QR Decomposition on GPUs

Size: px
Start display at page:

Download "QR Decomposition on GPUs"

Transcription

1 QR Decomposition QR Algorithms Block Householder QR Andrew Kerr* 1 Dan Campbell 1 Mark Richards 2 1 Georgia Tech Research Institute 2 School of Electrical and Computer Engineering Georgia Institute of Technology March 8, 2009 GPGPU 09 This work was supported in part by DARPA and AFRL under contracts FA and FA C The opinions expressed are those of the authors.

2 QR Decomposition QR Algorithms Block Householder QR Outline 1 QR Decomposition 2 QR Algorithms Algorithms Householder Reflections GPU Implementation 3 Block Householder QR Problem Algorithm Implementation Performance

3 QR Decomposition QR Algorithms Block Householder QR QR Decomposition QR Decomposition Matrix factorization: A = QR Q T Q = I, Q is unitary R is upper triangular O(N 3 )

4 QR Decomposition QR Algorithms Block Householder QR Applications of QR QR decomposition used to compute least squares other matrix factorizations (Toeplitz, SVD) orthogonal basis for a collection of vectors matrix eigendecomposition

5 QR Decomposition QR Algorithms Block Householder QR QR on GPUs Challenges of QR decomposition on GPUs parallel computations require fine-grain synchronization and communication divergent control flow low compute intensity GPUs lack large caches and have high memory latencies

6 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation QR Algorithms Modified Gram-Schmidt computes A = Q 1 R 1 directly by solving normal equations parallel blocked QR via MGS unstable QR via Orthogonal Transformations orthogonal transformations triangularize A Givens - compute rotation for each element below main diagonal to place zeros Householder - compute reflection for each column to place zeros

7 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Parallel QR via Householder Reflections Approach basic linear algebra procedures parallel and perform well on GPUs large problem sizes minimize kernel launch overhead Constraints consists mostly of matrix-vector operations

8 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Householder Reflections Compute a Householder reflection P from a vector x v = x ± x e 1 P = I 2 v T v vvt such that P x = x e 1 P A may be computed without explicitly forming P P A = (I 2 v T v vvt )A = A 2 v T v v(vt A)

9 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Householder Reflections A x 1 = [ A(:, 1) ] x1 (1) x v 1 = 1 2 x 1 (2 :)

10 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Householder Reflections P 1 P = I [ 5 2 v T v] vvt I0 P 1 = P

11 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Householder Reflections P 1 A x 2 = A(2 :, 2) [ ] x2 (1) x v 2 = 2 2 x 2 (2 :)

12 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Householder Reflections P 2 P = I [ 4 2 v T v] vvt I1 P 2 = P

13 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Householder Reflections P 2 P 1 A x 3 = [ A(3 :, 3) ] x3 (1) x v 3 = 3 2 x 3 (2 :)

14 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Householder Reflections P 2 P = I [ 3 2 v T v] vvt I2 P 3 = P

15 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Householder Reflections P 3 P 2 P 1 A x 4 = [ A(4 :, 4) ] x4 (1) x v 4 = 4 2 x 4 (2 :)

16 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Householder Reflections P 2 P = I [ 2 2 v T v] vvt I3 P 4 = P

17 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Householder Reflections P 4 P 3 P 2 P 1 A Accumulate Q Q = P T 1 P T 2 P T 3 P T 4 Triangularize A in place A = (P T 1 P T 2 P T 3 P T 4 )(P 4 P 3 P 2 P 1 A) A = QR Q orthogonal, R upper triangular

18 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Implementation on GPUs Initial strategy: Householder QR matrix dimensions constrained to multiples of 32 Use CUBLAS to compute Householder reflections and vector outer products Write kernel with CUDA to do better than CUBLAS s cublassgemv 128-byte aligned accesses to global memory CUDA grid block sizes avoid guard conditionals

19 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Matrix-vector multiply CUDA kernel

20 QR Decomposition QR Algorithms Block Householder QR Algorithms Householder Reflections GPU Implementation Performance of matrix-vector product GFLOP/s Matrix vector product Matrix order (m) gtsgemv GTX280 cublassgemv GTX280 Theoretical GTX280 gtsgemv 9800 cublassgemv 9800 Theoretical 9800GX2 TeraFLOP-capable GPU achieves 70 GFLOP/s All computations in Householder algorithm bandwidth limited norm, vector outer product Custom kernel does significantly better for problem sizes of interest

