CSE 252B: Computer Vision II

Size: px
Start display at page:

Download "CSE 252B: Computer Vision II"

Transcription

1 CSE 5B: Computer Vision II Lecturer: Ben Ochoa Scribes: San Nguyen, Ben Reineman, Arturo Flores LECTURE Guest Lecture.. Brief bio Ben Ochoa received the B.S., M.S., and Ph.D. degrees in electrical engineering from the University of California, San Diego, in 999, 3, and 7, respectively. Since 8, he has been the vice president of research and development at d3. For more information, see ~bochoa/... Review of linear algebra... Matrix Rank The rank of a matrix is the number of linearly independent rows or columns of the matrix. Given a matrix A R m n, its rank r min(m, n) is calculated as the number of nonzero singular values of A. Note that rank(a) = implies A is the matrix. Department of Computer Science and Engineering, University of California, San Diego. April 3, 9

2 SERGE BELONGIE, CSE 5B: COMPUTER VISION II... Singular Value Decomposition (SVD) The SVD of A R m n is defined as (.) A = UDV T, where U R m m, D = diag ( σ, σ,..., σ min(m,n) ) R m n, and V R n n. U and V are orthogonal matrices, and σ, σ,..., σ min(m,n) are called the singular values of A. Typically, and assumed in this lecture, the singular values are ordered in descending order...3. Null Spaces of A Right null space Left null space AX = Y A = where A R m n. Here, X R n (n r) is called the (right) null space of A and Y R (m r) m is called the left null space of A, where r = rank(a). The right and left null spaces of a matrix A can be calculated using SVD as follows. From A = UDV T, the right null space X = null(a) is the matrix composed of the columns of V that correspond to singular values that are equal to zero. Similarly, the left null space Y of A is the matrix composed of the rows of U T that correspond to singular values equal to zero. For example, this can be used to compute the epipoles from the fundamental matrix F. The SVD of F = UDV T where F, U, D, V R 3 3 and rank(f) =. For the epipole in first image (e ) we have (.) Fe =, so e is the last column of V. For the epipole in second image (e ) we have (.3) (.4) F T e = e T F = T, hence e T is the last row of U T (or e is the last column of U)..3. Configurations of some geometric primitives.3.. Configurations of points and lines in D Consider the homogeneous coordinates of a point x = (x, y, w) T and line l = (a, b, c) T. If x lies on l, then (.5) (.6) x T l = l T x =. Also, recall that homogeneous coordinates are only determined up to scale.

3 (.7) A = LECTURE. GUEST LECTURE D Points. Given a set of n points, we can arrange them into a single matrix as x T x T. x nt Rn 3. The rank and null space of A determine the configuration of the set of points. The following table shows the different possible configurations and the corresponding rank and null space of A. Illustration Configuration rank(a) Columns of null(a) general position 3 empty... collinear line that points lie on coincident two lines intersecting at points.3... D Lines. Similarly, given a set of n lines, we can arrange them into a single matrix as l T l T (.8) A =. Rn 3. l nt The rank and null space of A determine the configuration of the set of lines. The following table shows the different possible configurations and the corresponding rank and null space of A. Illustration Configuration rank(a) Columns of null(a) general position 3 empty pencils of lines point at intersection of lines coincident two points on lines.3.. Configurations of points and planes in 3D Consider a point X = (X, Y, Z, T) T and plane P = (a, b, c, d) T. If X lies on P then (.9) (.) X T P = P T X =

4 4 SERGE BELONGIE, CSE 5B: COMPUTER VISION II D Points. Given a set of n points, we can arrange them into a single matrix as X T X T (.) A =. Rn 4. X nt The rank and null space of A determine the configuration of the set of points. The following table shows the different possible configurations and the corresponding rank and null space of A. Illustration Configuration rank(a) Columns of null(a) See figure general position 4 empty See figure coplanar 3 plane that points lie on See figure 3 collinear two planes intersecting at line that points lie on See figure 4 coincident three planes intersecting at points D Planes. Similarly, given a set of n planes, we can arrange them into a single matrix as P T P T (.) A =. P nt Rn 4. The rank and null space of A determine the configuration of the set of planes. The following table shows the different possible configurations and the corresponding rank and null space of A. Illustration Configuration rank(a) Columns of null(a) See figure 5 general position 4 empty See figure 4 bundle of planes 3 point at intersection of planes See figure 3 sheaf of planes two points on 3D line at intersection of planes See figure coincident three points on planes.4. An application of the left null space The (right) null space has many applications in computer vision, but do not overlook the left null space. For example, consider two non-coincident D lines l and l. The point x at the intersection of l and l can be calculated

