconstrained, so we can delete columns and 4 from the matrix A and

5 get a basis for the range of {[ ], [ 5]}. Since there are two vectors in the basis for the null space and in the basis for the range, this means Rank(A) = Nullity(A) =. For the second matrix, reducing [A θ] gives [I θ]. This means that the equation Ax = θ has only the trivial solution, and therefore N(A) = {θ}, so Nullity(A) =. This means Rank(A) = 4 since A is a 4 4 matrix. Since there are four columns in A, this means that the four vectors that make up the columns of A must span R 4, and therefore form a basis for R(A). ) Let W be a subspace, and let S be a spanning set for W. Find a basis for W, and calculate dim W. Solution: To find a basis, reduce the matrix [A θ], where A is the matrix whose columns are formed by the vectors in S. This gives [I θ], and so the vectors in S are linearly independent and thus form a basis for W. ) Use the Gram-Schmidt process to generate and orthogonal set from the given linearly independent vectors. Solution: For the first set of vectors, u = [ ], u = w u T w u T u u = [ ] [ ] = [ ] u = w u T w u T w u u = [ ] [ ] 6 [ ] = [ ] 6 4 For the second set of vectors, u = [ ], u = w u T w u = [ ] [ ] = [ ], and eliminating fractions gives u = [ ] u = w u T w u T w u u = [ ] [ ] 4 6 [ ] = [ ], or without fractions, u = [ ] ) This is the same as problem 5 on section.6. The solution is here. We covered the problems from section.7 in class today (7/), so see your notes for the solutions to problems,, and 4 from that section.

Math 308 Autumn 2016 MIDTERM /18/2016

Math 308 Autumn 2016 MIDTERM /18/2016 Name: Math 38 Autumn 26 MIDTERM - 2 /8/26 Instructions: The exam is 9 pages long, including this title page. The number of points each problem is worth is listed after the problem number. The exam totals

More information

Column and row space of a matrix

Column and row space of a matrix Column and row space of a matrix Recall that we can consider matrices as concatenation of rows or columns. c c 2 c 3 A = r r 2 r 3 a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 The space spanned by columns of

More information

Math 355: Linear Algebra: Midterm 1 Colin Carroll June 25, 2011

Math 355: Linear Algebra: Midterm 1 Colin Carroll June 25, 2011 Rice University, Summer 20 Math 355: Linear Algebra: Midterm Colin Carroll June 25, 20 I have adhered to the Rice honor code in completing this test. Signature: Name: Date: Time: Please read the following

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review.

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. 1. The intersection of two non-parallel planes is a line. Find the equation of the line. Give

More information

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang Maths for Signals and Systems Linear Algebra in Engineering Some problems by Gilbert Strang Problems. Consider u, v, w to be non-zero vectors in R 7. These vectors span a vector space. What are the possible

More information

Lecture 13. Math 22 Summer 2017 July 17, 2017

Lecture 13. Math 22 Summer 2017 July 17, 2017 Lecture 13 Math 22 Summer 2017 July 17, 2017 Reminders/Announcements Midterm 1 Wednesday, July 19, Kemeny 008, 6pm-8pm Please respond to email if you have a conflict with this time! Kate is moving her

More information

Orthogonal complements

Orthogonal complements Roberto s Notes on Linear Algebra Chapter 9: Orthogonality Section 3 Orthogonal complements What you need to know already: What orthogonal and orthonormal bases are. What you can learn here: How we can

More information

ft-uiowa-math2550 Assignment HW8fall14 due 10/23/2014 at 11:59pm CDT 3. (1 pt) local/library/ui/fall14/hw8 3.pg Given the matrix

ft-uiowa-math2550 Assignment HW8fall14 due 10/23/2014 at 11:59pm CDT 3. (1 pt) local/library/ui/fall14/hw8 3.pg Given the matrix me me Assignment HW8fall4 due /23/24 at :59pm CDT ft-uiowa-math255 466666666666667 2 Calculate the determinant of 6 3-4 -3 D - E F 2 I 4 J 5 C 2 ( pt) local/library/ui/fall4/hw8 2pg Evaluate the following