21 Problem Problem with Householder QR Matrix-vector operations are: memory bound inefficient large numerous

22 Solution Solution reduce the problem size for matrix-vector operations apply reflections in rank-r updates to identity for r > 1 let high performance of matrix-matrix product offset costs of increased FLOP count

23 A More Efficient Approach Block Householder Representation P = P 1 P r, where P j is a rank-1 update to I P may be written as P = I + Y W T W and Y are m-by-r A P T A = (I + Y W T )A = A + Y W T A Q QP = Q(I + W Y T ) = Q + QW Y T matrix-matrix multiply is efficient on GPUs

24 Block Householder QR Algorithm A = [ A 1 A 2 A 3 ] 1.) Input matrix is partitioned into blocks A 1, A 2,... A p, each with r columns.

25 Block Householder QR Algorithm A = [ A 1 A 2 A 3 ] 2.) A Householder reflection is computed from the first column

26 Block Householder QR Algorithm A = [ P 1 A 1 A 2 A 3 ] 3.) and applied to the remaining columns in A 1.

27 Block Householder QR Algorithm A = [ P 1 A 1 A 2 A 3 ] 4.) A Householder reflection is computed from the second column

28 Block Householder QR Algorithm A = [ P 2 P 1 A 1 A 2 A 3 ] 5.) and applied to the remaining columns in A 1.

29 Block Householder QR Algorithm Y W T [ A2 A 3 ] 6.) After r reflections are applied to block A 1, W is computed from Y. Then, matrix [ ] A 2 A 3 A p and Q are updated according to A [2 p] A [2 p] + Y W T A [2 p] Q Q + QW Y T

30 Block Householder QR Algorithm [ P2 P 1 A 1 P T A 2 P T A 3 ] 7.) Applying the block Householder update I + Y W T to A is equivalent to performing the first r Householder reflections according to the original algorithm. Problem sizes for matrix-vector product are much smaller. Q is updated strictly with matrix-matrix products.

31 Block Householder QR Algorithm R = [ A 1 A 2 A 3 ] 8.) Repeat with the next block until all of A is triangularized.

32 Block Householder QR Algorithm Block Householder QR Algorithm Q I partition A into [ ] A 1 A 2 A n/r for k = 1 to n/r do for j = 1 to r do s = j + (k 1) r v = house(a k (s :, j)) V ( :, j) = v β(j) = 2 v T v A k (I βvv T )A k end for [ compute W from ] V and β Ak+1 A n/r P T A = (I + Y W T ) [ ] A k+1 A n/r Q QP = Q(I + W Y T ) end for

33 Computing P = I + W Y T Compute W and Y from V and β for block k Y = V ( :, 1) W = β(1) V ( :, 1) for j = 2 to r do z = β(j) (I + W Y T ) V ( :, j) W = [ W z ] Y = [ Y V ( :, j) ] end for

34 GPU Implementation Improved strategy for GPU Implementation blocked Householder algorithm using CUBLAS and custom matrix-vector kernel matrix sizes multiples of 32 more rows than columns block size of 32 columns efficient matrix-matrix product using CUBLAS pad loads and stores to ensure alignment to maximize memory bandwidth

35 Experimental Configuration Test Platform GeForce GTX stream processors Intel Core2 Xeon GHz, 6 MB L2 cache per pair of cores Intel Math Kernel Library 10 (MKL) - sgeqrf(), sormqr() Linux x CUDA 2.0 timing excludes transfer between system and GPU memory

36 Experimental Configuration Input Test Data single-precision, real-valued data A initialized to lower-triangular matrix diagonal elements initialized to 1 random values a 1 below diagonal random Givens rotations applied to A to conceal structure Result Verification All results satisfy: A QR m 2 23 A Q T Q I m 2 23 Q is explicitly formed

37 Performance 150 GTX GX2 GFLOP/s Peak performance GFLOP/s Matrix rows

38 Runtime Distribution Table: Runtime in seconds for phases of blocked Householder QR on GPUs Operation GeForce GTX 280 GeForce GTX 280 Problem size Householder A k P A k WY Computation A (I + W Y T ) T A Q Q(I + W Y T ) Total (seconds) GFLOP/s 129 GFLOP/s 143 GFLOP/s

39 Performance of QP and P T A Average performance of QP and P T A 300 GFLOPs/s Matrix rows QP GTX280 P H A GTX280 QP 9800GX2 P H A 9800GX2 Peak performance Q QP : 334 GFLOP/s A P T A: 237 GFLOP/s