5 LECTURE. GUEST LECTURE 5 using the cross product by x = l l. Alternatively, x can be calculated by taking the null space of a matrix whose rows are the lines, ] l T (.3) x =. l T However, this equation can also be used to determine two lines l and l that intersect at x. The two lines are simply the rows of the left null space of x. As shown previously, the left null space of x can be calculated using SVD. x = UDV T, where U = u u u 3 ] R 3 3, D = (σ,, ) T, and V T is a scalar. As such, the left null space of x is u u 3 ] T = l l ] T..4.. Householder matrix Although SVD can be used to calculate the left null space of a vector x R n, a much less computationally expensive method involves determining an orthogonal matrix H R n n such that (.4) Hx = ± x. Such a matrix H is called a Householder matrix and is calculated by (.5) H = I vvt v T v where (.6) v = x + sign (x ) x e. Here e = (,,,..., ) T, not the epipole in the first image, and x is a general vector, not a D point in homogeneous coordinates. (.7) (.8) a T x] Hx = ] x = ± x. ± x ], where a T is the first row of H and x] is the matrix containing the remaining rows of H. From this, we see that a T x = ± x and (.9) x] x =.

6 6 SERGE BELONGIE, CSE 5B: COMPUTER VISION II That is, x] is the left null space of x, where x] is the matrix H with its first row omitted..4.. Points, lines, and planes that lie on and pass through The left null space of points and lines in D and points and planes in 3D provides some useful results Two lines through a D point. (.) (.) x] x = ] l T x = l T.4... Two points on a D line. (.) (.3) l] l = ] x T x T l = Three planes through a 3D point. (.4) (.5) X] X = P T P T X = P 3T Three points on a 3D plane. (.6) (.7) P] P = X T X T P = X 3T.5. Direct linear transformation algorithm Using the methods from this lecture, we can reformulate some of the equations that describe different mappings in computer vision. This is useful when applying the direct linear transformation (DLT) algorithm to estimate these mappings.

7 .5.. Planar homography LECTURE. GUEST LECTURE 7 The following notation will be used for the planar homography matrix H. (.8) (.9) H = H = h h h 3 h h h 3 h 3 h 3 h 33 h T h T h 3T where h it = (h i, h i, h i3 ), i.e., h it is the ith row of H. Further, let us denote (.3) (.3) (.3).5... D points. (.33) (.34) (.35) (.36) (.37) (.38) (.39) (.4) (.4), h = (h, h, h 3, h, h, h 3, h 3, h 3, h 33 ) T h h = h h 3 h = vec(h T ). l i T l i T a i b i c i a i b i c i a i h T x i + bi h T x i + c h3t x i a i h T x i + bi h T x i + ci h 3T x i a i x it b i x it c i x it a i x it b i x it c i x it x i Hx i ] x i Hx i = ] h T h T x i h 3T = ] h T x i h T x i = h 3T x i ] h h h 3 l i T x it l i T x it ( l i T l i T ( x i ] x it ] = = ] h = ) h = ] x it )h =

8 8 SERGE BELONGIE, CSE 5B: COMPUTER VISION II The last equation is each of the two rows in design matrix used for estimating h D lines. (.4) (.43) (.44) (.45) l j H T l j l j H T l j l j ] H T l j = ( l jt ] l j ) h = D points and D lines. Sets of corresponding points and lines can be combined to estimate the planar homography. (.46) ( ) x i ] x it ( l jt l j ] ) h =.5.. 3D projective transformation The equations for points and hyperplanes in D scale to 3D. In 3D, H R 4 4 and h = vec(h T ) R 6. Each point of plane correspondence generates three rows in the design matrix D points. (.47) (.48) (.49) D planes. (.5) (.5) (.5) (.53) X i HX i ] X i HX i = ( X ] ) i X it h = P j H T P j P j H T P j P j ] H T P j = ( P jt P j ] ) h = D points and 3D planes. ( X ] ) i X it (.54) ( P jt ] P j ) h =

