Introduction to LiDAR

Size: px
Start display at page:

Download "Introduction to LiDAR"

Transcription

1 Introduction to LiDAR Our goals here are to introduce you to LiDAR data. LiDAR data is becoming common, provides ground, building, and vegetation heights at high accuracy and detail, and is available statewide. Although using it requires downloading and a fair bit a pre- processing, we ve done the first bits because our main goal is to introduce you to the ideas of LiDAR point clouds, and extracting useful heights from them. Data are delivered in tiles, with a set of points providing x, y, and z values above a datum. Densities are typically one to several points per square meter, although not all the points represent ground heights. Since the data are very detailed, data volumes get large quickly, and so they are often stored in a tiling scheme. We often need to merge together several tiles to obtain the complete coverage of an area, and that is true of our St. Paul Campus. We ve stored data in the 4295W directory on the class share drive, under data/lidar. We ve downloaded data for the: 1m DEM (named CampusDEM_large) 1m hillshade (named Campus_HSL) the raw lidar point cloud data, in the CampusLAZ directory, these will be.las or.laz (a compressed form) You ll see the DEM and hillshade are rasters, and the raw lidar point data are in files with strange codes and a.laz extension. The codes are tile number, las datasets are typically large, and so are usually tiled, and the laz is a compressed format that typically reduces the file size by about 90%. We also processed the data, and have a set of tiles named with a height name appended at the end. These have been processed to a set of point shapefiles so that the vector points each contain the height above ground for the LiDAR return. You should copy the DEM, hillshade, and the building and height subdirectories and files from the data directory directory to a local drive, either on the computer or a portable USB drive. You don t need all the tiles, so you may only copy those for your study area rather than downloading them all if you wish. Each file is large, will multiply through processing, slow things down, and clutter your workspace, so subsetting isn t a bad idea in general, but here you ll probably pay little penalty. To subset, refer to the image below, and only copy the files you need for your project area. The boundaries correspond to the tile borders, and the labels the original.laz/.las file names. We ve also provided copies of the.laz to.las files. You don t need to, but notice the.laz files are much smaller than the.las. Because lidar data are often so large, there is usually a tradeoff between saving space and processing speed. We re working with a small area, so it doesn t much matter, but in many real projects it does. 1

2 Display the DEM and hillshade surfaces. These are largely from an automated process that first tries to identify the bare earth, or ground only returns, and then build a DEM and a hillshade. Notice the odd shapes, sometimes like triangles, on the hillshade surface within the building footprints. These are artifacts of lidar data processing. The algorithms have a hard time identifying the ground near buildings perfectly, so there are often triangular shapes on or near buildings. You also see a roughness and occasional small bumps over grass or forest areas, these are also artifacts of the processing. Also notice the DEM rasters are in UTM15 NAD83(1986). The LiDAR point clouds are also in this datum, so using the DEM and LiDAR points together in the same coordinate system will be fine, but when you are done you will need to transform them to CORS96 UTM 15. You could transform before we begin our LiDAR processing, but if you leave them in NAD83(1986), and then only transform the output, there will be fewer data sets and time to perform. You should know a few more things about LiDAR data. Remember, these LiDAR are from pulses of light sent down from a plane, then reflected back from a target. Precise geometry allows operators to determine the x, y, and z coordinates to within a few inches of each object that reflects back a pulse. There can be many returns measured from each pulse, although we re most often interested in the first returns, to measure object heights, and the last returns, to measure ground elevation. The data are processed before they re delivered, and the collecting organization usually applies algorithms to try to detect ground hits (not all last returns are from the ground), object heights (not all first returns are from the tops of objects), and to provide other information about each data point. Most times each return point contains information on the return number (first, last, or in between), the feature classification (2 = ground, 4 = mid- height vegetation, 5 = high vegetation, 6 = building, 9= water, 0 = unclassified), as well as the scan angle, the strength of the return signal, and other information about the point. Most of your study areas will only use two or three LiDAR tiles. Some may cover four or more. You may want to use batch processing, described in the course materials, for multiple tiles, once you ve established your workflow. 2

3 Look in the CampusLiDAR directory, in Data directory of the class L drive. Note that there are two subdirectories, one named Buildings, and the other named TallVeg. These have partially processed LiDAR data, as point files. Create I LiDAR directory on your local or USB drive. Create two subdirectories within it, one named Buildings, and the other named TallVeg. Identify the tiles that cover your area in the class TallVeg and Building folder, and copy them from the class drive to their corresponding subdirectories on your local drive, that is, Building tiles to Building, and TallVeg tiles to TallVeg. Load the Building and TallVeg files into a data view for one of your tiles. Verify for each that the proper points have been selected, that is, that most of the building points are concentrated over buildings, and most of the vegetation points concentrated over forests. You can best verify at large scales (when zoomed in), because the point classifier isn t perfect, and given the dot size, the common buildings as trees errors may dominate over a building, or the reverse. It is best to zoom in to a building or two with adjacent trees, and verify that the two files have the points mostly correct. Calculate geometry for z heights to TallVeg Calculate tree heights by subtracting raster value Clean up naming, transfer these and buildings data/directories to class share drive. You can see the Building points, here in yellow, more or less match the building locations. The slight mismatch is because of building lean in the aerial photographs. You might remember that orthophotos correct all locations as if they were on the ground, and the tops of buildings aren t. Thus, the tops get displaced, usually outward from the imaging center relative to the camera position. That s why skyscrapers seem to lean in most vertical orthophotos. 3