40 Speedup 5 4 MKL 1 thread MKL 2 threads MKL 4 threads Speedup 3 2 Peak speedup (1 thread) speedup Matrix rows

41 Future Work Attempt custom matrix-matrix product kernel to achieve higher performance Extend to complex-valued data Support arbitrarily sized matrices GPU VSIPL

42 Conclusions Dense, block-oriented algorithms with large problem sizes do well on GPUs GPUs can efficiently compute QR decomposition 143 GFLOP/s - 4.9x speedup Enhancements to CUBLAS are still possible

43 Questions Questions?

Modern GPUs (Graphics Processing Units)

Modern GPUs (Graphics Processing Units) Modern GPUs (Graphics Processing Units) Powerful data parallel computation platform. High computation density, high memory bandwidth. Relatively low cost. NVIDIA GTX 580 512 cores 1.6 Tera FLOPs 1.5 GB

More information

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang University of Massachusetts Amherst Introduction Singular Value Decomposition (SVD) A: m n matrix (m n) U, V: orthogonal

More information

On Massively Parallel Algorithms to Track One Path of a Polynomial Homotopy

On Massively Parallel Algorithms to Track One Path of a Polynomial Homotopy On Massively Parallel Algorithms to Track One Path of a Polynomial Homotopy Jan Verschelde joint with Genady Yoffe and Xiangcheng Yu University of Illinois at Chicago Department of Mathematics, Statistics,

More information

Double-Precision Matrix Multiply on CUDA

Double-Precision Matrix Multiply on CUDA Double-Precision Matrix Multiply on CUDA Parallel Computation (CSE 60), Assignment Andrew Conegliano (A5055) Matthias Springer (A995007) GID G--665 February, 0 Assumptions All matrices are square matrices

More information

GPUBenchmark results for tesla2

GPUBenchmark results for tesla2 Benchmark results for tesla2 May 4, 202 Abstract This report shows the Benchmark results obtained on tesla2 on May 4, 202. Contents Introduction 2 Hardware description 3 Transfer speed between hard disk

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve Administrative Issues L11: Sparse Linear Algebra on GPUs Next assignment, triangular solve Due 5PM, Tuesday, March 15 handin cs6963 lab 3 Project proposals Due 5PM, Wednesday, March 7 (hard

More information

Outline. Parallel Algorithms for Linear Algebra. Number of Processors and Problem Size. Speedup and Efficiency

Outline. Parallel Algorithms for Linear Algebra. Number of Processors and Problem Size. Speedup and Efficiency 1 2 Parallel Algorithms for Linear Algebra Richard P. Brent Computer Sciences Laboratory Australian National University Outline Basic concepts Parallel architectures Practical design issues Programming

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors

Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors Andrés Tomás 1, Zhaojun Bai 1, and Vicente Hernández 2 1 Department of Computer

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou Study and implementation of computational methods for Differential Equations in heterogeneous systems Asimina Vouronikoy - Eleni Zisiou Outline Introduction Review of related work Cyclic Reduction Algorithm

More information

Performance auto-tuning of rectangular matrix-vector multiplication: how to outperform CUBLAS

Performance auto-tuning of rectangular matrix-vector multiplication: how to outperform CUBLAS Downloaded from orbit.dtu.dk on: Dec 23, 2018 Performance auto-tuning of rectangular matrix-vector multiplication: how to outperform CUBLAS Sørensen, Hans Henrik Brandenborg Publication date: 2010 Document

More information

Solving Dense Linear Systems on Graphics Processors

Solving Dense Linear Systems on Graphics Processors Solving Dense Linear Systems on Graphics Processors Sergio Barrachina Maribel Castillo Francisco Igual Rafael Mayo Enrique S. Quintana-Ortí High Performance Computing & Architectures Group Universidad

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

Automatic Development of Linear Algebra Libraries for the Tesla Series

Automatic Development of Linear Algebra Libraries for the Tesla Series Automatic Development of Linear Algebra Libraries for the Tesla Series Enrique S. Quintana-Ortí quintana@icc.uji.es Universidad Jaime I de Castellón (Spain) Dense Linear Algebra Major problems: Source

More information

Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors

Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic Distribution on Multicore and GPU Processors Andrés Tomás 1, Zhaojun Bai 1, and Vicente Hernández 2 1 Department of Computer

More information

Using GPUs to compute the multilevel summation of electrostatic forces

Using GPUs to compute the multilevel summation of electrostatic forces Using GPUs to compute the multilevel summation of electrostatic forces David J. Hardy Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of

