Simple Formulas for Quasiconformal Plane Deformations

Size: px
Start display at page:

Download "Simple Formulas for Quasiconformal Plane Deformations"

Transcription

1 Simple Formulas for Quasiconformal Plane Deformations by Yaron Lipman, Vladimir Kim, and Thomas Funkhouser ACM TOG 212 Stephen Mann

2 Planar Shape Deformations Used in Mesh parameterization Animation shape interpolation others

3 Planar Shape Deformations Used in Mesh parameterization Animation shape interpolation others Issues Distort shape Bijective? Interpolation issues

4 Planar Shape Deformations Used in Mesh parameterization Animation shape interpolation others Issues Distort shape Bijective? Interpolation issues Conformal maps Preserve angles everywhere Bounded distortion: quasiconformal

5 Main Ideas Map four points to four points (interpolation) f

6 Main Ideas Map four points to four points (interpolation) Embed quads in circular grid f

7 Main Ideas Map four points to four points (interpolation) Embed quads in circular grid Map circular grid to parallelograms f m z m w

8 Main Ideas Map four points to four points (interpolation) Embed quads in circular grid Map circular grid to parallelograms Map parallelograms to each other f m z m 1 w A Map is f = m z A m 1 w

9 Circles Through Four Points Through 4 points, there exists unique 5th point z such that There exist four circles through consecutive points and z Opposite circles osculate z is outside z

10 Mobius Transformations Work in complex plane Construct a Mobius transformation to map quad to parallelogram m(z) = az + b, ad bc cz + d z m(z) (basically, map circles to lines, z to )

11 Details Look for Mobius transform that maps to parallelogram and linear transformation from square to same parallelogram: m z (z j ) = L(g j ), j = 1..4 where z j are four points, g j are corners of square

12 Details Look for Mobius transform that maps to parallelogram and linear transformation from square to same parallelogram: m z (z j ) = L(g j ), j = 1..4 where z j are four points, g j are corners of square Expand: az j + b cz j + d = g j + lg j, j = 1..4

13 Details Look for Mobius transform that maps to parallelogram and linear transformation from square to same parallelogram: m z (z j ) = L(g j ), j = 1..4 where z j are four points, g j are corners of square Expand: az j + b cz j + d = g j + lg j, j = 1..4 Multiply both sides by cz j + d gives 4 nonlinear equations in 5 unknowns (a, b, c, d, l) [ Z 1 ZG G ZG G ] (a, b, c, d, lc, ld) T =

14 Details Look for Mobius transform that maps to parallelogram and linear transformation from square to same parallelogram: m z (z j ) = L(g j ), j = 1..4 where z j are four points, g j are corners of square Expand: az j + b cz j + d = g j + lg j, j = 1..4 Multiply both sides by cz j + d gives 4 nonlinear equations in 5 unknowns (a, b, c, d, l) [ Z 1 ZG G ZG G ] (a, b, c, d, lc, ld) T = Solve using SVD and roots of degree 2 equation

15 Implementation Implemented in Octave (SVD, complex numbers, bad documentation)

16 Implementation Implemented in Octave (SVD, complex numbers, bad documentation) About 45 lines of code (plus testing, application code)

17 Implementation Implemented in Octave (SVD, complex numbers, bad documentation) About 45 lines of code (plus testing, application code) 4 8 hours work (errors, vagueness in paper, Octave struggles)

18 Implementation Implemented in Octave (SVD, complex numbers, bad documentation) About 45 lines of code (plus testing, application code) 4 8 hours work (errors, vagueness in paper, Octave struggles) Simple examples seem okay

19 Implementation Implemented in Octave (SVD, complex numbers, bad documentation) About 45 lines of code (plus testing, application code) 4 8 hours work (errors, vagueness in paper, Octave struggles) Simple examples seem okay...

20 Implementation Implemented in Octave (SVD, complex numbers, bad documentation) About 45 lines of code (plus testing, application code) 4 8 hours work (errors, vagueness in paper, Octave struggles) Simple examples seem okay...

21 Circle Examples Circle examples mixed (red: invalid data)

22 Restrictions on Deformation Paper mentions two restrictions: ad bc Counter-clockwise order Does not discuss boundary cases Does not discuss how restrictive conditions are

23 Restrictions on Deformation Paper mentions two restrictions: ad bc Counter-clockwise order Does not discuss boundary cases Does not discuss how restrictive conditions are Invalid circle examples give some feel

24 Restrictions on Deformation Paper mentions two restrictions: ad bc Counter-clockwise order Does not discuss boundary cases Does not discuss how restrictive conditions are Invalid circle examples give some feel Paper is big on circle not crossing using their method...