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

Unit II-2. Orthogonal projection. Orthogonal projection. Orthogonal projection. the scalar is called the component of u along v. two vectors u,v are

Unit II-2. Orthogonal projection. Orthogonal projection. Orthogonal projection. the scalar is called the component of u along v. two vectors u,v are Orthogonal projection Unit II-2 Orthogonal projection the scalar is called the component of u along v in real ips this may be a positive or negative value in complex ips this may have any complex value

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.2 Null Spaces, Column Spaces, & Linear Transformations Math 233 Linear Algebra 4.2 Null Spaces, Column Spaces, & Linear Transformations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu

More information

CHAPTER 5 SYSTEMS OF EQUATIONS. x y

CHAPTER 5 SYSTEMS OF EQUATIONS. x y page 1 of Section 5.1 CHAPTER 5 SYSTEMS OF EQUATIONS SECTION 5.1 GAUSSIAN ELIMINATION matrix form of a system of equations The system 2x + 3y + 4z 1 5x + y + 7z 2 can be written as Ax where b 2 3 4 A [

More information

Math 2B Linear Algebra Test 2 S13 Name Write all responses on separate paper. Show your work for credit.

Math 2B Linear Algebra Test 2 S13 Name Write all responses on separate paper. Show your work for credit. Math 2B Linear Algebra Test 2 S3 Name Write all responses on separate paper. Show your work for credit.. Construct a matrix whose a. null space consists of all combinations of (,3,3,) and (,2,,). b. Left

More information

Vector Calculus: Understanding the Cross Product

Vector Calculus: Understanding the Cross Product University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd year - first semester Date: / 10 / 2016 2016 \ 2017 Vector Calculus: Understanding the Cross

More information

Assignment #6: Subspaces of R n, Bases, Dimension and Rank. Due date: Wednesday, October 26, 2016 (9:10am) Name: Section Number

Assignment #6: Subspaces of R n, Bases, Dimension and Rank. Due date: Wednesday, October 26, 2016 (9:10am) Name: Section Number Assignment #6: Subspaces of R n, Bases, Dimension and Rank Due date: Wednesday, October 26, 206 (9:0am) Name: Section Number Assignment #6: Subspaces of R n, Bases, Dimension and Rank Due date: Wednesday,

More information

LAB 2: Linear Equations and Matrix Algebra. Preliminaries

LAB 2: Linear Equations and Matrix Algebra. Preliminaries Math 250C, Section C2 Hard copy submission Matlab # 2 1 Revised 07/13/2016 LAB 2: Linear Equations and Matrix Algebra In this lab you will use Matlab to study the following topics: Solving a system of

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 5B: Computer Vision II Lecturer: Ben Ochoa Scribes: San Nguyen, Ben Reineman, Arturo Flores LECTURE Guest Lecture.. Brief bio Ben Ochoa received the B.S., M.S., and Ph.D. degrees in electrical engineering

More information

Honors Advanced Math More on Determinants, Transformations and Systems 14 May 2013

Honors Advanced Math More on Determinants, Transformations and Systems 14 May 2013 Honors Advanced Math Name: More on Determinants, Transformations and Sstems 14 Ma 013 Directions: The following problems are designed to help develop connections between determinants, sstems of equations

More information

Equations of planes in

Equations of planes in Roberto s Notes on Linear Algebra Chapter 6: Lines, planes and other straight objects Section Equations of planes in What you need to know already: What vectors and vector operations are. What linear systems

More information

MH2800/MAS183 - Linear Algebra and Multivariable Calculus

MH2800/MAS183 - Linear Algebra and Multivariable Calculus MH28/MAS83 - Linear Algebra and Multivariable Calculus SEMESTER II EXAMINATION 2-22 Solved by Tao Biaoshuai Email: taob@e.ntu.edu.sg QESTION Let A 2 2 2. Solve the homogeneous linear system Ax and write