More information

Technical Report Performance Analysis of CULA on different NVIDIA GPU Architectures. Prateek Gupta

Technical Report Performance Analysis of CULA on different NVIDIA GPU Architectures. Prateek Gupta Technical Report 2014-02 Performance Analysis of CULA on different NVIDIA GPU Architectures Prateek Gupta May 20, 2014 1 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

More information

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli High performance 2D Discrete Fourier Transform on Heterogeneous Platforms Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli Motivation Fourier Transform widely used in Physics, Astronomy, Engineering

More information

Communication-Avoiding QR Decomposition for GPUs

Communication-Avoiding QR Decomposition for GPUs Communication-Avoiding QR Decomposition for GPUs Michael Anderson, Grey Ballard, James Demmel and Kurt Keutzer UC Berkeley: Department of Electrical Engineering and Computer Science Berkeley, CA USA {mjanders,ballard,demmel,keutzer}@cs.berkeley.edu

More information

Accelerating GPU Kernels for Dense Linear Algebra

Accelerating GPU Kernels for Dense Linear Algebra Accelerating GPU Kernels for Dense Linear Algebra Rajib Nath, Stan Tomov, and Jack Dongarra Innovative Computing Lab University of Tennessee, Knoxville July 9, 21 xgemm performance of CUBLAS-2.3 on GTX28

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

Code Optimizations for High Performance GPU Computing

Code Optimizations for High Performance GPU Computing Code Optimizations for High Performance GPU Computing Yi Yang and Huiyang Zhou Department of Electrical and Computer Engineering North Carolina State University 1 Question to answer Given a task to accelerate

More information

Parallel Reduction from Block Hessenberg to Hessenberg using MPI

Parallel Reduction from Block Hessenberg to Hessenberg using MPI Parallel Reduction from Block Hessenberg to Hessenberg using MPI Viktor Jonsson May 24, 2013 Master s Thesis in Computing Science, 30 credits Supervisor at CS-UmU: Lars Karlsson Examiner: Fredrik Georgsson

More information

MemFlow: Memory-Driven Data Scheduling with Datapath Co-design in Accelerators for Largescale. Jade Nie Sharad Malik

MemFlow: Memory-Driven Data Scheduling with Datapath Co-design in Accelerators for Largescale. Jade Nie Sharad Malik MemFlow: Memory-Driven Data Scheduling with Datapath Co-design in Accelerators for Largescale Applications Jade Nie Sharad Malik This work is sponsored in part by SONIC and C-FAR, funded centers of STARnet,

More information

Optimization on the Power Efficiency of GPU and Multicore Processing Element for SIMD Computing

Optimization on the Power Efficiency of GPU and Multicore Processing Element for SIMD Computing Optimization on the Power Efficiency of GPU and Multicore Processing Element for SIMD Computing Da-Qi Ren and Reiji Suda Department of Computer Science Energy aware SIMD/SPMD program design framework GOAL:

More information

Dense Matrix Algorithms

Dense Matrix Algorithms Dense Matrix Algorithms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text Introduction to Parallel Computing, Addison Wesley, 2003. Topic Overview Matrix-Vector Multiplication

More information

Persistent RNNs. (stashing recurrent weights on-chip) Gregory Diamos. April 7, Baidu SVAIL

Persistent RNNs. (stashing recurrent weights on-chip) Gregory Diamos. April 7, Baidu SVAIL (stashing recurrent weights on-chip) Baidu SVAIL April 7, 2016 SVAIL Think hard AI. Goal Develop hard AI technologies that impact 100 million users. Deep Learning at SVAIL 100 GFLOP/s 1 laptop 6 TFLOP/s

More information

Accelerating GPU kernels for dense linear algebra

Accelerating GPU kernels for dense linear algebra Accelerating GPU kernels for dense linear algebra Rajib Nath, Stanimire Tomov, and Jack Dongarra Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville {rnath1, tomov,

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply

Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply University of California, Berkeley Berkeley Benchmarking and Optimization Group (BeBOP) http://bebop.cs.berkeley.edu

More information

Kernel Benchmarks and Metrics for Polymorphous Computer Architectures

Kernel Benchmarks and Metrics for Polymorphous Computer Architectures PCAKernels-1 Kernel Benchmarks and Metrics for Polymorphous Computer Architectures Hank Hoffmann James Lebak (Presenter) Janice McMahon Seventh Annual High-Performance Embedded Computing Workshop (HPEC)