9 .6. Additional figures LECTURE. GUEST LECTURE 9 These figures are illustration for the various configurations of 3D points and planes. Some of them were generated using the Householder matrix method. For example, 3D coincident points or bundle of planes (figure 4) was generated using the following matlab code: % random 3d point (homogeneous coordinates ) x = randn (3,); ] ; v = x + sign (x ()) norm(x ) ; ; ; ] ; h = eye(4) (v v )/( v v ) ; plot3 (x (), x (), x (3),. r, MarkerSize,4); hold on ; drawplane (h (, : ) ) ; drawplane (h ( 3, : ) ) ; drawplane (h ( 4, : ) ) ; where drawplane is the following function function drawplane ( p) % p is a b c d ] where % a x + b y + c z + d = defines the plane x= 5:.5:5; X,Y] = meshgrid (x ) ; a=p (); b=p (); c=p (3); d=p (4); Z=( d a X b Y)/ c ; mesh(x,y,z) ; shading f l a t ;

10 SERGE BELONGIE, CSE 5B: COMPUTER VISION II Figure. 3D points in general position Figure. 3D points in coplanar position, also coincident planes.

11 LECTURE. GUEST LECTURE Figure 3. 3D points in collinear position, also a sheaf of planes. 5 5 Figure 4. 3D coincident points, also a bundle of planes.

12 SERGE BELONGIE, CSE 5B: COMPUTER VISION II Figure 5. Planes in general position

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Projective 3D Geometry (Back to Chapter 2) Lecture 6 2 Singular Value Decomposition Given a

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Structure Computation Lecture 18 March 22, 2005 2 3D Reconstruction The goal of 3D reconstruction

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Jayson Smith LECTURE 4 Planar Scenes and Homography 4.1. Points on Planes This lecture examines the special case of planar scenes. When talking

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Fundamental Matrix & Structure from Motion

Fundamental Matrix & Structure from Motion Fundamental Matrix & Structure from Motion Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Transformations between images Structure from Motion The Essential Matrix The Fundamental

More information

Epipolar Geometry and the Essential Matrix

Epipolar Geometry and the Essential Matrix Epipolar Geometry and the Essential Matrix Carlo Tomasi The epipolar geometry of a pair of cameras expresses the fundamental relationship between any two corresponding points in the two image planes, and

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe : Martin Stiaszny and Dana Qu LECTURE 0 Camera Calibration 0.. Introduction Just like the mythical frictionless plane, in real life we will

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Calculation of the fundamental matrix

Calculation of the fundamental matrix D reconstruction alculation of the fundamental matrix Given a set of point correspondences x i x i we wish to reconstruct the world points X i and the cameras P, P such that x i = PX i, x i = P X i, i

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0.

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0. ) Give a set-theoretic description of the given points as a subset W of R. a) The points on the plane x + y z =. x Solution: W = {x: x = [ x ], x + x x = }. x b) The points in the yz-plane. Solution: W

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Column and row space of a matrix

Column and row space of a matrix Column and row space of a matrix Recall that we can consider matrices as concatenation of rows or columns. c c 2 c 3 A = r r 2 r 3 a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 The space spanned by columns of

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

MAPI Computer Vision. Multiple View Geometry

MAPI Computer Vision. Multiple View Geometry MAPI Computer Vision Multiple View Geometry Geometry o Multiple Views 2- and 3- view geometry p p Kpˆ [ K R t]p Geometry o Multiple Views 2- and 3- view geometry Epipolar Geometry The epipolar geometry

More information

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches Reminder: Lecture 20: The Eight-Point Algorithm F = -0.00310695-0.0025646 2.96584-0.028094-0.00771621 56.3813 13.1905-29.2007-9999.79 Readings T&V 7.3 and 7.4 Essential/Fundamental Matrix E/F Matrix Summary

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2019

CS-9645 Introduction to Computer Vision Techniques Winter 2019 Table of Contents Projective Geometry... 1 Definitions...1 Axioms of Projective Geometry... Ideal Points...3 Geometric Interpretation... 3 Fundamental Transformations of Projective Geometry... 4 The D