4 Now we should look at heights. First, we need to create a variable to hold our eventual height, measured from the ground to the top of the object. Open the table for each of your point shapefiles, and add a new field named zheight, double or float, precision 12, scale 1. This may take some time for each tile, you could try to use the AddField command as an ArcMap batch job. You are strongly encouraged to do this and the following operations as batch jobs (see course resources, or ask Andy or Paul for help). This will greatly ease your work. Next, we need to extract heights from the points. It is usually more efficient to do it as a batch job with the Add Geometry Attributes tool, specify meters and square meters for units, and our project coordinate system. Note that this tool will also add the x and y coordinates for each point. When the process is finished, use the identify button to query a few building heights (z values). Remember, the values are in meters. Do these values make sense? Are the buildings over 200 meters (650 ft) tall? Why do you think you re getting these values? The Z value represents the orthometric height of the top of the building. This is the height relative to our standard surface, near sea level, and not relative to the local ground surface. We need to subtract the local ground surface from the building z value to get building height. One way is to query the DEM raster below each point, and add it to the table record for each point. We can then subtract the DEM height from the z values we calculated from the Add Geometry Attributes, and get a building height. The Extract Values to Points tool, found at ArcToolbox- > Spatial Analyst Tools- > Extract- > Extract values to points does just this. Specifying the input and outputs will query each cell below each point, and add a column to the new data layer specified. This may take quite a long time, so be patient, and again, this process can be run as a batch job for multiple files. This generates a new column named 4

5 RASTEVAL that contains the ground elevations near at each point: (ignore the zheight value in the table at left, this is from a test run, in your files it will be zero or null/not assigned) Now you can calculate the building heights for each point. You can do this manually, but it is better to do it as a batch job with the Calculate Field command. Create a new field called something like build_hght for the height above- ground sampled at each point, and then batch job the field calculation. When you are done, you should have a table that looks something like the one to the right: Now, calculate the average height from point samples for one of your buildings. There are several ways to do this, and it would easiest is with the Spatial Join tool. However, it doesn t work much of the time, freezing up, or worse, returning erroneous answers, with no warning that the values are wrong. There is an alternative which appears to work in most cases, that involves multiple steps. First apply the Intersect tool, with the input building polygons, and the processed LiDAR point file. First, we need polygons for a buildings layer, with IDs you ve assigned (typically short integer), and for clarity, a building name. You should already have created this building layer as part of your database. You may have to display both the LiDAR points and an image of the study area with your building, and adjust the building footprint polygon a bit to account for building lean. After ensuring you have a proper buildings file, read the Intersect tool s documentation. Start the Intersect tool, and specify your building and processed (heights calculated) LiDAR points. 5

6 If you specify All for the join attributes, it will join the attributes by spatial location, into a point file, with the building assigned to each point. We can see the attribute table for the point features below. The last three columns are from the buildings layer, with the building FID, ID, and name, and all the columns before, from FID* through RASTERVAL, are from the point file, including the height for each LiDAR point that landed on the building. 6

7 Now we need to aggregate the points for each building. The easiest way is through the Summary Statistics tool. This summarized features, and I can assign case attributes. This will calculate the summary statistics for every different value of the case attribute. If I make the building ID my case attribute, it will create a table with summary statistics for each unique building. The tool is shown below: Here I ve specified my intersected building/lidar point set as the input, an output table, and the field, statistics, and case attribute. I am calculating the mean height for the building. You might argue I want the tallest point for a building, but most roofs don t vary much in height, and I was concerned that a building might have a tower or scaffold on top, and hence get the a large error. For tree canopies, a maximum statistic would probably make more sense. Running this creates an output table: Note there is a mean height for each case of the building ID. I can then simply join this to my building layer by 7

8 the ID column, and copy/save the joined file to get my height for each building. There are some nuances in applying. Multi- leveled buildings may have to be split into the various pieces, and the heights calculated separately to make much sense. If the building footprints are too large, or there are many errors in classification, then there may be a bit of bias downward. Generally, these errors appear to be small in our application, and this measurement is good enough for our use. Perform these processing steps for both the buildings and the canopy data layer, so that each feature has a LiDAR height. As noted earlier, you should probably calculate the maximum statistic in for the canopy data layer, and the mean statistics for the buildings layer, but evaluate and decide for yourself. Turn in a map of showing your subset LiDAR data for your project area, your building polygon, and label each building with your calculated average building heights. Use an image for the background, either one of the high resolution images on the class drive, or one of the WMS layers. Include the usual title, legend, scale, and other standard map elements. Do this same exercise for the trees in your project area. Again, create and turn in a second map of your results, with an image background, the tree polygons, labeled by height. 8

Introduction to LiDAR

Introduction to LiDAR Introduction to LiDAR Our goals here are to introduce you to LiDAR data, to show you how to download it for an area of interest, and to better understand the data and uses through some simple manipulations.

More information

Introduction to LiDAR

Introduction to LiDAR Introduction to LiDAR Our goals here are to introduce you to LiDAR data, to show you how to download it for an area of interest, and to better understand the data and uses through some simple manipulations.