More information

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Juan C. Pichel Centro de Investigación en Tecnoloxías da Información (CITIUS) Universidade de Santiago de Compostela, Spain

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology CS8803SC Software and Hardware Cooperative Computing GPGPU Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology Why GPU? A quiet revolution and potential build-up Calculation: 367

More information

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Stan Tomov Innovative Computing Laboratory University of Tennessee, Knoxville OLCF Seminar Series, ORNL June 16, 2010

More information

Introduction to CUDA

Introduction to CUDA Introduction to CUDA Overview HW computational power Graphics API vs. CUDA CUDA glossary Memory model, HW implementation, execution Performance guidelines CUDA compiler C/C++ Language extensions Limitations

More information

MAGMA. Matrix Algebra on GPU and Multicore Architectures

MAGMA. Matrix Algebra on GPU and Multicore Architectures MAGMA Matrix Algebra on GPU and Multicore Architectures Innovative Computing Laboratory Electrical Engineering and Computer Science University of Tennessee Piotr Luszczek (presenter) web.eecs.utk.edu/~luszczek/conf/

More information

B. Tech. Project Second Stage Report on

B. Tech. Project Second Stage Report on B. Tech. Project Second Stage Report on GPU Based Active Contours Submitted by Sumit Shekhar (05007028) Under the guidance of Prof Subhasis Chaudhuri Table of Contents 1. Introduction... 1 1.1 Graphic

More information

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Ziming Zhong Vladimir Rychkov Alexey Lastovetsky Heterogeneous Computing

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca Distributed Dense Linear Algebra on Heterogeneous Architectures George Bosilca bosilca@eecs.utk.edu Centraro, Italy June 2010 Factors that Necessitate to Redesign of Our Software» Steepness of the ascent

More information

Scientific Computing. Some slides from James Lambers, Stanford

Scientific Computing. Some slides from James Lambers, Stanford Scientific Computing Some slides from James Lambers, Stanford Dense Linear Algebra Scaling and sums Transpose Rank-one updates Rotations Matrix vector products Matrix Matrix products BLAS Designing Numerical

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v7.0 March 2015 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

Dense Linear Algebra on Heterogeneous Platforms: State of the Art and Trends

Dense Linear Algebra on Heterogeneous Platforms: State of the Art and Trends Dense Linear Algebra on Heterogeneous Platforms: State of the Art and Trends Paolo Bientinesi AICES, RWTH Aachen pauldj@aices.rwth-aachen.de ComplexHPC Spring School 2013 Heterogeneous computing - Impact

More information

Accelerating Dense Linear Algebra on the GPU

Accelerating Dense Linear Algebra on the GPU Downloaded from orbit.dtu.dk on: Nov 2, 218 Sørensen, Hans Henrik Brandenborg Publication date: 211 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA):

More information

LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs

LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs LAPACK Working Note 202 Vasily Volkov Computer Science Division University of California at Berkeley James W. Demmel Computer Science

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

Empirical Modeling: an Auto-tuning Method for Linear Algebra Routines on CPU plus Multi-GPU Platforms

Empirical Modeling: an Auto-tuning Method for Linear Algebra Routines on CPU plus Multi-GPU Platforms Empirical Modeling: an Auto-tuning Method for Linear Algebra Routines on CPU plus Multi-GPU Platforms Javier Cuenca Luis-Pedro García Domingo Giménez Francisco J. Herrera Scientific Computing and Parallel

More information

Optimizing Data Locality for Iterative Matrix Solvers on CUDA

Optimizing Data Locality for Iterative Matrix Solvers on CUDA Optimizing Data Locality for Iterative Matrix Solvers on CUDA Raymond Flagg, Jason Monk, Yifeng Zhu PhD., Bruce Segee PhD. Department of Electrical and Computer Engineering, University of Maine, Orono,

More information

Hierarchical DAG Scheduling for Hybrid Distributed Systems

Hierarchical DAG Scheduling for Hybrid Distributed Systems June 16, 2015 Hierarchical DAG Scheduling for Hybrid Distributed Systems Wei Wu, Aurelien Bouteiller, George Bosilca, Mathieu Faverge, Jack Dongarra IPDPS 2015 Outline! Introduction & Motivation! Hierarchical