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

3D Reconstruction with two Calibrated Cameras

3D Reconstruction with two Calibrated Cameras 3D Reconstruction with two Calibrated Cameras Carlo Tomasi The standard reference frame for a camera C is a right-handed Cartesian frame with its origin at the center of projection of C, its positive Z

More information

Epipolar Geometry CSE P576. Dr. Matthew Brown

Epipolar Geometry CSE P576. Dr. Matthew Brown Epipolar Geometry CSE P576 Dr. Matthew Brown Epipolar Geometry Epipolar Lines, Plane Constraint Fundamental Matrix, Linear solution + RANSAC Applications: Structure from Motion, Stereo [ Szeliski 11] 2

More information

CS 231A: Computer Vision (Winter 2018) Problem Set 2

CS 231A: Computer Vision (Winter 2018) Problem Set 2 CS 231A: Computer Vision (Winter 2018) Problem Set 2 Due Date: Feb 09 2018, 11:59pm Note: In this PS, using python2 is recommended, as the data files are dumped with python2. Using python3 might cause

More information

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. - Marcel Proust University of Texas at Arlington Camera Calibration (or Resectioning) CSE 4392-5369 Vision-based

More information

CS 664 Slides #9 Multi-Camera Geometry. Prof. Dan Huttenlocher Fall 2003

CS 664 Slides #9 Multi-Camera Geometry. Prof. Dan Huttenlocher Fall 2003 CS 664 Slides #9 Multi-Camera Geometry Prof. Dan Huttenlocher Fall 2003 Pinhole Camera Geometric model of camera projection Image plane I, which rays intersect Camera center C, through which all rays pass

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Haowei Liu LECTURE 16 Structure from Motion from Tracked Points 16.1. Introduction In the last lecture we learned how to track point features

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

1 Projective Geometry

1 Projective Geometry CIS8, Machine Perception Review Problem - SPRING 26 Instructions. All coordinate systems are right handed. Projective Geometry Figure : Facade rectification. I took an image of a rectangular object, and

More information

Multiple Views Geometry

Multiple Views Geometry Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in January 2, 28 Epipolar geometry Fundamental geometric relationship between two perspective

More information

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the Review Exercise 1. Determine vector and parametric equations of the plane that contains the points A11, 2, 12, B12, 1, 12, and C13, 1, 42. 2. In question 1, there are a variety of different answers possible,

More information

C / 35. C18 Computer Vision. David Murray. dwm/courses/4cv.

C / 35. C18 Computer Vision. David Murray.   dwm/courses/4cv. C18 2015 1 / 35 C18 Computer Vision David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/4cv Michaelmas 2015 C18 2015 2 / 35 Computer Vision: This time... 1. Introduction; imaging geometry;

More information

CIS 580, Machine Perception, Spring 2014: Assignment 4 Due: Wednesday, April 10th, 10:30am (use turnin)

CIS 580, Machine Perception, Spring 2014: Assignment 4 Due: Wednesday, April 10th, 10:30am (use turnin) CIS 580, Machine Perception, Spring 2014: Assignment 4 Due: Wednesday, April 10th, 10:30am (use turnin) Solutions (hand calculations, plots) have to be submitted electronically as a single pdf file using

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

CS231A Course Notes 4: Stereo Systems and Structure from Motion

CS231A Course Notes 4: Stereo Systems and Structure from Motion CS231A Course Notes 4: Stereo Systems and Structure from Motion Kenji Hata and Silvio Savarese 1 Introduction In the previous notes, we covered how adding additional viewpoints of a scene can greatly enhance

More information

Elements of Computer Vision: Multiple View Geometry. 1 Introduction. 2 Elements of Geometry. Andrea Fusiello

Elements of Computer Vision: Multiple View Geometry. 1 Introduction. 2 Elements of Geometry. Andrea Fusiello Elements of Computer Vision: Multiple View Geometry. Andrea Fusiello http://www.sci.univr.it/~fusiello July 11, 2005 c Copyright by Andrea Fusiello. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

