Adap%ng to the Wireless Channel II: SampleWidth

Size: px
Start display at page:

Download "Adap%ng to the Wireless Channel II: SampleWidth"

Transcription

1 Adap%ng to the Wireless Channel II: SampleWidth M038/GZ06 Mobile and Adap-ve Systems Kyle Jamieson Lecture 8 Department of Computer Science University College London 1

2 Outline A Case for Adap%ng Channel Width in Wireless Networks. Chandra et al., Proceedings of the ACM SIGCOMM Conference, August, Reducing power and increasing range 2. Improving flow throughput 3. Improving fairness 4. Improving capacity 5. The SampleWidth algorithm 2

3 Narrower bandwidth, slower in %me SNR: 3 db Amplitude vs. frequency ( Spectrum ) SNR: +3 db Signal 2W 1/ (W/2) 1/ (2W) 1/ W W W/2 Noise Frequency (Hz) è Amplitude vs. %me (2W) W (W/2) T/2 T 2T Time (sec) è 3

4 Narrower bandwidth: higher SNR Amplitude vs. frequency ( Spectrum ) Signal SNR=3 db SNR=6 db SNR=9 db Noise Frequency (Hz) è 4

5 Reducing bandwith and transmit power Amplitude vs. frequency ( Spectrum ) Signal Noise Frequency (Hz) è Amplitude vs. %me Time (sec) è 5

6 Is it just noise, or a signal in noise? Received signal Transmi7ed signal + or 0 +? 6

7 Lower bandwidth filter reduces noise Narrower signal è narrower matched filter Noise Signal Noise Signal High SNR Lower SNR 7

8 Adap%ng channel width: OFDM RF front end clock determines channel width Baseband/MAC processor clock determines sampling period T Same PLL drives both clocks! OFDM Symbol OFDM Symbol OFDM Symbol... Time Guard interval OFDM guard interval prevents the echoes of one OFDM symbol from corrup%ng the next (intersymbol interference) 5MHz 10 MHz 20 MHz 40 MHz Symbol Duration 16 µs 8 µs 4 µs 2 µs SIFS 40 µs 20 µs 10 µs 5 µs Slot Duration 20 µs 20 µs 20 µs 20 µs Guard Interval 3.2 µs 1.6 µs 0.8 µs 0.4 µs 8

9 Adap%ng channel width: MAC Modify backoff slot dura%on to be the same across channel widths: backoff fairness between different nodes What about SIFS? 5MHz 10 MHz 20 MHz 40 MHz Symbol Duration 16 µs 8 µs 4 µs 2 µs SIFS 40 µs 20 µs 10 µs 5 µs Slot Duration 20 µs 20 µs 20 µs 20 µs Guard Interval 3.2 µs 1.6 µs 0.8 µs 0.4 µs 9

10 Outline A Case for Adap%ng Channel Width in Wireless Networks. Chandra et al., Proceedings of the ACM SIGCOMM Conference, August, Reducing power and increasing range 2. Improving flow throughput 3. Improving fairness 4. Improving capacity 5. The SampleWidth algorithm 10

11 Experimental Setup Clean experiment using alenuator and channel emulator Tested channel widths of 5, 10, 20, 40 MHz Only use OFDM bit rates, for consistency Indoor experiments at MSR & UCSB Outdoor experiments in large park (results not in paper) 11

12 Is peak throughput propor%onal to channel width? Shannon capacity tells us: # C = B " log% 1+ S $ N & ( ' Higher relacve overhead at high B for inter- frame spacings 12

13 Modeling throughput Extending model by Gast, Wireless Networks: The Defini%ve Guide, O Reilly, MHz 10 MHz 20 MHz 40 MHz Symbol Duration 16 µs 8 µs 4 µs 2 µs SIFS 40 µs 20 µs 10 µs 5 µs Slot Duration 20 µs 20 µs 20 µs 20 µs Guard Interval 3.2 µs 1.6 µs 0.8 µs 0.4 µs B = 20 MHz B Consider total transaccon Cme t, for a single packet: t = t CW + t DIFS + t data + t SIFS + t ACK ( ) + B (!) + Bt SIFS + B (!) ( ) = 8t slot + 2t slot + Bt SIFS = 10t slot + B! Analy%cal model throughput = 1/t Mbits/s Constant term plus term propor%onal to 1/B 13

14 Throughput model matches experiments Measurements from emulator experiments Reference point: analy%cal throughput model Alribute slowdown at high B to beacons, background noise 14

15 Lower channel width, lower loss rate Emulator experiment at 6 Mbit/s modula%on Range threshold: alenua%on at which loss rate < 10%