More information

Benchmarking GPUs to Tune Dense Linear Algebra

Benchmarking GPUs to Tune Dense Linear Algebra Benchmarking GPUs to Tune Dense Linear Algebra Vasily Volkov Computer Science Division University of California at Berkeley James W. Demmel Computer Science Division and Department of Mathematics University

More information

Evaluation of sparse LU factorization and triangular solution on multicore architectures. X. Sherry Li

Evaluation of sparse LU factorization and triangular solution on multicore architectures. X. Sherry Li Evaluation of sparse LU factorization and triangular solution on multicore architectures X. Sherry Li Lawrence Berkeley National Laboratory ParLab, April 29, 28 Acknowledgement: John Shalf, LBNL Rich Vuduc,

More information

Evaluation of Intel Memory Drive Technology Performance for Scientific Applications

Evaluation of Intel Memory Drive Technology Performance for Scientific Applications Evaluation of Intel Memory Drive Technology Performance for Scientific Applications Vladimir Mironov, Andrey Kudryavtsev, Yuri Alexeev, Alexander Moskovsky, Igor Kulikov, and Igor Chernykh Introducing

More information

Optimizing the operations with sparse matrices on Intel architecture

Optimizing the operations with sparse matrices on Intel architecture Optimizing the operations with sparse matrices on Intel architecture Gladkikh V. S. victor.s.gladkikh@intel.com Intel Xeon, Intel Itanium are trademarks of Intel Corporation in the U.S. and other countries.

More information

CSE 160 Lecture 24. Graphical Processing Units

CSE 160 Lecture 24. Graphical Processing Units CSE 160 Lecture 24 Graphical Processing Units Announcements Next week we meet in 1202 on Monday 3/11 only On Weds 3/13 we have a 2 hour session Usual class time at the Rady school final exam review SDSC

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v6.5 August 2014 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

LINPACK Benchmark. on the Fujitsu AP The LINPACK Benchmark. Assumptions. A popular benchmark for floating-point performance. Richard P.

LINPACK Benchmark. on the Fujitsu AP The LINPACK Benchmark. Assumptions. A popular benchmark for floating-point performance. Richard P. 1 2 The LINPACK Benchmark on the Fujitsu AP 1000 Richard P. Brent Computer Sciences Laboratory The LINPACK Benchmark A popular benchmark for floating-point performance. Involves the solution of a nonsingular

More information

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters IEEE CLUSTER 2015 Chicago, IL, USA Luis Sant Ana 1, Daniel Cordeiro 2, Raphael Camargo 1 1 Federal University of ABC,

More information

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Joined Advanced Student School (JASS) 2009 March 29 - April 7, 2009 St. Petersburg, Russia G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Dmitry Puzyrev St. Petersburg State University Faculty

More information

When MPPDB Meets GPU:

When MPPDB Meets GPU: When MPPDB Meets GPU: An Extendible Framework for Acceleration Laura Chen, Le Cai, Yongyan Wang Background: Heterogeneous Computing Hardware Trend stops growing with Moore s Law Fast development of GPU

More information

CS/EE 217 Midterm. Question Possible Points Points Scored Total 100

CS/EE 217 Midterm. Question Possible Points Points Scored Total 100 CS/EE 217 Midterm ANSWER ALL QUESTIONS TIME ALLOWED 60 MINUTES Question Possible Points Points Scored 1 24 2 32 3 20 4 24 Total 100 Question 1] [24 Points] Given a GPGPU with 14 streaming multiprocessor

More information

Accelerating image registration on GPUs

Accelerating image registration on GPUs Accelerating image registration on GPUs Harald Köstler, Sunil Ramgopal Tatavarty SIAM Conference on Imaging Science (IS10) 13.4.2010 Contents Motivation: Image registration with FAIR GPU Programming Combining

More information

Report of Linear Solver Implementation on GPU

Report of Linear Solver Implementation on GPU Report of Linear Solver Implementation on GPU XIANG LI Abstract As the development of technology and the linear equation solver is used in many aspects such as smart grid, aviation and chemical engineering,

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

Realization of Hardware Architectures for Householder Transformation based QR Decomposition using Xilinx System Generator Block Sets

Realization of Hardware Architectures for Householder Transformation based QR Decomposition using Xilinx System Generator Block Sets IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 08 February 2016 ISSN (online): 2349-784X Realization of Hardware Architectures for Householder Transformation based QR

More information

Evaluating the Potential of Graphics Processors for High Performance Embedded Computing