More information

MTH309 Linear Algebra: Maple Guide

MTH309 Linear Algebra: Maple Guide MTH309 Linear Algebra: Maple Guide Section 1. Row Echelon Form (REF) and Reduced Row Echelon Form (RREF) Example. Calculate the REF and RREF of the matrix Solution. Use the following command to insert

More information

Lecture 3: Convex sets

Lecture 3: Convex sets Lecture 3: Convex sets Rajat Mittal IIT Kanpur We denote the set of real numbers as R. Most of the time we will be working with space R n and its elements will be called vectors. Remember that a subspace

More information

Computer Project. Purpose: To better understand the notion of rank and learn its connection with linear independence.

Computer Project. Purpose: To better understand the notion of rank and learn its connection with linear independence. MA 242 - M. Kon Extra Credit Assignment 3 Due Tuesday, 3/28/17 Computer Project Name Remember - it's never too late to start doing the extra credit computer algebra problem sets! 1. Rank and Linear Independence

More information

CS6015 / LARP ACK : Linear Algebra and Its Applications - Gilbert Strang

CS6015 / LARP ACK : Linear Algebra and Its Applications - Gilbert Strang Solving and CS6015 / LARP 2018 ACK : Linear Algebra and Its Applications - Gilbert Strang Introduction Chapter 1 concentrated on square invertible matrices. There was one solution to Ax = b and it was

More information

Epipolar Geometry and the Essential Matrix

Epipolar Geometry and the Essential Matrix Epipolar Geometry and the Essential Matrix Carlo Tomasi The epipolar geometry of a pair of cameras expresses the fundamental relationship between any two corresponding points in the two image planes, and

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition.

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition. Chapter 3 Quadric hypersurfaces 3.1 Quadric hypersurfaces. 3.1.1 Denition. Denition 1. In an n-dimensional ane space A; given an ane frame fo;! e i g: A quadric hypersurface in A is a set S consisting

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 3: Linear Programming, Continued Prof. John Gunnar Carlsson September 15, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 15, 2010

More information

Solving Systems of Equations Using Matrices With the TI-83 or TI-84

Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Dimensions of a matrix: The dimensions of a matrix are the number of rows by the number of columns in the matrix. rows x columns *rows

More information

The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that A = UΣV T.

The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that A = UΣV T. Section 7.4 Notes (The SVD) The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that Then there are A = UΣV T Specifically: The ordering of

More information

Graphical Solutions (How to solve equations graphically; how to find intersection of two lines)

Graphical Solutions (How to solve equations graphically; how to find intersection of two lines) Graphical Solutions (How to solve equations graphically; how to find intersection of two lines) Dr. Gisela Acosta-Carr. (8-page document) Let us review: Solve the equation 2x + 1 = 7 algebraically. First,

More information

Introduction to Mathematical Programming IE406. Lecture 4. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 4. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 4 Dr. Ted Ralphs IE406 Lecture 4 1 Reading for This Lecture Bertsimas 2.2-2.4 IE406 Lecture 4 2 The Two Crude Petroleum Example Revisited Recall the

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Projective 3D Geometry (Back to Chapter 2) Lecture 6 2 Singular Value Decomposition Given a

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Rectangular Coordinates in Space

Rectangular Coordinates in Space Rectangular Coordinates in Space Philippe B. Laval KSU Today Philippe B. Laval (KSU) Rectangular Coordinates in Space Today 1 / 11 Introduction We quickly review one and two-dimensional spaces and then

More information

MITOCW ocw f99-lec07_300k

MITOCW ocw f99-lec07_300k MITOCW ocw-18.06-f99-lec07_300k OK, here's linear algebra lecture seven. I've been talking about vector spaces and specially the null space of a matrix and the column space of a matrix. What's in those

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES RACHEL CARANDANG Abstract. This paper provides an overview of the homology groups of a 2- dimensional complex. It then demonstrates a proof of the Invariance

More information

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 Name GRAPHICAL REPRESENTATION OF DATA: You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 ) and (x, y ) is x1 x y1 y,.