25 Restrictions on Deformation Paper mentions two restrictions: ad bc Counter-clockwise order Does not discuss boundary cases Does not discuss how restrictive conditions are Invalid circle examples give some feel Paper is big on circle not crossing using their method......but limits on where you can move points.

26 Restrictions on Deformation Paper mentions two restrictions: ad bc Counter-clockwise order Does not discuss boundary cases Does not discuss how restrictive conditions are Invalid circle examples give some feel Paper is big on circle not crossing using their method......but limits on where you can move points. And is not crossing good? Overly restrictive? Was circle a strawman example?

27 Local Version Deformation is global Very large distortion outside of quad

28 Local Version Deformation is global Very large distortion outside of quad Authors developed a local version Restricted operations Move opposite edges (i.e., to get a bend) Move one point (two edges left unchanged)

29 Local Version Deformation is global Very large distortion outside of quad Authors developed a local version Restricted operations Move opposite edges (i.e., to get a bend) Move one point (two edges left unchanged) Used variation on method that leaves solid edges unchanged (in f = m z A mw 1, use different A ; higher distortion) More engineering than math

30 Details Working with images of Mobius functions (parallelograms): Sample points on fixed edges Also sample δ inside fixed edges

31 Details Working with images of Mobius functions (parallelograms): Sample points on fixed edges Also sample δ inside fixed edges Map points to parallelograms m z m w c j d j

32 Details Working with images of Mobius functions (parallelograms): Sample points on fixed edges Also sample δ inside fixed edges Map points to parallelograms Use thin-plate splines to construct transformation to map z points onto w points m z m w c j d j ϕ(z) = j b j φ( z c j ) + A(z) ϕ(c j ) = d j

33 How To Solve ϕ(z) = j b jφ( z c j ) + A(z) Paper says done in a standard way and cites a book

34 How To Solve ϕ(z) = j b jφ( z c j ) + A(z) Paper says done in a standard way and cites a book I tried my own way (we have A, just solve part as linear system)

35 How To Solve ϕ(z) = j b jφ( z c j ) + A(z) Paper says done in a standard way and cites a book I tried my own way (we have A, just solve part as linear system)

36 How To Solve ϕ(z) = j b jφ( z c j ) + A(z) Paper says done in a standard way and cites a book I tried my own way (we have A, just solve part as linear system) Looked up map in book: it is standard. And brief: [ ] [ ] [ ] φ( ci c j ) P(c j ) bj dj P(c j ) T = A (Last page of paper 1/3 blank)

37 How To Solve ϕ(z) = j b jφ( z c j ) + A(z) Paper says done in a standard way and cites a book I tried my own way (we have A, just solve part as linear system) Looked up map in book: it is standard. And brief: [ ] [ ] [ ] φ( ci c j ) P(c j ) bj dj P(c j ) T = A (Last page of paper 1/3 blank)

38 Example

39 Example

40 Maps for Example (upside down, reverse order, inorder)

41 Another Example

42 Another Example

43 Map for Example

44 Other Radial Basis Functions? Thin plate splines: minimum solution of distance to affine map? Tried r 3 and 1/(r 2 + ɛ) Conformal Thin Plate r 2 log r r 3 Thin plate is less deformed in some places

45 Radial basis function: 1/(r 2 + ɛ) Thin Plate r 2 log r 1/(r 2 +.5) 1/(r 2 +.5) 1 r clearly bad; thin plate probably better than 1 r 2 +.5

46 Effect of n Method to reproduce boundaries only approximates ϕ(z) = n j=1 b jφ( z c j ) + A(z) They use n = 1. What is effect of n On caterpillar example: n = n = 5 n = 1

47 Normal Points Method uses normal points to interpolate cross boundary derivatives Ran caterpillar example with and without normal points: Normal points No normal points Both

48 Which Normal Points? z α p z α+1 z β+1 p z β Paper uses p = p + nδ [ z α z β+1 p z α+1 + z β z α+1 p z α ] (which is incorrect: need to normalized by by z α+1 z α )

49 Which Normal Points? z α p z α+1 z β+1 p z β Paper uses p = p + nδ [ z α z β+1 p z α+1 + z β z α+1 p z α ] (which is incorrect: need to normalized by by z α+1 z α ) What if we use simpler p = (1 δ)p + δ p

50 Perpendicular vs Affine 35 Perpendicular 35 Affine

51 Perpendicular vs Affine Maps 35 Perpendicular 35 Affine

52 Delta Paper chose δ =.1 δ =.1 δ =.1 δ =.1 Need to test with regular textures, etc., to decide what value best (but.1 looks bad)

53 Counter-clockwise Paper says ordered in counter-clockwise fashion (different order will lead to a different map). How different?