More information

Lecture 23 - LiDAR. GEOL 452/552 - GIS for Geoscientists I. Scanning Lidar. 30 m DEM. Lidar representations:

Lecture 23 - LiDAR. GEOL 452/552 - GIS for Geoscientists I. Scanning Lidar. 30 m DEM. Lidar representations: GEOL 452/552 - GIS for Geoscientists I Lecture 23 - LiDAR LiDAR - some background (thanks to Chris Kahle, DNR) Converting Lidar point data to a raster Look at online lidar data for Iowa (1m hillshaded)

More information

GIS Fundamentals: Supplementary Lessons with ArcGIS Pro

GIS Fundamentals: Supplementary Lessons with ArcGIS Pro Station Analysis (parts 1 & 2) What You ll Learn: - Practice various skills using ArcMap. - Combining parcels, land use, impervious surface, and elevation data to calculate suitabilities for various uses

More information

Exercise 4: Extracting Information from DEMs in ArcMap

Exercise 4: Extracting Information from DEMs in ArcMap Exercise 4: Extracting Information from DEMs in ArcMap Introduction This exercise covers sample activities for extracting information from DEMs in ArcMap. Topics include point and profile queries and surface

More information

Lab 11: Terrain Analyses

Lab 11: Terrain Analyses Lab 11: Terrain Analyses What You ll Learn: Basic terrain analysis functions, including watershed, viewshed, and profile processing. There is a mix of old and new functions used in this lab. We ll explain

More information

Field-Scale Watershed Analysis

Field-Scale Watershed Analysis Conservation Applications of LiDAR Field-Scale Watershed Analysis A Supplemental Exercise for the Hydrologic Applications Module Andy Jenks, University of Minnesota Department of Forest Resources 2013

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Videos that show how to copy/paste data

More information

Lab 3: Digitizing in ArcMap

Lab 3: Digitizing in ArcMap Lab 3: Digitizing in ArcMap What You ll Learn: In this Lab you ll be introduced to basic digitizing techniques using ArcMap. You should read Chapter 4 in the GIS Fundamentals textbook before starting this

More information

Lidar and GIS: Applications and Examples. Dan Hedges Clayton Crawford

Lidar and GIS: Applications and Examples. Dan Hedges Clayton Crawford Lidar and GIS: Applications and Examples Dan Hedges Clayton Crawford Outline Data structures, tools, and workflows Assessing lidar point coverage and sample density Creating raster DEMs and DSMs Data area

More information

Point Cloud Classification

Point Cloud Classification Point Cloud Classification Introduction VRMesh provides a powerful point cloud classification and feature extraction solution. It automatically classifies vegetation, building roofs, and ground points.

More information

The Reference Library Generating Low Confidence Polygons

The Reference Library Generating Low Confidence Polygons GeoCue Support Team In the new ASPRS Positional Accuracy Standards for Digital Geospatial Data, low confidence areas within LIDAR data are defined to be where the bare earth model might not meet the overall

More information

Lab 11: Terrain Analyses

Lab 11: Terrain Analyses Lab 11: Terrain Analyses What You ll Learn: Basic terrain analysis functions, including watershed, viewshed, and profile processing. There is a mix of old and new functions used in this lab. We ll explain

More information

INTRODUCTION TO GIS WORKSHOP EXERCISE

INTRODUCTION TO GIS WORKSHOP EXERCISE 111 Mulford Hall, College of Natural Resources, UC Berkeley (510) 643-4539 INTRODUCTION TO GIS WORKSHOP EXERCISE This exercise is a survey of some GIS and spatial analysis tools for ecological and natural

More information

Basic Queries Exercise - Haiti

Basic Queries Exercise - Haiti Basic Queries Exercise - Haiti Written by Barbara Parmenter, revised by Carolyn Talmadge on September 18, 2016 SETTING UP... 1 WHERE ARE THE HOSPITALS THAT ARE STILL OPERATING? (SELECT BY ATTRIBUTE )...

More information

Lab 3: Digitizing in ArcGIS Pro

Lab 3: Digitizing in ArcGIS Pro Lab 3: Digitizing in ArcGIS Pro What You ll Learn: In this Lab you ll be introduced to basic digitizing techniques using ArcGIS Pro. You should read Chapter 4 in the GIS Fundamentals textbook before starting

More information

I CALCULATIONS WITHIN AN ATTRIBUTE TABLE

I CALCULATIONS WITHIN AN ATTRIBUTE TABLE Geology & Geophysics REU GPS/GIS 1-day workshop handout #4: Working with data in ArcGIS You will create a raster DEM by interpolating contour data, create a shaded relief image, and pull data out of the

More information

MODULE 1 BASIC LIDAR TECHNIQUES

MODULE 1 BASIC LIDAR TECHNIQUES MODULE SCENARIO One of the first tasks a geographic information systems (GIS) department using lidar data should perform is to check the quality of the data delivered by the data provider. The department

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

1. LiDAR System Description and Specifications

1. LiDAR System Description and Specifications High Point Density LiDAR Survey of Mayapan, MX PI: Timothy S. Hare, Ph.D. Timothy S. Hare, Ph.D. Associate Professor of Anthropology Institute for Regional Analysis and Public Policy Morehead State University