16 Empirical vs theore%cal SNR gain Amplitude vs. frequency ( Spectrum ) Signal Noise SNR Symbol %me T/2 SNR +3 db Symbol %me T Frequency (Hz) à SNR= +6 db Symbol %me 2T Empirical 7 db gain short of 9 db theore%cal gain from 5 MHz à 40 MHz 16

17 More choices for each range Range threshold (db) +6 db 17

18 Transla%ng SNR gain to real distance Assume signal power decays as 1/d α " A =10log P % send Consider alenua%on A: $ ' =10( logd ) d =10 A /10( # & d 2 d 1 = 10A2 /10" 10 A 1 /10" =10#A /10" P recv ΔA = 6 db, α=4 d 2 /d 1 = % 18

19 Narrower channels reduce power Reduce power because of slower clock speed. 19

20 Channel widths: room for improvement (a) Emulator Similar mo%va%on to SampleRate: can adapt to stay on best channel width 20

21 Outline A Case for Adap%ng Channel Width in Wireless Networks. Chandra et al., Proceedings of the ACM SIGCOMM Conference, August, Reducing power and increasing range 2. Improving flow throughput 3. Improving fairness 4. Improving capacity 5. The SampleWidth algorithm 21

22 Improving fairness and load balancing Case 1 Case 2 40 MHz 10 MHz Client A 40 MHz 0 MHz Client A AP 1 AP 2 AP 1 AP 2 20 MHz 10 MHz 20 MHz 20 MHz AP 3 AP 4 AP 3 AP 4 Scenario AP 1 AP 2 AP 3 AP 4 T FI Case 1: (fixed) 1/6 1 1/ Case 1: (adaptive) 2/6 1/2 1/3 1/ Case 2: (fixed) 1/6 X 1/3 1/ Case 2: (adaptive) 2/6 X 1/3 1/

23 Capacity improvement Two laptop sender- receiver pairs, receivers in adjacent offices Move the two senders to 24 different loca%ons (x- axis) Maximum gain in the far- near case because of rate anomaly +10% (CSMA sharing) (Separated) +65% Average 23

24 SampleWidth algorithm overview How to realize these capacity gains in prac-ce? Find best channel width over one link Bit rate adapta%on works in the background Challenge: large two- dimensional search space (channel width bit rate) Start at narrowest channel width, adapt when send data Probe different channel widths Probe only adjacent channel widths Probe only if disconnec%on unlikely 24

25 SampleWidth: algorithm details Measure each second: Average throughput T cur Average bit rate chosen R cur Rule 1: R cur < α Mbps è probe narrower R cur > β Mbps è probe wider Choosing α, β: Measure efficiency: frac%on of an op%mal algorithm s throughput β =12 β =18 β =24 β =36 α = α = α = α = Rule 2: Else, choose B i : max i {T i } Probing table: B i T i R i 40 MHz 20 MHz T cur R cur 10 MHz 5 MHz 25

26 Probing versus switching Probing widths based on bit rates (R cur < α, R cur > β) Switching widths is based on throughput SampleWidth dis%nguishes between: Poor link quality è probe and move narrower High conten%on è probe but stay wide 26

27 We try all fixed widths and SampleWidth. Figure 13(a) shows the power consumption behavior in detail for all configurations at the sender. The fixed width systems start out at their idle mode power consumption, move to their send mode consumption level, and then come back to their idle mode levels. SampleWidth starts out at the idle mode level for 5 MHz, because that is least costly. When the transfer starts, it moves to the power consumption No local minimum level of 40condiCon MHz, because (λ > that 1): yields the least powerper-byte ratio. When the transfer finishes, Throughput it comes back to the Throughput 5MHzlevel.Figure13(b)showsthatthroughthisadaptation,SampleWidth T(Bis i ) able to consume the least total amount T(B i ) of energy. T(B i )/λ T(B i )/λ Does SW get stuck in local minima? 6.4 Efficiency of Autorate & Smoothness SampleWidth uses autorate to probe channel widths and find an efficient data rate. We justify this design choice by showing that i- 1 i i+1 i- 1 i i+1 modern autorate algorithms are indeed capable of achieving close to optimal throughput. Channel Figurewidth 14 shows the suboptimality inchannel terms width of reduction Smoothness in throughput at B i : of using Atheros s Smoothness proprietary criterion: autorate implementation on # S( B i ) = max T Windows ( B XP in i) T( B i"1 ), T( B i ) & comparison to using the best possible modulation $ in a stationary' indoor S = setting. min i S( BThe i ) "1 important for SW convergence observation is that % at all measurement T( B i+1 )( points, autorate performs within at most 16% of the optimal data rate. Empirical measurement using bit rate adaptacon: Rate S In order to see whether autorate is sufficiently close to the optimum in order for SampleWidth to converge, recall the definition of 27