54 Counter-clockwise Paper says ordered in counter-clockwise fashion (different order will lead to a different map). How different? Counter-clockwise

55 Counter-clockwise Paper says ordered in counter-clockwise fashion (different order will lead to a different map). How different? Clockwise

56 What matters? Out of 3 stars: *** Perpendicular vs Affine normal points *** Counter-clockwise vs clockwise ** Value of n * Thin plate vs other radial basis * Normal points * Value of delta * Method to solve for thin plate coefficients : clearly needs more investigation

57 Code Line count Global method: 45 lines of code Local method: 142 (+25) lines of code (+32) Testing, Applications: 751 lines of code (but...)

58 Code Line count Global method: 45 lines of code Local method: 142 (+25) lines of code (+32) Testing, Applications: 751 lines of code (but...) Speed

59 Code Line count Global method: 45 lines of code Local method: 142 (+25) lines of code (+32) Testing, Applications: 751 lines of code (but...) Speed Really? It s Octave...

60 Extension: Scaling In their method, distance between white points connected with solids lines is fixed

61 Extension: Scaling For perpective, might want scaling No scaling

62 Extension: Scaling For perpective, might want scaling Scaling

63 Analysis Method seems to do reasonable job. Why? Low deformation Lines map to circles avoids kinks

64 Analysis Method seems to do reasonable job. Why? Low deformation Lines map to circles avoids kinks Comparison to other methods unfair? Doesn t map quads interiors to quad interiors

65 Can you break it? Yes, but...

66 Can you break it? Yes, but... (pixel dropout due to...?)

67 Can you break it? Yes, but... (pixel dropout due to...?)

68 Straight Sections Found several cases where map is straight and bend concentrated

69 Conclusions + Slick global method Nice math, easy to implement

70 Conclusions + Slick global method Nice math, easy to implement + Local method Doesn t have guarantees of global method Not so simple

71 Conclusions + Slick global method Nice math, easy to implement + Local method Doesn t have guarantees of global method Not so simple But seems reasonable (straight sections?)

72 Conclusions + Slick global method Nice math, easy to implement + Local method Doesn t have guarantees of global method Not so simple But seems reasonable (straight sections?) Restrictions on four points not discussed Circle editing seems oversold Cherry picked examples?

73 Conclusions + Slick global method Nice math, easy to implement + Local method Doesn t have guarantees of global method Not so simple But seems reasonable (straight sections?) Restrictions on four points not discussed Circle editing seems oversold Cherry picked examples? Geometric algebra reformulation?

74 Acknowledgements Several of the figures in this talk were based on figures in the Lipman, Kim, Funkhouser paper.

Translations. Geometric Image Transformations. Two-Dimensional Geometric Transforms. Groups and Composition

Translations. Geometric Image Transformations. Two-Dimensional Geometric Transforms. Groups and Composition Geometric Image Transformations Algebraic Groups Euclidean Affine Projective Bovine Translations Translations are a simple family of two-dimensional transforms. Translations were at the heart of our Sprite

More information

(Refer Slide Time: 00:02:24 min)

(Refer Slide Time: 00:02:24 min) CAD / CAM Prof. Dr. P. V. Madhusudhan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 9 Parametric Surfaces II So these days, we are discussing the subject

More information

Barycentric Coordinates and Parameterization

Barycentric Coordinates and Parameterization Barycentric Coordinates and Parameterization Center of Mass Geometric center of object Center of Mass Geometric center of object Object can be balanced on CoM How to calculate? Finding the Center of Mass

More information

6.837 LECTURE 7. Lecture 7 Outline Fall '01. Lecture Fall '01

6.837 LECTURE 7. Lecture 7 Outline Fall '01. Lecture Fall '01 6.837 LECTURE 7 1. Geometric Image Transformations 2. Two-Dimensional Geometric Transforms 3. Translations 4. Groups and Composition 5. Rotations 6. Euclidean Transforms 7. Problems with this Form 8. Choose

More information

CSC418 / CSCD18 / CSC2504

CSC418 / CSCD18 / CSC2504 5 5.1 Surface Representations As with 2D objects, we can represent 3D objects in parametric and implicit forms. (There are also explicit forms for 3D surfaces sometimes called height fields but we will

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Geometric Queries for Ray Tracing

Geometric Queries for Ray Tracing CSCI 420 Computer Graphics Lecture 16 Geometric Queries for Ray Tracing Ray-Surface Intersection Barycentric Coordinates [Angel Ch. 11] Jernej Barbic University of Southern California 1 Ray-Surface Intersections

More information

2D and 3D Transformations AUI Course Denbigh Starkey

2D and 3D Transformations AUI Course Denbigh Starkey 2D and 3D Transformations AUI Course Denbigh Starkey. Introduction 2 2. 2D transformations using Cartesian coordinates 3 2. Translation 3 2.2 Rotation 4 2.3 Scaling 6 3. Introduction to homogeneous coordinates