More information

GIS Tools for Hydrology and Hydraulics

GIS Tools for Hydrology and Hydraulics 1 OUTLINE GIS Tools for Hydrology and Hydraulics INTRODUCTION Good afternoon! Welcome and thanks for coming. I once heard GIS described as a high-end Swiss Army knife: lots of tools in one little package

More information

Using LIDAR to Design Embankments in ArcGIS. Written by Scott Ralston U.S. Fish & Wildlife Service Windom Wetland Management District

Using LIDAR to Design Embankments in ArcGIS. Written by Scott Ralston U.S. Fish & Wildlife Service Windom Wetland Management District Using LIDAR to Design Embankments in ArcGIS Written by Scott Ralston U.S. Fish & Wildlife Service Windom Wetland Management District This tutorial covers the basics of how to design a dike, embankment

More information

Creating raster DEMs and DSMs from large lidar point collections. Summary. Coming up with a plan. Using the Point To Raster geoprocessing tool

Creating raster DEMs and DSMs from large lidar point collections. Summary. Coming up with a plan. Using the Point To Raster geoprocessing tool Page 1 of 5 Creating raster DEMs and DSMs from large lidar point collections ArcGIS 10 Summary Raster, or gridded, elevation models are one of the most common GIS data types. They can be used in many ways

More information

This will display various panes in a window.

This will display various panes in a window. Map Map projections in ArcMap can be a bit confusing, because the program often automatically reprojects data for display, and there are a ways to permanently project data to new data sets. This describes

More information

GIS LAB 8. Raster Data Applications Watershed Delineation

GIS LAB 8. Raster Data Applications Watershed Delineation GIS LAB 8 Raster Data Applications Watershed Delineation This lab will require you to further your familiarity with raster data structures and the Spatial Analyst. The data for this lab are drawn from

More information

Alaska Department of Transportation Roads to Resources Project LiDAR & Imagery Quality Assurance Report Juneau Access South Corridor

Alaska Department of Transportation Roads to Resources Project LiDAR & Imagery Quality Assurance Report Juneau Access South Corridor Alaska Department of Transportation Roads to Resources Project LiDAR & Imagery Quality Assurance Report Juneau Access South Corridor Written by Rick Guritz Alaska Satellite Facility Nov. 24, 2015 Contents

More information

Data Assembly, Part II. GIS Cyberinfrastructure Module Day 4

Data Assembly, Part II. GIS Cyberinfrastructure Module Day 4 Data Assembly, Part II GIS Cyberinfrastructure Module Day 4 Objectives Continuation of effective troubleshooting Create shapefiles for analysis with buffers, union, and dissolve functions Calculate polygon

More information

Chapter 17 Creating a New Suit from Old Cloth: Manipulating Vector Mode Cartographic Data

Chapter 17 Creating a New Suit from Old Cloth: Manipulating Vector Mode Cartographic Data Chapter 17 Creating a New Suit from Old Cloth: Manipulating Vector Mode Cartographic Data Imagine for a moment that digital cartographic databases were a perfect analog of the paper map. Once you digitized

More information

GeoEarthScope NoCAL San Andreas System LiDAR pre computed DEM tutorial

GeoEarthScope NoCAL San Andreas System LiDAR pre computed DEM tutorial GeoEarthScope NoCAL San Andreas System LiDAR pre computed DEM tutorial J Ramón Arrowsmith Chris Crosby School of Earth and Space Exploration Arizona State University ramon.arrowsmith@asu.edu http://lidar.asu.edu

More information

OPTIONAL EXERCISE 2 Creating a Fusion Project Part B

OPTIONAL EXERCISE 2 Creating a Fusion Project Part B OPTIONAL EXERCISE 2 Creating a Fusion Project Part B Objective Last Updated: April, 2016 Version: Fusion 3.50 This exercise continues with the creation of a Fusion project. In the last exercise you: examined

More information

An Introduction to Using Lidar with ArcGIS and 3D Analyst

An Introduction to Using Lidar with ArcGIS and 3D Analyst FedGIS Conference February 24 25, 2016 Washington, DC An Introduction to Using Lidar with ArcGIS and 3D Analyst Jim Michel Outline Lidar Intro Lidar Management Las files Laz, zlas, conversion tools Las

More information

EXERCISE 2: GETTING STARTED WITH FUSION

EXERCISE 2: GETTING STARTED WITH FUSION Document Updated: May, 2010 Fusion v2.8 Introduction In this exercise, you ll be using the fully-prepared example data to explore the basics of FUSION. Prerequisites Successful completion of Exercise 1

More information

Lab 3. Introduction to GMT and Digitizing in ArcGIS

Lab 3. Introduction to GMT and Digitizing in ArcGIS Lab 3. Introduction to GMT and Digitizing in ArcGIS GEY 430/630 GIS Theory and Application Purpose: To learn how to use GMT to make basic maps and learn basic digitizing techniques when collecting data

More information

Raster Data Model & Analysis

Raster Data Model & Analysis Topics: 1. Understanding Raster Data 2. Adding and displaying raster data in ArcMap 3. Converting between floating-point raster and integer raster 4. Converting Vector data to Raster 5. Querying Raster

More information

Minnesota Department of Natural Resources ArcView Utilities Extension User s Guide

Minnesota Department of Natural Resources ArcView Utilities Extension User s Guide Introduction This document describes the functionality and use of the ArcView Utilities extension for the ArcView desktop GIS software. These tools were developed out of the need for additional geoprocessing

More information

Lab 7: Tables Operations in ArcMap

Lab 7: Tables Operations in ArcMap Lab 7: Tables Operations in ArcMap What You ll Learn: This Lab provides more practice with tabular data management in ArcMap. In this Lab, we will view, select, re-order, and update tabular data. You should

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Data for the exercise are in the L12 subdirectory.