28 [Slide: Ranveer Chandra] SampleWidth adapts to best channel width Emulator experiment: vary alenua%on in 1 db steps Run UDP throughput measurement Two nodes (sender, receiver); sta%c configura%on 28

29 Close match between emulator, indoors Emulator experiment Adjust alenua%on (db) in wireless emulator Indoor experiment Separate sender and receiver by varying number of offices between them (a) Emulator. The labels depict transition points where that width becomes better that the adjacent wider channel. (a) Emulator. The labels depict transition points where that (b) Indoor 29 Figure 12: Comparison of throughput achieved using SampleWidth with that of static width schemes in emulator and indoor settings. Figure 1 ferent c involves

30 [Slide: Ranveer Chandra] SampleWidth saves energy One sender, one receiver One minute experiment; transfer one 25 MB file with TCP Try sta%c fixed widths, and SampleWidth Total Energy (Joules) MHz 10MHz 20MHz 40MHz SW 30

31 [Slide: Ranveer Chandra] How SampleWidth saves energy 31

32 [Slide: Ranveer Chandra] Applica%on Scenarios 1. Throughput/energy- aware song sharing 2. Load aware spectrum alloca%on in WLANs 3. Improved capacity in Cogni%ve (DSA- based) networking 32

33 Channel width interoperability issues RTS/CTS approaches will not work (need to decode) Can flows on different widths share the medium with just CSMA? Far scenario: senders can only par%ally hear each other (50% FLR) One flow always at 20 MHz; vary other flow s channel width 33

34 In wireless, SNR is unpredictable! Bit error rate é Fast fades QAM second BPSK Time è 34

Wireless MACs: MACAW/802.11

Wireless MACs: MACAW/802.11 Wireless MACs: MACAW/802.11 Mark Handley UCL Computer Science CS 3035/GZ01 Fundamentals: Spectrum and Capacity A particular radio transmits over some range of frequencies; its bandwidth, in the physical

More information

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs ( wi-fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5

More information

Wireless and Mobile Networks 7-2

Wireless and Mobile Networks 7-2 Wireless and Mobile Networks EECS3214 2018-03-26 7-1 Ch. 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)! # wireless Internet-connected

More information

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross Wireless Networks CSE 3461: Introduction to Computer Networking Reading: 6.1 6.3, Kurose and Ross 1 Wireless Networks Background: Number of wireless (mobile) phone subscribers now exceeds number of wired

More information

L3: SampleRate (Chapter 3)

L3: SampleRate (Chapter 3) COS-598A, Spring 2017, Kyle Jamieson L3: SampleRate (Chapter 3) Indoor Network Measurements 45-node indoor wireless testbed Mesh topology Linux Soekris router with Atheros 802.11a/b/g card RTS/CTS protocol

More information

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless LANs. ITS 413 Internet Technologies and Applications Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE

More information

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802. 4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 10: Rate Adaptation Frequency-Aware Rate Adaptation (MobiCom 09) Lecturer: Kate Ching-Ju Lin ( 林靖茹 ) Motivation The bandwidth supported in 802.11 is getting

More information

CARA: Collision-Aware Rate Adaptation for IEEE WLANs

CARA: Collision-Aware Rate Adaptation for IEEE WLANs : Collision-Aware Rate Adaptation for IEEE 802.11 WLANs J.Kim, S. Kim, S. Choi and D.Qiao INFOCOM 2006 Barcelona, Spain Presenter - Bob Kinicki Advanced Computer Networks Fall 2007 Background Related Work

More information

Wireless Network and Mobility

Wireless Network and Mobility Wireless Network and Mobility Dept. of Computer Science, University of Rochester 2008-11-17 CSC 257/457 - Fall 2008 1 Wireless Networks and Mobility Wireless networking in the data link layer Short range:

More information

Dynamic Rate Adaptation in IEEE WLANs

Dynamic Rate Adaptation in IEEE WLANs Dynamic Rate Adaptation in IEEE 802.11 WLANs SongYiLin@ICT August 10, 2008 References [1] On the Performance Characteristics of WLANs: Revisited (SIGMETRICS 2005) [2] CARA: Collision-Aware Rate Adaptation

More information

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:

More information

CSC 4900 Computer Networks: Wireless Networks

CSC 4900 Computer Networks: Wireless Networks CSC 4900 Computer Networks: Wireless Networks Professor Henry Carter Fall 2017 Last Time Mobile applications are taking off! What about current platforms is fueling this? How are an application s permission

More information

Link Layer II: MACA and MACAW

Link Layer II: MACA and MACAW Link Layer II: MACA and MACAW COS 463: Wireless Networks Lecture 5 Kyle Jamieson [Parts adapted from J. Kurose, K. Ross, D. Holmar] Medium access: Timeline Packet radio Wireless LAN Wired LAN ALOHAnet

More information

Wireless Networks (MAC)

Wireless Networks (MAC) 802.11 Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica 2016.03.18 CSIE, NTU Reference 1. A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner online: http://www.sss-mag.com/pdf/802_11tut.pdf

More information

LANCOM Techpaper IEEE n Indoor Performance

LANCOM Techpaper IEEE n Indoor Performance Introduction The standard IEEE 802.11n features a number of new mechanisms which significantly increase available bandwidths. The former wireless LAN standards based on 802.11a/g enable physical gross

More information

Overcoming MAC Overheads Using Packet Size Dependent Channel Widths

Overcoming MAC Overheads Using Packet Size Dependent Channel Widths Overcoming MAC Overheads Using Packet Size Dependent Channel Widths Technical Report (November 2010) Vijay Raman, Fan Wu, and Nitin H. Vaidya Dept. of ECE & Coordinated Science Lab University of Illinois

More information

Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica

Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica 802.11 Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica Reference 1. A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner online: http://www.sss-mag.com/pdf/802_11tut.pdf

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach Topic 2b Wireless MAC Chapter 7 Wireless and Mobile Networks Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 7-1 Ch. 7: Background: # wireless

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Wireless Links, WiFi, Cellular Internet Access, and Mobility Slides derived from those available on the Web site of the book Computer Networking, by Kurose

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using A Single Transceiver

Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using A Single Transceiver Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using A Single Transceiver Jungmin So Dept. of Computer Science, and Coordinated Science Laboratory University of Illinois

More information

IEEE ah. sub 1GHz WLAN for IoT. What lies beneath Wi-Fi HaLow. Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering

IEEE ah. sub 1GHz WLAN for IoT. What lies beneath Wi-Fi HaLow. Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering by wilgengebroed IEEE 802.11ah sub 1GHz WLAN for IoT What lies beneath Wi-Fi HaLow Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering eduardg@entel.upc.edu elopez@entel.upc.edu Contents

More information

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview Wireless LANs CSE 3213 Fall 2011 4 November 2011 Overview 2 1 Infrastructure Wireless LAN 3 Applications of Wireless LANs Key application areas: LAN extension cross-building interconnect nomadic access

More information

Mobile & Wireless Networking. Lecture 7: Wireless LAN

Mobile & Wireless Networking. Lecture 7: Wireless LAN 192620010 Mobile & Wireless Networking Lecture 7: Wireless LAN [Schiller, Section 7.3] [Reader, Part 6] [Optional: "IEEE 802.11n Development: History, Process, and Technology", Perahia, IEEE Communications

More information

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices

More information

Sample solution to Midterm

Sample solution to Midterm College of Computer & Information Science Spring 2007 Northeastern University Handout 10 CSG250: Wireless Networks 27 February 2007 Sample solution to Midterm Part I (4 4 = 16 points) 1. Explain how the

More information

Wireless and Mobile Networks

Wireless and Mobile Networks Wireless and Mobile Networks Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-11/

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

Wireless LAN -Architecture

Wireless LAN -Architecture Wireless LAN -Architecture IEEE has defined the specifications for a wireless LAN, called IEEE 802.11, which covers the physical and data link layers. Basic Service Set (BSS) Access Point (AP) Distribution

More information

Wireless Networking & Mobile Computing

Wireless Networking & Mobile Computing Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Lec #4: Medium Access Control - II Tamer Nadeem Dept. of Computer Science IEEE 802.11 Standards Page 2 Spring 2012 CS 752/852 - Wireless

More information

Wireless Local Area Networks. Networks: Wireless LANs 1

Wireless Local Area Networks. Networks: Wireless LANs 1 Wireless Local Area Networks Networks: Wireless LANs 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices (PDAs and cell phones) created an obvious application

More information

Wireless Communication and Networking CMPT 371

Wireless Communication and Networking CMPT 371 Wireless Communication and Networking CMPT 371 Wireless Systems: AM, FM Radio TV Broadcast Satellite Broadcast 2-way Radios Cordless Phones Satellite Links Mobile Telephony Systems Wireless Local Loop