More information

Computational Optimization. Constrained Optimization

Computational Optimization. Constrained Optimization Computational Optimization Constrained Optimization Easiest Problem Linear equality constraints min f( ) f R s.. t A b A R, b R n m n m Null Space Representation Let * be a feasible point, A*b. Any other

More information

IB Math SL Year 2 Name: Date: 2-1: Laws of Exponents, Equations with Exponents, Exponential Function

IB Math SL Year 2 Name: Date: 2-1: Laws of Exponents, Equations with Exponents, Exponential Function Name: Date: 2-1: Laws of Exponents, Equations with Exponents, Exponential Function Key Notes What do I need to know? Notes to Self 1. Laws of Exponents Definitions for: o Exponent o Power o Base o Radical

More information

Introduction to the TI-83/84 Calculator

Introduction to the TI-83/84 Calculator P a g e 0 0 1 Introduction to the TI-83/84 Calculator Directions: Read each statement or question. Follow the directions each problem gives you. Basic Buttons 1 st Function Keys: Normal buttons 2 nd Function

More information

MITOCW ocw f99-lec12_300k

MITOCW ocw f99-lec12_300k MITOCW ocw-18.06-f99-lec12_300k This is lecture twelve. OK. We've reached twelve lectures. And this one is more than the others about applications of linear algebra. And I'll confess. When I'm giving you

More information

CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR

CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR Leslie Foster Department of Mathematics, San Jose State University October 28, 2009, SIAM LA 09 DEPARTMENT OF MATHEMATICS,

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Contents 20. Trigonometric Formulas, Identities, and Equations

Contents 20. Trigonometric Formulas, Identities, and Equations Contents 20. Trigonometric Formulas, Identities, and Equations 2 20.1 Basic Identities............................... 2 Using Graphs to Help Verify Identities................... 2 Example 20.1................................

More information

LECTURES 3 and 4: Flows and Matchings

LECTURES 3 and 4: Flows and Matchings LECTURES 3 and 4: Flows and Matchings 1 Max Flow MAX FLOW (SP). Instance: Directed graph N = (V,A), two nodes s,t V, and capacities on the arcs c : A R +. A flow is a set of numbers on the arcs such that

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

A Short Introduction to Projective Geometry

A Short Introduction to Projective Geometry A Short Introduction to Projective Geometry Vector Spaces over Finite Fields We are interested only in vector spaces of finite dimension. To avoid a notational difficulty that will become apparent later,

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3: Systems of Equations Mrs. Leahy 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system of equations

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

60 2 Convex sets. {x a T x b} {x ã T x b}

60 2 Convex sets. {x a T x b} {x ã T x b} 60 2 Convex sets Exercises Definition of convexity 21 Let C R n be a convex set, with x 1,, x k C, and let θ 1,, θ k R satisfy θ i 0, θ 1 + + θ k = 1 Show that θ 1x 1 + + θ k x k C (The definition of convexity

More information

AH Matrices.notebook November 28, 2016

AH Matrices.notebook November 28, 2016 Matrices Numbers are put into arrays to help with multiplication, division etc. A Matrix (matrices pl.) is a rectangular array of numbers arranged in rows and columns. Matrices If there are m rows and

More information

Robotics I. March 27, 2018

Robotics I. March 27, 2018 Robotics I March 27, 28 Exercise Consider the 5-dof spatial robot in Fig., having the third and fifth joints of the prismatic type while the others are revolute. z O x Figure : A 5-dof robot, with a RRPRP

More information

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the Review Exercise 1. Determine vector and parametric equations of the plane that contains the points A11, 2, 12, B12, 1, 12, and C13, 1, 42. 2. In question 1, there are a variety of different answers possible,

More information

I can position figures in the coordinate plane for use in coordinate proofs. I can prove geometric concepts by using coordinate proof.