More information

The following sections provide step by step guidance on using the Toe Extractor. 2.1 Creating an Instance of the Toe Extractor Point Cloud Task

The following sections provide step by step guidance on using the Toe Extractor. 2.1 Creating an Instance of the Toe Extractor Point Cloud Task , Tips, and Workflows LP360, versions 2015.1 and above l support@lp360.com 11/8/2016 Revision 1.0 1 Introduction LP360 includes a Point Cloud Task (PCT) that will automatically digitize the toe of a clean

More information

Object Based Image Analysis: Introduction to ecognition

Object Based Image Analysis: Introduction to ecognition Object Based Image Analysis: Introduction to ecognition ecognition Developer 9.0 Description: We will be using ecognition and a simple image to introduce students to the concepts of Object Based Image

More information

Basics of Using LiDAR Data

Basics of Using LiDAR Data Conservation Applications of LiDAR Basics of Using LiDAR Data Exercise #2: Raster Processing 2013 Joel Nelson, University of Minnesota Department of Soil, Water, and Climate This exercise was developed

More information

APPENDIX E2. Vernal Pool Watershed Mapping

APPENDIX E2. Vernal Pool Watershed Mapping APPENDIX E2 Vernal Pool Watershed Mapping MEMORANDUM To: U.S. Fish and Wildlife Service From: Tyler Friesen, Dudek Subject: SSHCP Vernal Pool Watershed Analysis Using LIDAR Data Date: February 6, 2014

More information

Exercise 1: Introduction to LiDAR Point Cloud Data using the Fusion Software Package

Exercise 1: Introduction to LiDAR Point Cloud Data using the Fusion Software Package Exercise 1: Introduction to LiDAR Point Cloud Data using the Fusion Software Package Christopher Crosby, San Diego Supercomputer Center / OpenTopography (Adapted from tutorial by Ian Madin, DOGAMI) Last

More information

Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations,

Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations, Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations, readings, and hands on GIS lab exercises. Following the last

More information

Ex. 4: Locational Editing of The BARC

Ex. 4: Locational Editing of The BARC Ex. 4: Locational Editing of The BARC Using the BARC for BAER Support Document Updated: April 2010 These exercises are written for ArcGIS 9.x. Some steps may vary slightly if you are working in ArcGIS

More information

Digital Photogrammetric System. Version 6.3 USER MANUAL. LIDAR Data processing

Digital Photogrammetric System. Version 6.3 USER MANUAL. LIDAR Data processing Digital Photogrammetric System Version 6.3 USER MANUAL Table of Contents 1. About... 3 2. Import of LIDAR data... 3 3. Load LIDAR data window... 4 4. LIDAR data loading and displaying... 6 5. Splitting

More information

LiDAR Derived Contours

LiDAR Derived Contours LiDAR Derived Contours Final Delivery June 10, 2009 Prepared for: Prepared by: Metro 600 NE Grand Avenue Portland, OR 97232 Watershed Sciences, Inc. 529 SW Third Avenue, Suite 300 Portland, OR 97204 Metro

More information

An Introduction to Lidar & Forestry May 2013

An Introduction to Lidar & Forestry May 2013 An Introduction to Lidar & Forestry May 2013 Introduction to Lidar & Forestry Lidar technology Derivatives from point clouds Applied to forestry Publish & Share Futures Lidar Light Detection And Ranging

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Data for the exercise are found in the

More information

Existing Elevation Data Sets. Quality Level 2 (QL2) Lidar Data Sets. Better Land Characterization More Accurate Results!

Existing Elevation Data Sets. Quality Level 2 (QL2) Lidar Data Sets. Better Land Characterization More Accurate Results! Existing Elevation Data Sets Out of Date: Most > 40 yrs old Data range from 15 yrs old to > 70 yrs old Spatial Resolution: 33 ft (10 m) or coarser Vertical Accuracy: 3.3 ft 6.6 ft (1 2 m) or worse Quality

More information

Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014 Digital Surface Model and Digital Terrain Model

Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014 Digital Surface Model and Digital Terrain Model Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014 Digital Surface Model and Digital Terrain Model User Guide Provincial Mapping Unit Mapping and Information Resources Branch Corporate Management

More information

Exercise 4: Import Tabular GPS Data and Digitizing

Exercise 4: Import Tabular GPS Data and Digitizing Exercise 4: Import Tabular GPS Data and Digitizing You can create NEW GIS data layers by digitizing on screen with an aerial photograph or other image as a back-drop. You can also digitize using imported

More information

Watershed Analysis and A Look Ahead

Watershed Analysis and A Look Ahead Watershed Analysis and A Look Ahead 1 2 Specific Storm Flow to Grate What data do you need? Watershed boundaries for each storm sewer Net flow generated from each point across the landscape Elevation Fill

More information

Lecture 21 - Chapter 8 (Raster Analysis, part2)

Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I Lecture 21 - Chapter 8 (Raster Analysis, part2) Today: Digital Elevation Models (DEMs), Topographic functions (surface analysis): slope, aspect hillshade, viewshed,

More information

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line.