More information

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

standard. Acknowledgement: Slides borrowed from Richard Y. Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data rate applications Ability to

More information

CSE 461: Wireless Networks

CSE 461: Wireless Networks CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network

More information

Wireless and WiFi. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Wireless and WiFi. Daniel Zappala. CS 460 Computer Networking Brigham Young University Wireless and WiFi Daniel Zappala CS 460 Computer Networking Brigham Young University Wireless Networks 2/28 mobile phone subscribers now outnumber wired phone subscribers similar trend likely with Internet

More information

CARA: Collision-Aware Rate Adaptation for IEEE WLANs. Presented by Eric Wang

CARA: Collision-Aware Rate Adaptation for IEEE WLANs. Presented by Eric Wang CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs Presented by Eric Wang 1 Outline Introduction Related Work Preliminaries CARA Performance Evaluation Conclusion and Future Work 2 Basic CSMA/CA

More information

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross ( 6th ed.); , Kurose and Ross (7th ed.

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross ( 6th ed.); , Kurose and Ross (7th ed. Wireless Networks CSE 3461: Introduction to Computer Networking Reading: 6.1 6.3, Kurose and Ross ( 6th ed.); 7.1 7.3, Kurose and Ross (7th ed.) 1 Questions How do you use wireless network technology in

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 An Analytical Approach: Bianchi Model 2 Real Experimentations HoE on IEEE 802.11b Analytical Models Bianchi s Model Simulations ns-2 3 N links with the

More information

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018 WiFi Networks: IEEE 802.11b Wireless LANs Carey Williamson Department of Computer Science University of Calgary Winter 2018 Background (1 of 2) In many respects, the IEEE 802.11b wireless LAN (WLAN) standard

More information

Interactions Between the Physical Layer and Upper Layers in Wireless Networks: The devil is in the details

Interactions Between the Physical Layer and Upper Layers in Wireless Networks: The devil is in the details Interactions Between the Physical Layer and Upper Layers in Wireless Networks: The devil is in the details Fouad A. Tobagi Stanford University Broadnets 2006 San Jose, October 4, 2006 Very Wide Range of

More information

IEEE Wireless LANs

IEEE Wireless LANs Unit 11 IEEE 802.11 Wireless LANs Shyam Parekh IEEE 802.11 Wireless LANs References Standards Basics Physical Layer 802.11b 802.11a MAC Framing Details Management PCF QoS (802.11e) Security Take Away Points

More information

Hands-On Exercises: IEEE Standard

Hands-On Exercises: IEEE Standard Hands-On Exercises: IEEE 802.11 Standard Mohammad Hossein Manshaei and Jean-Pierre Hubaux {hossein.manshaei,jean-pierre.hubaux}@epfl.ch Laboratory for Computer Communications and Applications (LCA) March

More information

Investigation of WLAN

Investigation of WLAN Investigation of WLAN Table of Contents Table of Contents...1 ABBREVIATIONS...II 1 Introduction...3 2 IEEE 802.11...3 2.1 Architecture...3 2.2 MAC layer...4 2.3 PHY layer...9 2.4 Mobility in IEEE 802.11...12

More information

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University

More information

CS 332 Computer Networks Wireless Networks

CS 332 Computer Networks Wireless Networks CS 332 Computer Networks Wireless Networks Professor Szajda Chapter 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets:

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 9: MAC Protocols for WLANs Instructor: Kate Ching-Ju Lin ( 林靖茹 ) 1 Reference 1. A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner online:

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

Announcements : Wireless Networks Lecture 11: * Outline. Power Management. Page 1

Announcements : Wireless Networks Lecture 11: * Outline. Power Management. Page 1 Announcements 18-759: Wireless Networks Lecture 11: 802.11* Please mail survey team information» Can include topic preferences now if you have them Submit project designs through blackboard Homework 2

More information

2 Related Work. 1 Introduction. 3 Background

2 Related Work. 1 Introduction. 3 Background Modeling the Performance of A Wireless Node in Multihop Ad-Hoc Networks Ping Ding, JoAnne Holliday, Aslihan Celik {pding, jholliday, acelik}@scu.edu Santa Clara University Abstract: In this paper, we model

More information

Advanced Computer Networks WLAN

Advanced Computer Networks WLAN Advanced Computer Networks 263 3501 00 WLAN Patrick Stuedi Spring Semester 2014 1 Oriana Riva, Department of Computer Science ETH Zürich Last week Outlook Medium Access COPE Short Range Wireless Networks:

More information

IEEE Medium Access Control. Medium Access Control

IEEE Medium Access Control. Medium Access Control IEEE 802.11 Medium Access Control EECS3214 3 April 2018 Medium Access Control reliable data delivery access control MAC layer covers three functional areas: security 2 1 MAC Requirements To avoid interference

More information

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - WiFi (contd.); 16 th Aug 2012 Instructor: Sridhar Iyer IIT Bombay Clicker-1: Wireless v/s wired Which of the following differences between Wireless and Wired affect a CSMA-based

More information

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer 1 Wireless Local Area Networks (WLANs) The proliferation of laptop computers and other mobile devices (PDAs and cell phones)

More information

CSCI-1680 Wireless Chen Avin

CSCI-1680 Wireless Chen Avin CSCI-1680 Wireless Chen Avin Based on slides from Computer Networking: A Top Down Approach - 6th edition Administrivia TCP is due on Friday Final Project is out (fun, two weeks) Wireless and Mobile Networks

More information

ECE442 Communications Lecture 3. Wireless Local Area Networks

ECE442 Communications Lecture 3. Wireless Local Area Networks ECE442 Communications Lecture 3. Wireless Local Area Networks Husheng Li Dept. of Electrical Engineering and Computer Science Spring, 2014 Wireless Local Networks 1 A WLAN links two or more devices using

More information

Lecture 17: Wireless Networking"

Lecture 17: Wireless Networking Lecture 17: 802.11 Wireless Networking" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Lili Qiu, Nitin Vaidya Lecture 17 Overview" Project discussion Intro to 802.11 WiFi Jigsaw discussion

More information

Strategies and Guidelines for Improving Wireless Local Area Network Performance

Strategies and Guidelines for Improving Wireless Local Area Network Performance Strategies and Guidelines for Improving Wireless Local Area Network Performance Dr Nurul Sarkar Associate Professor School of Computing and Mathematical Sciences nurul.sarkar@aut.ac.nz 2 Outline of Talk

More information

Practical MU-MIMO User Selection on ac Commodity Networks

Practical MU-MIMO User Selection on ac Commodity Networks Practical MU-MIMO User Selection on 802.11ac Commodity Networks Sanjib Sur Ioannis Pefkianakis, Xinyu Zhang and Kyu-Han Kim From Legacy to Gbps Wi-Fi 1999-2003 2009 What is new in 802.11ac? 2013 Legacy

More information

Shared Access Networks Wireless. 1/27/14 CS mywireless 1

Shared Access Networks Wireless. 1/27/14 CS mywireless 1 Shared Access Networks Wireless 1 Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)! # wireless Internet-connected devices equals

More information

Vehicle Networks. Wireless Local Area Network (WLAN) Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless Local Area Network (WLAN) Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless Local Area Network (WLAN) Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless LAN Overview History IEEE 802.11-1997 MAC implementations PHY implementations

More information

CE693: Adv. Computer Networking

CE693: Adv. Computer Networking CE693: Adv. Computer Networking L-9 Wireless Fall 1389 Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are obtained

More information

Links, clocks, optics and radios

Links, clocks, optics and radios Links, clocks, optics and radios end IP addresses Source Destination Data 171.64.74.55 176.22.45.66 176 10110000 start Example of On-Off Keying +5V 0V Volts 1 0 time Data 0 1 1 0 0 1 0 1 1 0 1 0 1 0

More information

3.1. Introduction to WLAN IEEE

3.1. Introduction to WLAN IEEE 3.1. Introduction to WLAN IEEE 802.11 WCOM, WLAN, 1 References [1] J. Schiller, Mobile Communications, 2nd Ed., Pearson, 2003. [2] Martin Sauter, "From GSM to LTE", chapter 6, Wiley, 2011. [3] wiki to

More information

Introduction to IEEE

Introduction to IEEE Introduction to IEEE 802.11 Characteristics of wireless LANs Advantages very flexible within the reception area Ad hoc networks without previous planning possible (almost) no wiring difficulties more robust

More information

CS698T Wireless Networks: Principles and Practice

CS698T Wireless Networks: Principles and Practice CS698T Wireless Networks: Principles and Practice IEEE 802.11 (WLAN/WiFi) Bhaskaran Raman, Department of CSE, IIT Kanpur http://www.cse.iitk.ac.in/users/braman/courses/wless-spring2007/ IEEE 802.11 (WiFi)

More information

Multiple Access in Cellular and Systems

Multiple Access in Cellular and Systems Multiple Access in Cellular and 802.11 Systems 1 GSM The total bandwidth is divided into many narrowband channels. (200 khz in GSM) Users are given time slots in a narrowband channel (8 users) A channel