Evaluating the Potential of Graphics Processors for High Performance Embedded Computing Evaluating the Potential of Graphics Processors for High Performance Embedded Computing Shuai Mu, Chenxi Wang, Ming Liu, Yangdong Deng Department of Micro-/Nano-electronics Tsinghua University Outline

More information

Device Memories and Matrix Multiplication

Device Memories and Matrix Multiplication Device Memories and Matrix Multiplication 1 Device Memories global, constant, and shared memories CUDA variable type qualifiers 2 Matrix Multiplication an application of tiling runningmatrixmul in the

More information

Turing Architecture and CUDA 10 New Features. Minseok Lee, Developer Technology Engineer, NVIDIA

Turing Architecture and CUDA 10 New Features. Minseok Lee, Developer Technology Engineer, NVIDIA Turing Architecture and CUDA 10 New Features Minseok Lee, Developer Technology Engineer, NVIDIA Turing Architecture New SM Architecture Multi-Precision Tensor Core RT Core Turing MPS Inference Accelerated,

More information

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University &

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement

Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement Tim Davis (Texas A&M University) with Sanjay Ranka, Mohamed Gadou (University of Florida) Nuri Yeralan (Microsoft) NVIDIA

More information

Chapter 04. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1

Chapter 04. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1 Chapter 04 Authors: John Hennessy & David Patterson Copyright 2011, Elsevier Inc. All rights Reserved. 1 Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for

More information

Performance Evaluation of BLAS on a Cluster of Multi-Core Intel Processors

Performance Evaluation of BLAS on a Cluster of Multi-Core Intel Processors Performance Evaluation of BLAS on a Cluster of Multi-Core Intel Processors Mostafa I. Soliman and Fatma S. Ahmed Computers and Systems Section, Electrical Engineering Department Aswan Faculty of Engineering,

More information

Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine

Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine Samuel Cremer 1,2, Michel Bagein 1, Saïd Mahmoudi 1, Pierre Manneback 1 1 UMONS, University of Mons Computer Science

More information

Intel Math Kernel Library (Intel MKL) BLAS. Victor Kostin Intel MKL Dense Solvers team manager

Intel Math Kernel Library (Intel MKL) BLAS. Victor Kostin Intel MKL Dense Solvers team manager Intel Math Kernel Library (Intel MKL) BLAS Victor Kostin Intel MKL Dense Solvers team manager Intel MKL BLAS/Sparse BLAS Original ( dense ) BLAS available from www.netlib.org Additionally Intel MKL provides

More information

THE USE of graphics processing units (GPUs) in scientific

THE USE of graphics processing units (GPUs) in scientific Proceedings of the International Multiconference on Computer Science and Information Technology pp. 285 291 ISBN 978-83-60810-14-9 ISSN 1896-7094 Testing Tesla Architecture for Scientific Computing: the

More information

Acceleration of Hessenberg Reduction for Nonsymmetric Matrix

Acceleration of Hessenberg Reduction for Nonsymmetric Matrix Acceleration of Hessenberg Reduction for Nonsymmetric Matrix by Hesamaldin Nekouei Bachelor of Science Degree in Electrical Engineering Iran University of Science and Technology, Iran, 2009 A thesis presented

More information

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters 1 On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters N. P. Karunadasa & D. N. Ranasinghe University of Colombo School of Computing, Sri Lanka nishantha@opensource.lk, dnr@ucsc.cmb.ac.lk

More information

Practical Introduction to CUDA and GPU

Practical Introduction to CUDA and GPU Practical Introduction to CUDA and GPU Charlie Tang Centre for Theoretical Neuroscience October 9, 2009 Overview CUDA - stands for Compute Unified Device Architecture Introduced Nov. 2006, a parallel computing

More information

A GPGPU Compiler for Memory Optimization and Parallelism Management

A GPGPU Compiler for Memory Optimization and Parallelism Management GPGPU Compiler for Memory Optimization and Parallelism Management Yi Yang, Ping Xiang, Jingfei Kong, Huiyang Zhou Department of Electrical and Computer Engineering North Carolina State University School

More information

Review. Lecture 10. Today s Outline. Review. 03b.cu. 03?.cu CUDA (II) Matrix addition CUDA-C API

Review. Lecture 10. Today s Outline. Review. 03b.cu. 03?.cu CUDA (II) Matrix addition CUDA-C API Review Lecture 10 CUDA (II) host device CUDA many core processor threads thread blocks grid # threads >> # of cores to be efficient Threads within blocks can cooperate Threads between thread blocks cannot