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line. Lecture 06 Raster and Vector Data Models Part (1) 1 Common Data Models Vector Raster Y Points Points ( x,y ) Line Area Line Area 2 X 1 3 Raster uses a grid cell structure Vector is more like a drawn map

More information

Final project: Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I

Final project: Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I GEOL 452/552 - GIS for Geoscientists I Lecture 21 - Chapter 8 (Raster Analysis, part2) Talk about class project (copy follow_along_data\ch8a_class_ex into U:\ArcGIS\ if needed) Catch up with lecture 20

More information

Municipal Projects in Cambridge Using a LiDAR Dataset. NEURISA Day 2012 Sturbridge, MA

Municipal Projects in Cambridge Using a LiDAR Dataset. NEURISA Day 2012 Sturbridge, MA Municipal Projects in Cambridge Using a LiDAR Dataset NEURISA Day 2012 Sturbridge, MA October 15, 2012 Jeff Amero, GIS Manager, City of Cambridge Presentation Overview Background on the LiDAR dataset Solar

More information

Name: Date: June 27th, 2011 GIS Boot Camps For Educators Lecture_3

Name: Date: June 27th, 2011 GIS Boot Camps For Educators Lecture_3 Name: Date: June 27th, 2011 GIS Boot Camps For Educators Lecture_3 Practical: Creating and Editing Shapefiles Using Straight, AutoComplete and Cut Polygon Tools Use ArcCatalog to copy data files from:

More information

Masking Lidar Cliff-Edge Artifacts

Masking Lidar Cliff-Edge Artifacts Masking Lidar Cliff-Edge Artifacts Methods 6/12/2014 Authors: Abigail Schaaf is a Remote Sensing Specialist at RedCastle Resources, Inc., working on site at the Remote Sensing Applications Center in Salt

More information

Understanding Geospatial Data Models

Understanding Geospatial Data Models Understanding Geospatial Data Models 1 A geospatial data model is a formal means of representing spatially referenced information. It is a simplified view of physical entities and a conceptualization of

More information

Assembling Datasets for Species Distribution Models. GIS Cyberinfrastructure Course Day 3

Assembling Datasets for Species Distribution Models. GIS Cyberinfrastructure Course Day 3 Assembling Datasets for Species Distribution Models GIS Cyberinfrastructure Course Day 3 Objectives Assemble specimen-level data and associated covariate information for use in a species distribution model

More information

USING CCCR S AERIAL PHOTOGRAPHY IN YOUR OWN GIS

USING CCCR S AERIAL PHOTOGRAPHY IN YOUR OWN GIS USING CCCR S AERIAL PHOTOGRAPHY IN YOUR OWN GIS Background: In 2006, the Centre for Catchment and Coastal Research purchased 40 cm resolution aerial photography for the whole of Wales. This product was

More information

MARS v Release Notes Revised: May 23, 2018 (Builds and )

MARS v Release Notes Revised: May 23, 2018 (Builds and ) MARS v2018.0 Release Notes Revised: May 23, 2018 (Builds 8302.01 8302.18 and 8350.00 8352.00) Contents New Features:... 2 Enhancements:... 6 List of Bug Fixes... 13 1 New Features: LAS Up-Conversion prompts

More information

v Working with Rasters SMS 12.1 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial

v Working with Rasters SMS 12.1 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial v. 12.1 SMS 12.1 Tutorial Objectives This tutorial teaches how to import a Raster, view elevations at individual points, change display options for multiple views of the data, show the 2D profile plots,

More information

Converting AutoCAD Map 2002 Projects to ArcGIS

Converting AutoCAD Map 2002 Projects to ArcGIS Introduction This document outlines the procedures necessary for converting an AutoCAD Map drawing containing topologies to ArcGIS version 9.x and higher. This includes the export of polygon and network

More information

NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN

NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN OVERVIEW National point clouds Airborne laser scanning in the Netherlands Quality control Developments in lidar

More information

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid v. 10.1 WMS 10.1 Tutorial GSSHA Modeling Basics Developing a GSSHA Model Using the Hydrologic Modeling Wizard in WMS Learn how to setup a basic GSSHA model using the hydrologic modeling wizard Objectives

More information

Lab 8: More Spatial Selection, Importing, Joining Tables

Lab 8: More Spatial Selection, Importing, Joining Tables Lab 8: More Spatial Selection, Importing, Joining Tables What You ll Learn: This lesson introduces spatial selection, importing text, combining rows, and joins. You should have read, and be ready to refer

More information

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O TOPICS COVERED Spatial Analyst basics Raster / Vector conversion Raster data

More information

Airborne Laser Scanning: Remote Sensing with LiDAR

Airborne Laser Scanning: Remote Sensing with LiDAR Airborne Laser Scanning: Remote Sensing with LiDAR ALS / LIDAR OUTLINE Laser remote sensing background Basic components of an ALS/LIDAR system Two distinct families of ALS systems Waveform Discrete Return