More information

M06:Wireless and Mobile Networks. Corinna Schmitt

M06:Wireless and Mobile Networks. Corinna Schmitt M06:Wireless and Mobile Networks Corinna Schmitt corinna.schmitt@unibas.ch Acknowledgement 2016 M06 2 Background q # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) Medium Access Control Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Simplified Reference Model Application layer Transport layer Network layer Data link

More information

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology CSC344 Wireless and Mobile Computing Department of Computer Science COMSATS Institute of Information Technology Wireless Local Area Networks (WLANs) Part I Almost all wireless LANs now are IEEE 802.11

More information

DOMINO: A System to Detect Greedy Behavior in IEEE Hotspots

DOMINO: A System to Detect Greedy Behavior in IEEE Hotspots DOMINO: A System to Detect Greedy Behavior in IEEE 802.11 Hotspots By Maxim Raya, Jean-Pierre Hubaux, Imad Aad Laboratory for computer Communications and Applications(LCA) School of Computer and Communication

More information

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi Overview 15-441 15-441: Computer Networking 15-641 Lecture 21: Wireless Justine Sherry Peter Steenkiste Fall 2017 www.cs.cmu.edu/~prs/15-441-f17 Link layer challenges and WiFi WiFi Basic WiFi design Some

More information

IEEE MAC Sublayer (Based on IEEE )

IEEE MAC Sublayer (Based on IEEE ) IEEE 802.11 MAC Sublayer (Based on IEEE 802.11-1999) Wireless Networking Sunghyun Choi, Associate Professor Multimedia & Wireless Networking Lab. (MWNL) School of Electrical Engineering Seoul National

More information

MC-CDMA Based IEEE Wireless LAN

MC-CDMA Based IEEE Wireless LAN MC-CDMA Based IEEE 802.11 Wireless LAN Georgios Orfanos Jörg Habetha Ling Liu Aachen Univ. of Technology D-52074 Aachen, Germany Philips Research Laboratories, D-52066 Aachen, Germany Aachen Univ. of Technology

More information

Sample Solution to Problem Set 3

Sample Solution to Problem Set 3 College of Computer & Information Science Fall 2007 Northeastern University Handout 6 CSG250: Wireless Networks 25 October 2007 Sample Solution to Problem Set 3 (The problem numbers from the text are the

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. 6: Wireless and Mobile Networks 6

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications COMP 3331/9331: Computer Networks and Applications Week 10 Wireless Networks Reading Guide: Chapter 6: 6.1 6.3 Wireless Networks + Security 1 Wireless and Mobile Networks Background: # wireless (mobile)

More information

MAC LAYER MISBEHAVIOR EFFECTIVENESS AND COLLECTIVE AGGRESSIVE REACTION APPROACH. Department of Electrical Engineering and Computer Science

MAC LAYER MISBEHAVIOR EFFECTIVENESS AND COLLECTIVE AGGRESSIVE REACTION APPROACH. Department of Electrical Engineering and Computer Science MAC LAYER MISBEHAVIOR EFFECTIVENESS AND COLLECTIVE AGGRESSIVE REACTION APPROACH Vamshikrishna Reddy Giri Neeraj Jaggi Department of Electrical Engineering and Computer Science Outline Introduction MAC

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless CSCD 433 Network Programming Fall 2016 Lecture 7 Ethernet and Wireless 802.11 1 Topics 802 Standard MAC and LLC Sublayers Review of MAC in Ethernet MAC in 802.11 Wireless 2 IEEE Standards In 1985, Computer

More information

Last Lecture: Data Link Layer

Last Lecture: Data Link Layer Last Lecture: Data Link Layer 1. Design goals and issues 2. (More on) Error Control and Detection 3. Multiple Access Control (MAC) 4. Ethernet, LAN Addresses and ARP 5. Hubs, Bridges, Switches 6. Wireless

More information

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking Wireless Challenges 15-441: Computer Networking Lecture 25: Wireless Networking Force us to rethink many assumptions Need to share airwaves rather than wire Don t know what hosts are involved Host may

More information

15-441: Computer Networking. Wireless Networking

15-441: Computer Networking. Wireless Networking 15-441: Computer Networking Wireless Networking Outline Wireless Challenges 802.11 Overview Link Layer Ad-hoc Networks 2 Assumptions made in Internet Host are (mostly) stationary Address assignment, routing

More information

Configure n on the WLC

Configure n on the WLC Configure 802.11n on the WLC Document ID: 108184 Contents Introduction Prerequisites Requirements Components Used Related Products Conventions 802.11n An Overview How Does 802.11n Provide Greater Throughput