More information

Parallel Exact Inference on the Cell Broadband Engine Processor

Parallel Exact Inference on the Cell Broadband Engine Processor Parallel Exact Inference on the Cell Broadband Engine Processor Yinglong Xia and Viktor K. Prasanna {yinglonx, prasanna}@usc.edu University of Southern California http://ceng.usc.edu/~prasanna/ SC 08 Overview

More information

John W. Romein. Netherlands Institute for Radio Astronomy (ASTRON) Dwingeloo, the Netherlands

John W. Romein. Netherlands Institute for Radio Astronomy (ASTRON) Dwingeloo, the Netherlands Signal Processing on GPUs for Radio Telescopes John W. Romein Netherlands Institute for Radio Astronomy (ASTRON) Dwingeloo, the Netherlands 1 Overview radio telescopes six radio telescope algorithms on

More information

high performance medical reconstruction using stream programming paradigms

high performance medical reconstruction using stream programming paradigms high performance medical reconstruction using stream programming paradigms This Paper describes the implementation and results of CT reconstruction using Filtered Back Projection on various stream programming

More information

An Efficient CUDA Implementation of a Tree-Based N-Body Algorithm. Martin Burtscher Department of Computer Science Texas State University-San Marcos

An Efficient CUDA Implementation of a Tree-Based N-Body Algorithm. Martin Burtscher Department of Computer Science Texas State University-San Marcos An Efficient CUDA Implementation of a Tree-Based N-Body Algorithm Martin Burtscher Department of Computer Science Texas State University-San Marcos Mapping Regular Code to GPUs Regular codes Operate on

More information

Parallel FFT Program Optimizations on Heterogeneous Computers

Parallel FFT Program Optimizations on Heterogeneous Computers Parallel FFT Program Optimizations on Heterogeneous Computers Shuo Chen, Xiaoming Li Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Outline Part I: A Hybrid

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Mark Harris, NVIDIA Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory

More information

DAG-Scheduled Linear Algebra Using Template-Based Building Blocks

DAG-Scheduled Linear Algebra Using Template-Based Building Blocks DAG-Scheduled Linear Algebra Using Template-Based Building Blocks Jonathan Hogg STFC Rutherford Appleton Laboratory 1 / 20 19 March 2015 GPU Technology Conference San Jose, California * Thanks also to

More information

Facial Recognition Using Neural Networks over GPGPU

Facial Recognition Using Neural Networks over GPGPU Facial Recognition Using Neural Networks over GPGPU V Latin American Symposium on High Performance Computing Juan Pablo Balarini, Martín Rodríguez and Sergio Nesmachnow Centro de Cálculo, Facultad de Ingeniería

More information

MAGMA: a New Generation

MAGMA: a New Generation 1.3 MAGMA: a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Jack Dongarra T. Dong, M. Gates, A. Haidar, S. Tomov, and I. Yamazaki University of Tennessee, Knoxville Release

More information

Submission instructions (read carefully): SS17 / Assignment 4 Instructor: Markus Püschel. ETH Zurich

Submission instructions (read carefully): SS17 / Assignment 4 Instructor: Markus Püschel. ETH Zurich 263-2300-00: How To Write Fast Numerical Code Assignment 4: 120 points Due Date: Th, April 13th, 17:00 http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-eth-spring17/course.html Questions: fastcode@lists.inf.ethz.ch

More information

Georgia Institute of Technology, August 17, Justin W. L. Wan. Canada Research Chair in Scientific Computing

Georgia Institute of Technology, August 17, Justin W. L. Wan. Canada Research Chair in Scientific Computing Real-Time Rigid id 2D-3D Medical Image Registration ti Using RapidMind Multi-Core Platform Georgia Tech/AFRL Workshop on Computational Science Challenge Using Emerging & Massively Parallel Computer Architectures

More information

A Multi-Tiered Optimization Framework for Heterogeneous Computing

A Multi-Tiered Optimization Framework for Heterogeneous Computing A Multi-Tiered Optimization Framework for Heterogeneous Computing IEEE HPEC 2014 Alan George Professor of ECE University of Florida Herman Lam Assoc. Professor of ECE University of Florida Andrew Milluzzi

More information

Performance of Multicore LUP Decomposition

Performance of Multicore LUP Decomposition Performance of Multicore LUP Decomposition Nathan Beckmann Silas Boyd-Wickizer May 3, 00 ABSTRACT This paper evaluates the performance of four parallel LUP decomposition implementations. The implementations

More information