More information

Files Used in this Tutorial

Files Used in this Tutorial Generate Point Clouds and DSM Tutorial This tutorial shows how to generate point clouds and a digital surface model (DSM) from IKONOS satellite stereo imagery. You will view the resulting point clouds

More information

EXERCISE 7: CREATING A FUSION PROJECT PART 2

EXERCISE 7: CREATING A FUSION PROJECT PART 2 Document Updated: January, 2009 Fusion ver2.65 Important: leave the symbol set to none. Introduction This exercise continues with the creation of a Fusion project. In the last exercise you: examined the

More information

Rogue River LIDAR Project, 2012 Delivery 1 QC Analysis LIDAR QC Report September 6 th, 2012

Rogue River LIDAR Project, 2012 Delivery 1 QC Analysis LIDAR QC Report September 6 th, 2012 O R E G O N D E P A R T M E N T O F G E O L O G Y A N D M I N E R A L I N D U S T R I E S OLC Rogue River Delivery 1 Acceptance Report. Department of Geology & Mineral Industries 800 NE Oregon St, Suite

More information

Converting Lidar Data to Shapefile and Raster File Format for Analysis and Viewing

Converting Lidar Data to Shapefile and Raster File Format for Analysis and Viewing Converting Lidar Data to Shapefile and Raster File Format for Analysis and Viewing 1. Create a File Based Geodatabase Open ArcCatolog and right click under contents and click New and File Geodatabase where

More information

Steps for Modeling a Proposed New Reservoir in GIS

Steps for Modeling a Proposed New Reservoir in GIS Steps for Modeling a Proposed New Reservoir in GIS Requirements: ArcGIS ArcMap, ArcScene, Spatial Analyst, and 3D Analyst There s a new reservoir proposed for Right Hand Fork in Logan Canyon. I wanted

More information

The GIS Spatial Data Model

The GIS Spatial Data Model The GIS Spatial Data Model Introduction: Spatial data are what drive a GIS. Every piece of functionality that makes a GIS separate from another analytical environment is rooted in the spatially explicit

More information

2010 LiDAR Project. GIS User Group Meeting June 30, 2010

2010 LiDAR Project. GIS User Group Meeting June 30, 2010 2010 LiDAR Project GIS User Group Meeting June 30, 2010 LiDAR = Light Detection and Ranging Technology that utilizes lasers to determine the distance to an object or surface Measures the time delay between

More information

Digital Elevation Model & Surface Analysis

Digital Elevation Model & Surface Analysis Topics: Digital Elevation Model & Surface Analysis 1. Introduction 2. Create raster DEM 3. Examine Lidar DEM 4. Deriving secondary surface products 5. Mapping contours 6. Viewshed Analysis 7. Extract elevation

More information

GIS OPERATION MANUAL

GIS OPERATION MANUAL GIS OPERATION MANUAL 1. Computer System Description Hardware Make Compaq Presario 5004 CPU AMD Athlon 1.1 Ghz Main Memory 640MB CD-ROM 52 X CD-RW 8 X HD 57GB Monitor 19 inch Video Adapter 16 Mb Nvidia

More information

In this lab, you will create two maps. One map will show two different projections of the same data.

In this lab, you will create two maps. One map will show two different projections of the same data. Projection Exercise Part 2 of 1.963 Lab for 9/27/04 Introduction In this exercise, you will work with projections, by re-projecting a grid dataset from one projection into another. You will create a map

More information

Delineating Watersheds from a Digital Elevation Model (DEM)

Delineating Watersheds from a Digital Elevation Model (DEM) Delineating Watersheds from a Digital Elevation Model (DEM) (Using example from the ESRI virtual campus found at http://training.esri.com/courses/natres/index.cfm?c=153) Download locations for additional

More information

Esri International User Conference. July San Diego Convention Center. Lidar Solutions. Clayton Crawford

Esri International User Conference. July San Diego Convention Center. Lidar Solutions. Clayton Crawford Esri International User Conference July 23 27 San Diego Convention Center Lidar Solutions Clayton Crawford Outline Data structures, tools, and workflows Assessing lidar point coverage and sample density

More information

EXERCISE 4 Calculate Lidar Metrics

EXERCISE 4 Calculate Lidar Metrics EXERCISE 4 Calculate Lidar Metrics Objective Last Updated: April, 2016 Version: Fusion 3.50 There are three parts to this exercise. Part 1 describes the process to extract metrics from the fixed radius

More information

Central Coast LIDAR Project, 2011 Delivery 1 QC Analysis LIDAR QC Report February 17 th, 2012

Central Coast LIDAR Project, 2011 Delivery 1 QC Analysis LIDAR QC Report February 17 th, 2012 O R E G O N D E P A R T M E N T O F G E O L O G Y A N D M I N E R A L I N D U S T R I E S OLC Central Coast Delivery 1 Acceptance Report. Department of Geology & Mineral Industries 800 NE Oregon St, Suite

More information

Lab 11: Terrain Analysis

Lab 11: Terrain Analysis Lab 11: Terrain Analysis What You ll Learn: Basic terrain analysis functions, including watershed, viewshed, and profile processing. You should read chapter 11 in the GIS Fundamentals textbook before performing

More information

Overview. 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes)

Overview. 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes) Overview 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes) 4. Aerial lidar technology advancements (15 minutes) 5. Q & A 1. Aerial