Projective geometry for Computer Vision

Projective geometry for Computer Vision Department of Computer Science and Engineering IIT Delhi NIT, Rourkela March 27, 2010 Overview Pin-hole camera Why projective geometry? Reconstruction Computer vision geometry: main problems Correspondence

More information

Lecture 3: Camera Calibration, DLT, SVD

Lecture 3: Camera Calibration, DLT, SVD Computer Vision Lecture 3 23--28 Lecture 3: Camera Calibration, DL, SVD he Inner Parameters In this section we will introduce the inner parameters of the cameras Recall from the camera equations λx = P

More information

Fundamental Matrix & Structure from Motion

Fundamental Matrix & Structure from Motion Fundamental Matrix & Structure from Motion Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Review of Assignment 0. Transformations between images Structure from Motion The Essential

More information

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Exercise session using MATLAB: Quasiconvex Optimixation

Exercise session using MATLAB: Quasiconvex Optimixation Optimization in Computer Vision, May 2008 Exercise session using MATLAB: Quasiconvex Optimixation Overview In this laboratory session you are going to use matlab to study structure and motion estimation

More information

Computer Vision I Name : CSE 252A, Fall 2012 Student ID : David Kriegman Assignment #1. (Due date: 10/23/2012) x P. = z

Computer Vision I Name : CSE 252A, Fall 2012 Student ID : David Kriegman   Assignment #1. (Due date: 10/23/2012) x P. = z Computer Vision I Name : CSE 252A, Fall 202 Student ID : David Kriegman E-Mail : Assignment (Due date: 0/23/202). Perspective Projection [2pts] Consider a perspective projection where a point = z y x P

More information

Robust Geometry Estimation from two Images

Robust Geometry Estimation from two Images Robust Geometry Estimation from two Images Carsten Rother 09/12/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation Process 09/12/2016 2 Appearance-based

More information

1 Affine and Projective Coordinate Notation

1 Affine and Projective Coordinate Notation CS348a: Computer Graphics Handout #9 Geometric Modeling Original Handout #9 Stanford University Tuesday, 3 November 992 Original Lecture #2: 6 October 992 Topics: Coordinates and Transformations Scribe:

More information

Epipolar Geometry class 11

Epipolar Geometry class 11 Epipolar Geometry class 11 Multiple View Geometry Comp 290-089 Marc Pollefeys Multiple View Geometry course schedule (subject to change) Jan. 7, 9 Intro & motivation Projective 2D Geometry Jan. 14, 16

More information

The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that A = UΣV T.

The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that A = UΣV T. Section 7.4 Notes (The SVD) The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that Then there are A = UΣV T Specifically: The ordering of

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

Structure from motion

Structure from motion Multi-view geometry Structure rom motion Camera 1 Camera 2 R 1,t 1 R 2,t 2 Camera 3 R 3,t 3 Figure credit: Noah Snavely Structure rom motion? Camera 1 Camera 2 R 1,t 1 R 2,t 2 Camera 3 R 3,t 3 Structure:

More information

Auto-calibration. Computer Vision II CSE 252B

Auto-calibration. Computer Vision II CSE 252B Auto-calibration Computer Vision II CSE 252B 2D Affine Rectification Solve for planar projective transformation that maps line (back) to line at infinity Solve as a Householder matrix Euclidean Projective

More information

Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book)

Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book) Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book) Guido Gerig CS-GY 6643, Spring 2016 gerig@nyu.edu Credits: M. Shah, UCF CAP5415, lecture 23 http://www.cs.ucf.edu/courses/cap6411/cap5415/,

More information

COMP 558 lecture 19 Nov. 17, 2010

COMP 558 lecture 19 Nov. 17, 2010 COMP 558 lecture 9 Nov. 7, 2 Camera calibration To estimate the geometry of 3D scenes, it helps to know the camera parameters, both external and internal. The problem of finding all these parameters is

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.2 Null Spaces, Column Spaces, & Linear Transformations Math 233 Linear Algebra 4.2 Null Spaces, Column Spaces, & Linear Transformations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu

More information

Part I: Single and Two View Geometry Internal camera parameters

Part I: Single and Two View Geometry Internal camera parameters !! 43 1!???? Imaging eometry Multiple View eometry Perspective projection Richard Hartley Andrew isserman O p y VPR June 1999 where image plane This can be written as a linear mapping between homogeneous