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Rational Numbers and the Coordinate Plane

Rational Numbers and the Coordinate Plane Rational Numbers and the Coordinate Plane LAUNCH (8 MIN) Before How can you use the numbers placed on the grid to figure out the scale that is used? Can you tell what the signs of the x- and y-coordinates

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Contents. PART 1 Unit 1: Number Sense. Unit 2: Patterns and Algebra. Unit 3: Number Sense

Contents. PART 1 Unit 1: Number Sense. Unit 2: Patterns and Algebra. Unit 3: Number Sense Contents PART 1 Unit 1: Number Sense NS7-1 Place Value 1 NS7-2 Order of Operations 3 NS7-3 Equations 6 NS7-4 Properties of Operations 8 NS7-5 Multiplication and Division with 0 and 1 12 NS7-6 The Area

More information

2D Transforms. Lecture 4 CISC440/640 Spring Department of Computer and Information Science

2D Transforms. Lecture 4 CISC440/640 Spring Department of Computer and Information Science 2D Transforms Lecture 4 CISC440/640 Spring 2015 Department of Computer and Information Science Where are we going? A preview of assignment #1 part 2: The Ken Burns Effect 2 Where are we going? A preview

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Generalized barycentric coordinates

Generalized barycentric coordinates Generalized barycentric coordinates Michael S. Floater August 20, 2012 In this lecture, we review the definitions and properties of barycentric coordinates on triangles, and study generalizations to convex,

More information

Grade 9 Math Terminology

Grade 9 Math Terminology Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

More information

Parallel Lines Investigation

Parallel Lines Investigation Year 9 - The Maths Knowledge Autumn 1 (x, y) Along the corridor, up the stairs (3,1) x = 3 Gradient (-5,-2) (0,0) y-intercept Vertical lines are always x = y = 6 Horizontal lines are always y = Parallel

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Prime Time (Factors and Multiples)

Prime Time (Factors and Multiples) CONFIDENCE LEVEL: Prime Time Knowledge Map for 6 th Grade Math Prime Time (Factors and Multiples). A factor is a whole numbers that is multiplied by another whole number to get a product. (Ex: x 5 = ;

More information

Developmental Math An Open Program Unit 7 Geometry First Edition

Developmental Math An Open Program Unit 7 Geometry First Edition Developmental Math An Open Program Unit 7 Geometry First Edition Lesson 1 Basic Geometric Concepts and Figures TOPICS 7.1.1 Figures in 1 and 2 Dimensions 1 Identify and define points, lines, line segments,

More information

The aim is to find an average between two objects Not an average of two images of objects but an image of the average object!

The aim is to find an average between two objects Not an average of two images of objects but an image of the average object! The aim is to find an average between two objects Not an average of two images of objects but an image of the average object! How can we make a smooth transition in time? Do a weighted average over time

More information

Learning Task: Exploring Reflections and Rotations

Learning Task: Exploring Reflections and Rotations Learning Task: Exploring Reflections and Rotations Name Date Mathematical Goals Develop and demonstrate an understanding of reflections and rotations of figures in general and on a coordinate plane. Essential

More information

Geometric Transformations and Image Warping

Geometric Transformations and Image Warping Geometric Transformations and Image Warping Ross Whitaker SCI Institute, School of Computing University of Utah Univ of Utah, CS6640 2009 1 Geometric Transformations Greyscale transformations -> operate

More information

8.1 Geometric Queries for Ray Tracing

8.1 Geometric Queries for Ray Tracing Fall 2017 CSCI 420: Computer Graphics 8.1 Geometric Queries for Ray Tracing Hao Li http://cs420.hao-li.com 1 Outline Ray-Surface Intersections Special cases: sphere, polygon Barycentric coordinates 2 Outline

More information

Number- Algebra. Problem solving Statistics Investigations

Number- Algebra. Problem solving Statistics Investigations Place Value Addition, Subtraction, Multiplication and Division Fractions Position and Direction Decimals Percentages Algebra Converting units Perimeter, Area and Volume Ratio Properties of Shapes Problem

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

Planar Graphs and Surfaces. Graphs 2 1/58

Planar Graphs and Surfaces. Graphs 2 1/58 Planar Graphs and Surfaces Graphs 2 1/58 Last time we discussed the Four Color Theorem, which says that any map can be colored with at most 4 colors and not have two regions that share a border having

More information

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC Advanced Mathematics and Mechanics Applications Using MATLAB Third Edition Howard B. Wilson University of Alabama Louis H. Turcotte Rose-Hulman Institute of Technology David Halpern University of Alabama