I can position figures in the coordinate plane for use in coordinate proofs. I can prove geometric concepts by using coordinate proof. Page 1 of 14 Attendance Problems. 1. Find the midpoint between (0, x) and (y, z).. One leg of a right triangle has length 1, and the hypotenuse has length 13. What is the length of the other leg? 3. Find

More information

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where LP Geometry: outline I Polyhedra I Extreme points, vertices, basic feasible solutions I Degeneracy I Existence of extreme points I Optimality of extreme points IOE 610: LP II, Fall 2013 Geometry of Linear

More information

Linear Transformations

Linear Transformations Linear Transformations The two basic vector operations are addition and scaling From this perspective, the nicest functions are those which preserve these operations: Def: A linear transformation is a

More information

(1) (2) be the position vector for a generic point. If this point belongs to body 2 (with helical motion) its velocity can be expressed as follows:

(1) (2) be the position vector for a generic point. If this point belongs to body 2 (with helical motion) its velocity can be expressed as follows: The 14th IFToMM World Congress, Taipei, Taiwan, October 25-30, 2015 DOI Number: 10.6567/IFToMM.14TH.WC.OS6.025 A Rolling-Joint Higher-Kinematic Pair for Rotary-Helical Motion Transformation J. Meneses

More information

Euclidean Space. Definition 1 (Euclidean Space) A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,.

Euclidean Space. Definition 1 (Euclidean Space) A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,. Definition 1 () A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,. 1 Inner Product Definition 2 (Inner Product) An inner product, on a real vector space X

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 6 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 19, 2012 Andre Tkacenko

More information

JUST THE MATHS SLIDES NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson JUST THE MATHS SLIDES NUMBER 5.2 GEOMETRY 2 (The straight line) by A.J.Hobson 5.2.1 Preamble 5.2.2 Standard equations of a straight line 5.2.3 Perpendicular straight lines 5.2.4 Change of origin UNIT 5.2

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 26, No. 2, pp. 390 399 c 2004 Society for Industrial and Applied Mathematics HERMITIAN MATRICES, EIGENVALUE MULTIPLICITIES, AND EIGENVECTOR COMPONENTS CHARLES R. JOHNSON

More information

Introduction to Geometric Algebra

Introduction to Geometric Algebra Introduction to Geometric Algebra Lecture 6 Intersection and Union of Subspaces Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Lecture notes available in http://www.ic.uff.br/~laffernandes/teaching/2013.1/topicos_ag

More information

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations CS 445 / 645 Introduction to Computer Graphics Lecture 21 Representing Rotations Parameterizing Rotations Straightforward in 2D A scalar, θ, represents rotation in plane More complicated in 3D Three scalars

More information

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Classwork Exercises Theorem: The graph of a linear equation y = mx + b is a non-vertical line with slope m and passing through (0, b),

More information

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24 Quadric Surfaces Philippe B. Laval KSU Today Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24 Introduction A quadric surface is the graph of a second degree equation in three variables. The general

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

GEOMETRY IN THREE DIMENSIONS

GEOMETRY IN THREE DIMENSIONS 1 CHAPTER 5. GEOMETRY IN THREE DIMENSIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW GEOMETRY IN THREE DIMENSIONS Contents 1 Geometry in R 3 2 1.1 Lines...............................................

More information

Structured System Theory

Structured System Theory Appendix C Structured System Theory Linear systems are often studied from an algebraic perspective, based on the rank of certain matrices. While such tests are easy to derive from the mathematical model,

More information

arxiv: v1 [math.co] 25 Sep 2015

arxiv: v1 [math.co] 25 Sep 2015 A BASIS FOR SLICING BIRKHOFF POLYTOPES TREVOR GLYNN arxiv:1509.07597v1 [math.co] 25 Sep 2015 Abstract. We present a change of basis that may allow more efficient calculation of the volumes of Birkhoff

More information

Computational Optimization. Constrained Optimization Algorithms

Computational Optimization. Constrained Optimization Algorithms Computational Optimization Constrained Optimization Algorithms Same basic algorithms Repeat Determine descent direction Determine step size Take a step Until Optimal But now must consider feasibility,