More information

Perspective Mappings. Contents

Perspective Mappings. Contents Perspective Mappings David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

More information

(Creating Arrays & Matrices) Applied Linear Algebra in Geoscience Using MATLAB

(Creating Arrays & Matrices) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Creating Arrays & Matrices) Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

The Geometry Behind the Numerical Reconstruction of Two Photos

The Geometry Behind the Numerical Reconstruction of Two Photos The Geometry Behind the Numerical Reconstruction of Two Photos Hellmuth Stachel stachel@dmg.tuwien.ac.at http://www.geometrie.tuwien.ac.at/stachel ICEGD 2007, The 2 nd Internat. Conf. on Eng g Graphics

More information

METR Robotics Tutorial 2 Week 2: Homogeneous Coordinates

METR Robotics Tutorial 2 Week 2: Homogeneous Coordinates METR4202 -- Robotics Tutorial 2 Week 2: Homogeneous Coordinates The objective of this tutorial is to explore homogenous transformations. The MATLAB robotics toolbox developed by Peter Corke might be a

More information

Linear Multi View Reconstruction and Camera Recovery Using a Reference Plane

Linear Multi View Reconstruction and Camera Recovery Using a Reference Plane International Journal of Computer Vision 49(2/3), 117 141, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Linear Multi View Reconstruction and Camera Recovery Using a Reference

More information

Elements of Geometric Computer Vision. Andrea Fusiello

Elements of Geometric Computer Vision. Andrea Fusiello Elements of Geometric Computer Vision Andrea Fusiello http://www.diegm.uniud.it/fusiello/ May 2, 2014 c E. Trucco c Copyright by Andrea Fusiello. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jeremy Pollock and Neil Alldrin LECTURE 14 Robust Feature Matching 14.1. Introduction Last lecture we learned how to find interest points

More information

Multi-view geometry problems

Multi-view geometry problems Multi-view geometry Multi-view geometry problems Structure: Given projections o the same 3D point in two or more images, compute the 3D coordinates o that point? Camera 1 Camera 2 R 1,t 1 R 2,t 2 Camera

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 6 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 19, 2012 Andre Tkacenko

More information

Last lecture. Passive Stereo Spacetime Stereo

Last lecture. Passive Stereo Spacetime Stereo Last lecture Passive Stereo Spacetime Stereo Today Structure from Motion: Given pixel correspondences, how to compute 3D structure and camera motion? Slides stolen from Prof Yungyu Chuang Epipolar geometry

More information

Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1)

Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1) Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1) Guido Gerig CS 6320 Spring 2013 Credits: Prof. Mubarak Shah, Course notes modified from: http://www.cs.ucf.edu/courses/cap6411/cap5415/, Lecture

More information

Epipolar geometry. x x

Epipolar geometry. x x Two-view geometry Epipolar geometry X x x Baseline line connecting the two camera centers Epipolar Plane plane containing baseline (1D family) Epipoles = intersections of baseline with image planes = projections

More information

A Factorization Method for Structure from Planar Motion

A Factorization Method for Structure from Planar Motion A Factorization Method for Structure from Planar Motion Jian Li and Rama Chellappa Center for Automation Research (CfAR) and Department of Electrical and Computer Engineering University of Maryland, College

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

Structure from Motion and Multi- view Geometry. Last lecture

Structure from Motion and Multi- view Geometry. Last lecture Structure from Motion and Multi- view Geometry Topics in Image-Based Modeling and Rendering CSE291 J00 Lecture 5 Last lecture S. J. Gortler, R. Grzeszczuk, R. Szeliski,M. F. Cohen The Lumigraph, SIGGRAPH,

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 More on Single View Geometry Lecture 11 2 In Chapter 5 we introduced projection matrix (which

More information

Lecture 9: Epipolar Geometry

Lecture 9: Epipolar Geometry Lecture 9: Epipolar Geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Why is stereo useful? Epipolar constraints Essential and fundamental matrix Estimating F (Problem Set 2