More information

Data Communications. Data Link Layer Protocols Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs Data Communications Data Link Layer Protocols Wireless LANs Wireless Networks Several different types of communications networks are using unguided media. These networks are generally referred to as wireless

More information

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Five Problems Encoding/decoding Framing Error Detection Error Correction Media Access Five Problems Encoding/decoding Framing

More information

University of Würzburg Institute of Computer Science Research Report Series. Performance Comparison of Handover Mechanisms in Wireless LAN Networks

University of Würzburg Institute of Computer Science Research Report Series. Performance Comparison of Handover Mechanisms in Wireless LAN Networks University of Würzburg Institute of Computer Science Research Report Series Performance Comparison of Handover Mechanisms in Wireless LAN Networks Rastin Pries and Klaus Heck Report No. 339 September 2004

More information

A Multi-channel MAC Protocol for Ad Hoc Wireless Networks

A Multi-channel MAC Protocol for Ad Hoc Wireless Networks A Multi-channel MAC Protocol for Ad Hoc Wireless Networks Jungmin So Dept. of Computer Science, and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Email: jso1@uiuc.edu Nitin

More information

Enhancing the DCF mechanism in noisy environment

Enhancing the DCF mechanism in noisy environment Enhancing the DCF mechanism in noisy environment 1 LICP EA 2175 Université de Cergy-Pontoise 3 Av Adolph Chauvin 9532 Cergy-Pontoise France Email: {adlen.ksentini, mohamed.naimi}@dept-info.u-cergy.fr Adlen

More information

WLAN Performance Aspects

WLAN Performance Aspects Mobile Networks Module C- Part 1 WLAN Performance Aspects Mohammad Hossein Manshaei Jean-Pierre Hubaux http://mobnet.epfl.ch 1 Performance Evaluation of IEEE 802.11(DCF) Real Experimentations HoE on IEEE

More information

Exploiting Multi-User Diversity in Wireless LANs with Channel-Aware CSMA/CA

Exploiting Multi-User Diversity in Wireless LANs with Channel-Aware CSMA/CA Exploiting Multi-User Diversity in Wireless LANs with Channel-Aware CSMA/CA Xiaowei Wang, Mahsa Derakhshani, Tho Le-Ngoc Department of Electrical & Computer Engineering, McGill University, Montreal, QC,

More information

Performance anomaly of b

Performance anomaly of b Laboratoire LSR Logiciels Systèmes Réseaux Software, Systems, Networks Performance anomaly of 802.11b Andrzej Duda LSR-IMAG Andrzej.Duda@imag.fr Joint work with Martin Heusse, Franck Rousseau, Gilles Berger-Sabbatel

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 802.11 History and Standardization 802.11 Architectures and Layers 802.11 Frame Format and Addressing 802.11 Mac Layer (CSMA/CA) 2 Wifi 3 twisted pair

More information

Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW

Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW Lecture 24: 802.11 CSE 123: Computer Networks Stefan Savage HW4 due NOW About the final Similar in style to midterm Some combination of easy questions, short answer and more in-depth questions Sample final

More information

HACK: HIERARCHICAL ACKS FOR EFFICIENT WIRELESS MEDIUM UTILIZATION

HACK: HIERARCHICAL ACKS FOR EFFICIENT WIRELESS MEDIUM UTILIZATION HACK: HIERARCHICAL ACKS FOR EFFICIENT WIRELESS MEDIUM UTILIZATION LYNNE SALAMEH, ASTRIT ZHUSHI, MARK HANDLEY, KYLE JAMIESON, BRAD KARP.! UNIVERSITY COLLEGE LONDON WIFI MOSTLY USED FOR TCP DOWNLOADS Server

More information

Outline. Wireless Channel Characteristics. Multi-path Fading. Opportunistic Communication - with a focus on WLAN environments -

Outline. Wireless Channel Characteristics. Multi-path Fading. Opportunistic Communication - with a focus on WLAN environments - Outline Opportunistic Communication - with a focus on WLAN environments - Jong-won Lee 2006. 02.20. Background? Wireless Channels? Opportunistic communication? Examples? Basics of WLAN Previous Works?

More information

Wireless Local Area Networks (WLANs) Part I

Wireless Local Area Networks (WLANs) Part I Wireless Local Area Networks (WLANs) Part I Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW

Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW Lecture 25: 802.11 CSE 123: Computer Networks Alex C. Snoeren HW4 due NOW Lecture 25 Overview 802.11 Wireless PHY layer overview Hidden Terminals Basic wireless challenge RTS/CTS Virtual carrier sense

More information