University of Calgary Department of Electrical and Computer Engineering ENCM 339: Programming Fundamentals, Section 01 Instructor: Steve Norman

Size: px
Start display at page:

Download "University of Calgary Department of Electrical and Computer Engineering ENCM 339: Programming Fundamentals, Section 01 Instructor: Steve Norman"

Transcription

1 page 1 of 9 University of Calgary Department of Electrical and Computer Engineering ENCM 339: Programming Fundamentals, Section 01 Instructor: Steve Norman Fall 2017 FINAL EXAMINATION Location: ENG 60 Monday, December 11 Noon to 3:00 PM NAME (printed): Please don t write anything within this box. 1 / 10 2 / 12 U of C ID NUMBER: 3 / 9 4 / 12 5 / 5 SIGNATURE: 6 / 9 7 / 10 8 / 9 TOTAL / 76 Version information This docuemnt is very slightly different from the one that was printed and given to students. A typographical error has been corrected on page 5, and some text has been edited on page 7 to clarify the specifications of the functions students were asked to write. Instructions Please note that the official University of Calgary examination regulations are printed on page 1 of the Examination Regulations and Reference Material booklet that accompanies this examination paper. All of those regulations are in effect for this examination, except that you must write your answers on the question paper, not in the examination booklet. Calculators may not be used while writing this examination. The examination is closed-book. You may not refer to books or notes during the examination, with one exception: you may refer to the Examination Regulations and Reference Material booklet that accompanies this examination paper. You are not required to add comments to C or Python code you write, but you are strongly encouraged to do so, because writing good comments will improve the probability that your code is correct and will help you to check your code after it is finished. Some problems are relatively easy and some are relatively difficult. Go after the easy marks first. Write all answers on the question paper and hand in the question paper when you are done. Please do not hand in the Examination Regulations and Reference Material booklet. Please print or write your answers legibly. What cannot be read cannot be marked. If you write anything you do not want marked, put a large X through it and write rough work beside it. You may use the backs of pages for rough work.

2 ENCM 339 Fall 2017 Section 01 Final Examination page 2 of 9 PROBLEM 1 (total of 10 marks) Part a (5 marks). Make a memory diagram for the second time the program gets to point one. int add(const int *a, int m) { int s = a[0], i; // point one for (i = 2; i < m; i += 2) s += a[i]; return s; void foo(const int *b, int n, int *p, int *q) { *p = add(b, n); *q = add(b + 1, n - 1); int x[ ] = { 2, 3, 5, 7, 11, 13, 17 ; int j, k; foo(x, 7, &j, &k); Part b (5 marks). Here are some facts relevant to this part of the problem: isspace returns a nonzero value if its argument is a whitespace character (such as space or tab), and zero otherwise. isdigit returns a nonzero value if its argument is one of 0, 1, 2,..., 9, and zero otherwise. ASCII codes for digits are 48, 49, 50,..., 57. Make a memory diagram for the second time the program gets to point one. #include <ctype.h> int getint(const char *s, const char **n) { int r = 0; while (isspace(*s)) s++; while (isdigit(*s)) { r = 10 * r + (*s - 48); s++; // point one *n = s; return r; char foo[ ] = " "; int i1, i2; const char *p; i1 = getint(foo, &p); i2 = getint(p, &p); // point two Hint: At point two the values of i1 and i2 will be 23 and 456.

3 ENCM 339 Fall 2017 Section 01 Final Examination page 3 of 9 PROBLEM 2 (total of 12 marks) Part a (6 marks). Write a complete C function definition to match the given function interface. void remove(char *dest, const char *s1, const char *s2); // REQUIRES: s1 and s2 point to the starts of strings. dest points // to the start of an array of length at least strlen(s1) + 1. // PROMISES: A string is built in the dest array by copying characters // from the s1 string that are NOT in the s2 string. // EXAMPLE: remove(d, "programming", "aeiou") would put "prgrmmng" in // the array found with d. Part b (6 marks). In a two-dimensional coordinate system, the distance from a point (x, y) to the origin is x 2 + y 2. Write a complete C function definition to match the given function interface. (Hint: You will need to do some multiplying and adding, but won t need to take square roots.) struct point { double x, y; ; typedef struct point point_t; int i_of_max_dist(const point_t *a, int n); // REQUIRES: n >= 1, elements a[0]... a[n-1] exist. // PROMISES: Return value is the index of the element that has the // maximum distance from the origin. In the case of a tie, the // the smallest index of a maximum is chosen.