More information

751 Problem Set I JWR. Due Sep 28, 2004

751 Problem Set I JWR. Due Sep 28, 2004 751 Problem Set I JWR Due Sep 28, 2004 Exercise 1. For any space X define an equivalence relation by x y iff here is a path γ : I X with γ(0) = x and γ(1) = y. The equivalence classes are called the path

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Discrete Geometry Processing

Discrete Geometry Processing Non Convex Boundary Convex boundary creates significant distortion Free boundary is better Some slides from the Mesh Parameterization Course (Siggraph Asia 008) 1 Fixed vs Free Boundary Fixed vs Free Boundary

More information

Measurement and Geometry (M&G3)

Measurement and Geometry (M&G3) MPM1DE Measurement and Geometry (M&G3) Please do not write in this package. Record your answers to the questions on lined paper. Make notes on new definitions such as midpoint, median, midsegment and any

More information

SPECIAL TECHNIQUES-II

SPECIAL TECHNIQUES-II SPECIAL TECHNIQUES-II Lecture 19: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Method of Images for a spherical conductor Example :A dipole near aconducting sphere The

More information

Math-2 Lesson 6-3: Area of: Triangles, rectangles, circles and Surface Area of Pyramids

Math-2 Lesson 6-3: Area of: Triangles, rectangles, circles and Surface Area of Pyramids Math- Lesson 6-3: rea of: Triangles, rectangles, circles and Surface rea of Pyramids SM: Lesson 6-3 (rea) For the following geometric shapes, how would you answer the question; how big is it? Describe

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Bending Circle Limits

Bending Circle Limits Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture Bending Circle Limits Vladimir Bulatov Corvallis Oregon, USA info@bulatov.org Abstract M.C.Escher s hyperbolic tessellations

More information

Year 9 Key Performance Indicators Maths (Number)

Year 9 Key Performance Indicators Maths (Number) Key Performance Indicators Maths (Number) M9.1 N1: I can apply the four operations to negative numbers. Raise negative numbers to a power Add and subtract negative numbers and know when the answer should

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Grade 6 Math Circles February 19th/20th. Tessellations

Grade 6 Math Circles February 19th/20th. Tessellations Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles February 19th/20th Tessellations Introduction to Tessellations tessellation is a

More information

CS 559 Computer Graphics Midterm Exam March 22, :30-3:45 pm

CS 559 Computer Graphics Midterm Exam March 22, :30-3:45 pm CS 559 Computer Graphics Midterm Exam March 22, 2010 2:30-3:45 pm This exam is closed book and closed notes. Please write your name and CS login on every page! (we may unstaple the exams for grading) Please

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Grade 7 Math Curriculum Map Erin Murphy

Grade 7 Math Curriculum Map Erin Murphy Topic 1 Algebraic Expressions and Integers 2 Weeks Summative Topic Test: SWBAT use rules to add and subtract integers, Evaluate algebraic expressions, use the order of operations, identify numerical and

More information

3D Models and Matching

3D Models and Matching 3D Models and Matching representations for 3D object models particular matching techniques alignment-based systems appearance-based systems GC model of a screwdriver 1 3D Models Many different representations

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

Unit 1, Lesson 1: Moving in the Plane

Unit 1, Lesson 1: Moving in the Plane Unit 1, Lesson 1: Moving in the Plane Let s describe ways figures can move in the plane. 1.1: Which One Doesn t Belong: Diagrams Which one doesn t belong? 1.2: Triangle Square Dance m.openup.org/1/8-1-1-2

More information

Pi at School. Arindama Singh Department of Mathematics Indian Institute of Technology Madras Chennai , India

Pi at School. Arindama Singh Department of Mathematics Indian Institute of Technology Madras Chennai , India Pi at School rindama Singh epartment of Mathematics Indian Institute of Technology Madras Chennai-600036, India Email: asingh@iitm.ac.in bstract: In this paper, an attempt has been made to define π by

More information

Review of 7 th Grade Geometry

Review of 7 th Grade Geometry Review of 7 th Grade Geometry In the 7 th Grade Geometry we have covered: 1. Definition of geometry. Definition of a polygon. Definition of a regular polygon. Definition of a quadrilateral. Types of quadrilaterals

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Comparison and affine combination of generalized barycentric coordinates for convex polygons

Comparison and affine combination of generalized barycentric coordinates for convex polygons Annales Mathematicae et Informaticae 47 (2017) pp. 185 200 http://ami.uni-eszterhazy.hu Comparison and affine combination of generalized barycentric coordinates for convex polygons Ákos Tóth Department

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Direct Variations DIRECT AND INVERSE VARIATIONS 19. Name