More information

Module 7 Raster operations

Module 7 Raster operations Introduction Geo-Information Science Practical Manual Module 7 Raster operations 7. INTRODUCTION 7-1 LOCAL OPERATIONS 7-2 Mathematical functions and operators 7-5 Raster overlay 7-7 FOCAL OPERATIONS 7-8

More information

Lab 5: Image Analysis with ArcGIS 10 Unsupervised Classification

Lab 5: Image Analysis with ArcGIS 10 Unsupervised Classification Lab 5: Image Analysis with ArcGIS 10 Unsupervised Classification Peter E. Price TerraView 2010 Peter E. Price All rights reserved Revised 03/2011 Revised for Geob 373 by BK Feb 28, 2017. V3 The information

More information

LiDAR QA/QC - Quantitative and Qualitative Assessment report -

LiDAR QA/QC - Quantitative and Qualitative Assessment report - LiDAR QA/QC - Quantitative and Qualitative Assessment report - CT T0009_LiDAR September 14, 2007 Submitted to: Roald Haested Inc. Prepared by: Fairfax, VA EXECUTIVE SUMMARY This LiDAR project covered approximately

More information

The Volume and Extent of the Lake Created by the Bridge of the Gods, Colombia River

The Volume and Extent of the Lake Created by the Bridge of the Gods, Colombia River Rachel Markoff 12/1/2011 GEO 327G/386G Term Project The Volume and Extent of the Lake Created by the Bridge of the Gods, Colombia River 1. Introduction The Bonneville Landslide occurred on the Colombia

More information

Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis

Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis Module content 18.1. Creating a TIN 18.2. Spatial Analyst Viewsheds, Slopes, Hillshades and Density. 18.1 Creating a TIN Sometimes

More information

QGIS Tutorials Documentation

QGIS Tutorials Documentation QGIS Tutorials Documentation Release 0.1 Nathaniel Roth November 30, 2016 Contents 1 Installation 3 1.1 Basic Installation............................................. 3 1.2 Advanced Installation..........................................

More information

Lecture 22 - Chapter 8 (Raster Analysis, part 3)

Lecture 22 - Chapter 8 (Raster Analysis, part 3) GEOL 452/552 - GIS for Geoscientists I Lecture 22 - Chapter 8 (Raster Analysis, part 3) Today: Zonal Analysis (statistics) for polygons, lines, points, interpolation (IDW), Effects Toolbar, analysis masks

More information

PROJECT REPORT. Allegany County Acquisition and Classification for FEMA Region 3 FY 12 VA LiDAR. USGS Contract: G12PD00040.

PROJECT REPORT. Allegany County Acquisition and Classification for FEMA Region 3 FY 12 VA LiDAR. USGS Contract: G12PD00040. PROJECT REPORT For the Allegany County Acquisition and Classification for FEMA Region 3 FY 12 VA LiDAR USGS Contract: G12PD00040 Prepared for: United States Geological Survey & Federal Emergency Management

More information

Importing GPS points and Hyperlinking images.

Importing GPS points and Hyperlinking images. Geol 3050 GIS for Geologists Exercise 15 Exercise 15 Making a Virtual Fieldtrip: Importing GPS points and Hyperlinking images. Due: Thursday, March 22. Goal: A) Get familiar with importing GPS points and

More information

GIS Workshop Spring 2016

GIS Workshop Spring 2016 1/ 14 GIS Geographic Information System. An integrated collection of computer software and data used to view and manage information about geographic places, analyze spatial relationships, and model spatial

More information

FOR 274: Surfaces from Lidar. Lidar DEMs: Understanding the Returns. Lidar DEMs: Understanding the Returns

FOR 274: Surfaces from Lidar. Lidar DEMs: Understanding the Returns. Lidar DEMs: Understanding the Returns FOR 274: Surfaces from Lidar LiDAR for DEMs The Main Principal Common Methods Limitations Readings: See Website Lidar DEMs: Understanding the Returns The laser pulse travel can travel through trees before

More information

Lab 9. Julia Janicki. Introduction

Lab 9. Julia Janicki. Introduction Lab 9 Julia Janicki Introduction My goal for this project is to map a general land cover in the area of Alexandria in Egypt using supervised classification, specifically the Maximum Likelihood and Support

More information

Module: Rasters. 8.1 Lesson: Working with Raster Data Follow along: Loading Raster Data CHAPTER 8

Module: Rasters. 8.1 Lesson: Working with Raster Data Follow along: Loading Raster Data CHAPTER 8 CHAPTER 8 Module: Rasters We ve used rasters for digitizing before, but raster data can also be used directly. In this module, you ll see how it s done in QGIS. 8.1 Lesson: Working with Raster Data Raster

More information

COMPUTING SOLAR ENERGY POTENTIAL OF URBAN AREAS USING AIRBORNE LIDAR AND ORTHOIMAGERY

COMPUTING SOLAR ENERGY POTENTIAL OF URBAN AREAS USING AIRBORNE LIDAR AND ORTHOIMAGERY COMPUTING SOLAR ENERGY POTENTIAL OF URBAN AREAS USING AIRBORNE LIDAR AND ORTHOIMAGERY Ryan Hippenstiel The Pennsylvania State University John A. Dutton e-education Institute 2217 Earth & Engineering Sciences

More information