More information

3D Reconstruction from Two Views

3D Reconstruction from Two Views 3D Reconstruction from Two Views Huy Bui UIUC huybui1@illinois.edu Yiyi Huang UIUC huang85@illinois.edu Abstract In this project, we study a method to reconstruct a 3D scene from two views. First, we extract

More information

Camera system: pinhole model, calibration and reconstruction

Camera system: pinhole model, calibration and reconstruction Camera system: pinhole model, calibration and reconstruction Francesco Castaldo, Francesco A.N. Palmieri December 22, 203 F. Castaldo (francesco.castaldo@unina2.it) and F. A. N. Palmieri are with the Dipartimento

More information

Computer Graphics: Geometric Transformations

Computer Graphics: Geometric Transformations Computer Graphics: Geometric Transformations Geometric 2D transformations By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, 1 Outlines 1. Basic 2D transformations 2. Matrix Representation of 2D transformations

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information

Two-View Geometry (Course 23, Lecture D)

Two-View Geometry (Course 23, Lecture D) Two-View Geometry (Course 23, Lecture D) Jana Kosecka Department of Computer Science George Mason University http://www.cs.gmu.edu/~kosecka General Formulation Given two views of the scene recover the

More information

Part 0. The Background: Projective Geometry, Transformations and Estimation

Part 0. The Background: Projective Geometry, Transformations and Estimation Part 0 The Background: Projective Geometry, Transformations and Estimation La reproduction interdite (The Forbidden Reproduction), 1937, René Magritte. Courtesy of Museum Boijmans van Beuningen, Rotterdam.

More information

CHAPTER 5 SYSTEMS OF EQUATIONS. x y

CHAPTER 5 SYSTEMS OF EQUATIONS. x y page 1 of Section 5.1 CHAPTER 5 SYSTEMS OF EQUATIONS SECTION 5.1 GAUSSIAN ELIMINATION matrix form of a system of equations The system 2x + 3y + 4z 1 5x + y + 7z 2 can be written as Ax where b 2 3 4 A [

More information

Computer Vision CSCI-GA Assignment 1.

Computer Vision CSCI-GA Assignment 1. Computer Vision CSCI-GA.2272-001 Assignment 1. September 22, 2017 Introduction This assignment explores various methods for aligning images and feature extraction. There are four parts to the assignment:

More information

CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR

CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR Leslie Foster Department of Mathematics, San Jose State University October 28, 2009, SIAM LA 09 DEPARTMENT OF MATHEMATICS,

More information

Machine Learning for Signal Processing Fundamentals of Linear Algebra

Machine Learning for Signal Processing Fundamentals of Linear Algebra Machine Learning for Signal Processing Fundamentals of Linear Algebra Class Sep 4 Instructor: Bhiksha Raj Sep 4-755/8-797 Administrivia Info on second TA still awaited from ECE Registration: Anyone on

More information

Machine Learning for Signal Processing Fundamentals of Linear Algebra

Machine Learning for Signal Processing Fundamentals of Linear Algebra Machine Learning for Signal Processing Fundamentals of Linear Algebra Class 3 Sep 3 Instructor: Bhiksha Raj 3 Sep 3-755/8-797 Administrivia Change of classroom: BH A5 Being broadcast to west coast Registration:

More information

Computer Vision Projective Geometry and Calibration

Computer Vision Projective Geometry and Calibration Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

Module 9 : Numerical Relaying II : DSP Perspective

Module 9 : Numerical Relaying II : DSP Perspective Module 9 : Numerical Relaying II : DSP Perspective Lecture 36 : Fast Fourier Transform Objectives In this lecture, We will introduce Fast Fourier Transform (FFT). We will show equivalence between FFT and

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C).

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C). 4. Planes and distances How do we represent a plane Π in R 3? In fact the best way to specify a plane is to give a normal vector n to the plane and a point P 0 on the plane. Then if we are given any point

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Project 2: Structure from Motion

Project 2: Structure from Motion Project 2: Structure from Motion CIS 580, Machine Perception, Spring 2015 Preliminary report due: 2015.04.27. 11:59AM Final Due: 2015.05.06. 11:59AM This project aims to reconstruct a 3D point cloud and

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements Paul Renteln California State University San Bernardino and Caltech April, 2008 Outline Hyperplane Arrangements Counting Regions

More information