Direct Variations DIRECT AND INVERSE VARIATIONS 19. Name DIRECT AND INVERSE VARIATIONS 19 Direct Variations Name Of the many relationships that two variables can have, one category is called a direct variation. Use the description and example of direct variation

More information

Blacksburg, VA July 24 th 30 th, 2010 Georeferencing images and scanned maps Page 1. Georeference

Blacksburg, VA July 24 th 30 th, 2010 Georeferencing images and scanned maps Page 1. Georeference George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) Georeference The process of defining how

More information

MA 323 Geometric Modelling Course Notes: Day 31 Blended and Ruled Surfaces Coons Patches

MA 323 Geometric Modelling Course Notes: Day 31 Blended and Ruled Surfaces Coons Patches MA 323 Geometric Modelling Course Notes: Day 31 Blended and Ruled Surfaces Coons Patches David L. Finn Today, we want to start considering patches that are constructed solely by specifying the edge curves.

More information

Unit 3 Higher topic list

Unit 3 Higher topic list This is a comprehensive list of the topics to be studied for the Edexcel unit 3 modular exam. Beside the topics listed are the relevant tasks on www.mymaths.co.uk that students can use to practice. Logon

More information

Optimizing triangular meshes to have the incrircle packing property

Optimizing triangular meshes to have the incrircle packing property Packing Circles and Spheres on Surfaces Ali Mahdavi-Amiri Introduction Optimizing triangular meshes to have p g g the incrircle packing property Our Motivation PYXIS project Geometry Nature Geometry Isoperimetry

More information

Year 8 Key Performance Indicators Maths (Number)

Year 8 Key Performance Indicators Maths (Number) Key Performance Indicators Maths (Number) M8.1 N1: I can solve problems by adding, subtracting, multiplying and dividing decimals. Use correct notation for recurring decimals, know the denominators of

More information

Grade 6 Math Circles February 19th/20th

Grade 6 Math Circles February 19th/20th Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles February 19th/20th Tessellations Warm-Up What is the sum of all the angles inside

More information

3.5 Equations of Lines and Planes

3.5 Equations of Lines and Planes 3.5 Equations of Lines and Planes Objectives Iknowhowtodefinealineinthree-dimensionalspace. I can write a line as a parametric equation, a symmetric equation, and a vector equation. I can define a plane

More information

CS 4620 Final Exam. (a) Is a circle C 0 continuous?

CS 4620 Final Exam. (a) Is a circle C 0 continuous? CS 4620 Final Exam Wednesday 9, December 2009 2 1 2 hours Prof. Doug James Explain your reasoning for full credit. You are permitted a double-sided sheet of notes. Calculators are allowed but unnecessary.

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Handles. The justification: For a 0 genus triangle mesh we can write the formula as follows:

Handles. The justification: For a 0 genus triangle mesh we can write the formula as follows: Handles A handle in a 3d mesh is a through hole. The number of handles can be extracted of the genus of the 3d mesh. Genus is the number of times we can cut 2k edges without disconnecting the 3d mesh.

More information

Deformation II. Disney/Pixar

Deformation II. Disney/Pixar Deformation II Disney/Pixar 1 Space Deformation Deformation function on ambient space f : n n Shape S deformed by applying f to points of S S = f (S) f (x,y)=(2x,y) S S 2 Motivation Can be applied to any

More information

4 Parametrization of closed curves and surfaces

4 Parametrization of closed curves and surfaces 4 Parametrization of closed curves and surfaces Parametrically deformable models give rise to the question of obtaining parametrical descriptions of given pixel or voxel based object contours or surfaces,

More information

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Abstract. Finding meaningful 1-1 correspondences between hippocampal (HP) surfaces is an important but difficult

More information

Negative numbers - Add and subtract, multiply and divide negative numbers

Negative numbers - Add and subtract, multiply and divide negative numbers Mathematics Year 7 Autumn Term BIDMAS order of operations Negative numbers - Add and subtract, multiply and divide negative numbers Algebra Fractions Angles Rounding - Use letters for numbers - Collect

More information

Parameterization of Triangular Meshes with Virtual Boundaries

Parameterization of Triangular Meshes with Virtual Boundaries Parameterization of Triangular Meshes with Virtual Boundaries Yunjin Lee 1;Λ Hyoung Seok Kim 2;y Seungyong Lee 1;z 1 Department of Computer Science and Engineering Pohang University of Science and Technology

More information

Ph.D. Student Vintescu Ana-Maria

Ph.D. Student Vintescu Ana-Maria Ph.D. Student Vintescu Ana-Maria Context Background Problem Statement Strategy Metric Distortion Conformal parameterization techniques Cone singularities Our algorithm Experiments Perspectives Digital

More information

Discrete Coons patches

Discrete Coons patches Computer Aided Geometric Design 16 (1999) 691 700 Discrete Coons patches Gerald Farin a,, Dianne Hansford b,1 a Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-5406, USA b NURBS

More information

Unit 6: Connecting Algebra and Geometry Through Coordinates

Unit 6: Connecting Algebra and Geometry Through Coordinates Unit 6: Connecting Algebra and Geometry Through Coordinates The focus of this unit is to have students analyze and prove geometric properties by applying algebraic concepts and skills on a coordinate plane.