More information

CURVE SKETCHING EXAM QUESTIONS

CURVE SKETCHING EXAM QUESTIONS CURVE SKETCHING EXAM QUESTIONS Question 1 (**) a) Express f ( x ) in the form ( ) 2 f x = x + 6x + 10, x R. f ( x) = ( x + a) 2 + b, where a and b are integers. b) Describe geometrically the transformations

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 18.06 Linear Algebra, Spring 2005 Please use the following citation format: Gilbert Strang, 18.06 Linear Algebra, Spring 2005. (Massachusetts Institute of Technology:

More information

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial R. STANLEY, HYPERPLANE ARRANGEMENTS LECTURE Basic definitions, the intersection poset and the characteristic polynomial.. Basic definitions The following notation is used throughout for certain sets of

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

Algebraic Expressions

Algebraic Expressions P.1 Algebraic Expressions, Mathematical Models, and Real Numbers P.2 Exponents and Scientific Notation Objectives: Evaluate algebraic expressions, find intersection and unions of sets, simplify algebraic

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

Unit 1 Algebraic Functions and Graphs

Unit 1 Algebraic Functions and Graphs Algebra 2 Unit 1 Algebraic Functions and Graphs Name: Unit 1 Day 1: Function Notation Today we are: Using Function Notation We are successful when: We can Use function notation to evaluate a function This

More information

Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology. Scotland T 3. Matrices. Teachers Teaching with Technology (Scotland)

Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology. Scotland T 3. Matrices. Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T 3 Scotland Matrices Teachers Teaching with Technology (Scotland) MATRICES Aim To demonstrate how the TI-83 can be used to

More information

Chapter 2 Systems of Linear Equations and Matrices

Chapter 2 Systems of Linear Equations and Matrices Chapter 2 Systems of Linear Equations and Matrices LOCATION IN THE OTHER TEXTS: Finite Mathematics and Calculus with Applications: Chapter 2 Solution of Linear Systems by the Gauss-Jordan Method. Row Operations.

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Functions. Edexcel GCE. Core Mathematics C3

Functions. Edexcel GCE. Core Mathematics C3 Edexcel GCE Core Mathematics C Functions Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

Precalculus Notes: Unit 7 Systems of Equations and Matrices

Precalculus Notes: Unit 7 Systems of Equations and Matrices Date: 7.1, 7. Solving Systems of Equations: Graphing, Substitution, Elimination Syllabus Objectives: 8.1 The student will solve a given system of equations or system of inequalities. Solution of a System

More information

CMPSCI611: The Simplex Algorithm Lecture 24

CMPSCI611: The Simplex Algorithm Lecture 24 CMPSCI611: The Simplex Algorithm Lecture 24 Let s first review the general situation for linear programming problems. Our problem in standard form is to choose a vector x R n, such that x 0 and Ax = b,

More information

Calibrating a Structured Light System Dr Alan M. McIvor Robert J. Valkenburg Machine Vision Team, Industrial Research Limited P.O. Box 2225, Auckland

Calibrating a Structured Light System Dr Alan M. McIvor Robert J. Valkenburg Machine Vision Team, Industrial Research Limited P.O. Box 2225, Auckland Calibrating a Structured Light System Dr Alan M. McIvor Robert J. Valkenburg Machine Vision Team, Industrial Research Limited P.O. Box 2225, Auckland New Zealand Tel: +64 9 3034116, Fax: +64 9 302 8106

More information

Working with Algebraic Expressions

Working with Algebraic Expressions 2 Working with Algebraic Expressions This chapter contains 25 algebraic expressions; each can contain up to five variables. Remember that a variable is just a letter that represents a number in a mathematical

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Computer Graphics: Geometric Transformations

Computer Graphics: Geometric Transformations Computer Graphics: Geometric Transformations Geometric 2D transformations By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, 1 Outlines 1. Basic 2D transformations 2. Matrix Representation of 2D transformations

More information