More information

CURVES OF CONSTANT WIDTH AND THEIR SHADOWS. Have you ever wondered why a manhole cover is in the shape of a circle? This

CURVES OF CONSTANT WIDTH AND THEIR SHADOWS. Have you ever wondered why a manhole cover is in the shape of a circle? This CURVES OF CONSTANT WIDTH AND THEIR SHADOWS LUCIE PACIOTTI Abstract. In this paper we will investigate curves of constant width and the shadows that they cast. We will compute shadow functions for the circle,

More information

Parameterization with Manifolds

Parameterization with Manifolds Parameterization with Manifolds Manifold What they are Why they re difficult to use When a mesh isn t good enough Problem areas besides surface models A simple manifold Sphere, torus, plane, etc. Using

More information

This controller extract information about Faces,Edges and Vertices of an Editable Mesh or Editable Poly object.

This controller extract information about Faces,Edges and Vertices of an Editable Mesh or Editable Poly object. Mesh Controller How to use: Filtering methods: Geometry: Pick Object: Reference Object: Use Sub-Object Selection: Use methods of : Search in: Vertex: Scalar Output: Vector Output: Matrix outputs: Edge

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

On Graphs Supported by Line Sets

On Graphs Supported by Line Sets On Graphs Supported by Line Sets Vida Dujmović, William Evans, Stephen Kobourov, Giuseppe Liotta, Christophe Weibel, and Stephen Wismath School of Computer Science Carleton University cgm.cs.mcgill.ca/

More information

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW Abstract. In this paper, we propose a novel algorithm for computing surface uniformization for surfaces with arbitrary topology. According

More information

Simultaneous Graph Embedding with Bends and Circular Arcs

Simultaneous Graph Embedding with Bends and Circular Arcs Simultaneous Graph Embedding with Bends and Circular Arcs Justin Cappos, Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G. Kobourov Department of Computer Science, University of Arizona {justin,aestrell,jfowler,kobourov}@cs.arizona.edu

More information

ame Date Class Practice A 11. What is another name for a regular quadrilateral with four right angles?

ame Date Class Practice A 11. What is another name for a regular quadrilateral with four right angles? ame Date Class Practice A Polygons Name each polygon. 1. 2. 3. 4. 5. 6. Tell whether each polygon appears to be regular or not regular. 7. 8. 9. 10. What is another name for a regular triangle? 11. What

More information

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods)

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) (Section 6.: Volumes of Solids of Revolution: Disk / Washer Methods) 6.. PART E: DISK METHOD vs. WASHER METHOD When using the Disk or Washer Method, we need to use toothpicks that are perpendicular to

More information

The Crooked Foundation The Bird House. 100ft. Inter-Island Journey. East Fence. 150ft. South Fence

The Crooked Foundation The Bird House. 100ft. Inter-Island Journey. East Fence. 150ft. South Fence 13.1 - Opening Per Date It is another beautiful day on the Big Island, and Grandma is out and about planning her net set of projects. First she wants to build a bird house for her new team of homing pigeons.

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Welcome to the lectures on computer graphics. We have

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions

Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions Contents 1 Problems 2 2 Solution key 10 3 Solutions 11 1 1 Problems Question 1: A right triangle has hypothenuse of length 25 in and an

More information

Montana City School GRADE 5

Montana City School GRADE 5 Montana City School GRADE 5 Montana Standard 1: Students engage in the mathematical processes of problem solving and reasoning, estimation, communication, connections and applications, and using appropriate

More information

SUMMARY. CS380: Introduction to Computer Graphics Ray tracing Chapter 20. Min H. Kim KAIST School of Computing 18/05/29. Modeling

SUMMARY. CS380: Introduction to Computer Graphics Ray tracing Chapter 20. Min H. Kim KAIST School of Computing 18/05/29. Modeling CS380: Introduction to Computer Graphics Ray tracing Chapter 20 Min H. Kim KAIST School of Computing Modeling SUMMARY 2 1 Types of coordinate function Explicit function: Line example: Implicit function:

More information

MATH CIRCLE ACTIVITY: STARS AND CYCLIC GROUPS

MATH CIRCLE ACTIVITY: STARS AND CYCLIC GROUPS MATH CIRCLE ACTIVITY: STARS AND CYCLIC GROUPS. Drawing a regular star A regular star is a self-intersecting polygon which is symmetric around its center. Let s start with a concrete example. Take a circle,

More information

Learning Task: Exploring Reflections and Rotations

Learning Task: Exploring Reflections and Rotations Learning Task: Exploring Reflections and Rotations Name Date Mathematical Goals Develop and demonstrate an understanding of reflections and rotations of figures in general and on a coordinate plane. Essential

More information

Birkdale High School - Higher Scheme of Work

Birkdale High School - Higher Scheme of Work Birkdale High School - Higher Scheme of Work Module 1 - Integers and Decimals Understand and order integers (assumed) Use brackets and hierarchy of operations (BODMAS) Add, subtract, multiply and divide

More information

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week14. Number- addition subtraction,

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week14. Number- addition subtraction, Year 6 Autumn Term NC Objectives Week 13 Week14 Number - Place Value Read, write, order and compare numbers up to 10,000,000 and determine the value of each digit. Round any whole number to a required

More information

Number Mulitplication and Number and Place Value Addition and Subtraction Division

Number Mulitplication and Number and Place Value Addition and Subtraction Division Number Mulitplication and Number and Place Value Addition and Subtraction Division read, write, order and compare numbers up to 10 000 000 and determine the value of each digit round any whole number to

More information

Properties of a Circle Diagram Source:

Properties of a Circle Diagram Source: Properties of a Circle Diagram Source: http://www.ricksmath.com/circles.html Definitions: Circumference (c): The perimeter of a circle is called its circumference Diameter (d): Any straight line drawn

More information

Evaluating the Quality of Triangle, Quadrilateral, and Hybrid Meshes Before and After Refinement

Evaluating the Quality of Triangle, Quadrilateral, and Hybrid Meshes Before and After Refinement Rensselaer Polytechnic Institute Advanced Computer Graphics, Spring 2014 Final Project Evaluating the Quality of Triangle, Quadrilateral, and Hybrid Meshes Before and After Refinement Author: Rebecca Nordhauser

More information

Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision

Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Part II of the sequel of 2 talks. Computation C/QC geometry was presented by Tony F. Chan Ronald Lok Ming Lui Department

More information

Object Representation Affine Transforms. Polygonal Representation. Polygonal Representation. Polygonal Representation of Objects

Object Representation Affine Transforms. Polygonal Representation. Polygonal Representation. Polygonal Representation of Objects Object Representation Affine Transforms Polygonal Representation of Objects Although perceivable the simplest form of representation they can also be the most problematic. To represent an object polygonally,

More information

APPLICATION OF ALGORITHMS FOR AUTOMATIC GENERATION OF HEXAHEDRAL FINITE ELEMENT MESHES

APPLICATION OF ALGORITHMS FOR AUTOMATIC GENERATION OF HEXAHEDRAL FINITE ELEMENT MESHES MESTRADO EM ENGENHARIA MECÂNICA November 2014 APPLICATION OF ALGORITHMS FOR AUTOMATIC GENERATION OF HEXAHEDRAL FINITE ELEMENT MESHES Luís Miguel Rodrigues Reis Abstract. The accuracy of a finite element

More information

Graphics. Automatic Efficient to compute Smooth Low-distortion Defined for every point Aligns semantic features. Other disciplines

Graphics. Automatic Efficient to compute Smooth Low-distortion Defined for every point Aligns semantic features. Other disciplines Goal: Find a map between surfaces Blended Intrinsic Maps Vladimir G. Kim Yaron Lipman Thomas Funkhouser Princeton University Goal: Find a map between surfaces Automatic Efficient to compute Smooth Low-distortion

More information

Review for Applications of Definite Integrals Sections

Review for Applications of Definite Integrals Sections Review for Applications of Definite Integrals Sections 6.1 6.4 Math 166 Iowa State University http://orion.math.iastate.edu/dstolee/teaching/15-166/ September 4, 2015 1. What type of problem: Volume? Arc

More information

Texture-Mapping Tricks. How Bad Does it Look? We've Seen this Sort of Thing Before. Sampling Texture Maps

Texture-Mapping Tricks. How Bad Does it Look? We've Seen this Sort of Thing Before. Sampling Texture Maps Texture-Mapping Tricks Filtering Textures Textures and Shading Bump Mapping Solid Textures How Bad Does it Look? Let's take a look at what oversampling looks like: Click and drag the texture to rotate

More information

New Swannington Primary School 2014 Year 6

New Swannington Primary School 2014 Year 6 Number Number and Place Value Number Addition and subtraction, Multiplication and division Number fractions inc decimals & % Ratio & Proportion Algebra read, write, order and compare numbers up to 0 000

More information