4 ENCM 339 Fall 2017 Section 01 Final Examination page 4 of 9 PROBLEM 3 (total of 9 marks). Miscellaneous short-answer questions about C. Part a (3 marks). Write the program output in the space below the program listing. #include <stdio.h> #define DIV(a, b) a / b #define SUB(c, d) c - d printf("div(20.0, DIV(4.0, 2.0)) is %f\n", DIV(20.0, DIV(4.0, 2.0))); printf("div(10, SUB(8, 3)) is %d\n", DIV(10, SUB(8, 3))); Part b (3 marks). Assume that the call to fopen is successful, that the contents of text file stuff.txt are as shown, and that the program is running on a platform where EOF is 1. #include <stdio.h> FILE *fp = fopen("stuff.txt", "r"); int code, last = -1, count = 0; while (1) { code = fscanf(fp, "%d", &last); if (code!= 1) break; count++; printf("code: %d; last: %d; count: %d\n", code, last, count); stuff.txt xyz What is the program output? Part c (3 marks). Write the program output in the space beside the program listing. Hint: 779 = #include <stdio.h> void do_something(int n) { static char hd[] = " abcdef"; char c; printf("got %d\n", n); if (n <= 15) c = hd[n]; else { do_something(n / 16); c = hd[n % 16]; fputc(c, stdout); do_something(779); printf("\nbye!\n");

5 ENCM 339 Fall 2017 Section 01 Final Examination page 5 of 9 PROBLEM 4 (total of 12 marks). The following program shows one way to program with matrices in C using a struct type and dynamically allocated arrays. If the malloc calls in init_mat succeed, the state of the program at point one will be what is shown in the diagram. #include <stdlib.h> #include <stdio.h> struct matrix { int nrow; int ncol; double **e; ; typedef struct matrix matrix_t; void init_mat(matrix_t *m, int nr, int nc) { m->e = malloc(nr * sizeof(double*)); double *block2 = malloc(nr * nc * sizeof(double)); int i; for (i = 0; i < nr; i++) m->e[i] = block2 + i * nc; m->nrow = nr; m->ncol = nc; double v[3]; matrix_t a; int s; init_mat(&a, 2, 3); for (int r = 0; r < 2; r++) for (int c = 0; c < 3; c++) a.e[r][c] = r * (c + 1); AR main point one a v[0] v[2] s nrow ncol e???????? 2 3 no parameters stack heap // point one get_col_sums(&a, v); s = save_to_file(&a, "my_mat.dat"); if (s!= 0) fprintf(stderr, "error (code %d) saving matrix to file!\n", s); Part a (6 marks). The function get_col_sums is supposed to compute the sums of the columns of a matrix. In the example that would make v[0] = , v[1] = , and v[2] = Write a definition for get_col_sums. Assume that the matrix it works with has been set up by init_mat, but that the numbers of rows and columns could be any positive integers, not necessarily 2 and 3. Part b is on the next page...

6 ENCM 339 Fall 2017 Section 01 Final Examination page 6 of 9 Part b (6 marks). For the matrix type introduced on the previous page, the save_to_file function is supposed to save a matrix in the binary file format shown to the right of this paragraph. (You may assume for this part that the size of an int is 4 bytes and the size of a double is 8 bytes.) Write a definition for save_to_file. Assume that the matrix the function works with has been set up by init_mat, but that the numbers of rows and columns could be any positive integers, not necessarily 2 and 3. The return value should be 0 for success, 1 for failure to open the file, and 2 if a problem is detected trying to close the file. 8 bytes: m, a, t, r, i, x, 1, 7, 4 bytes: nrow 4 bytes: ncol 8 ncol bytes: row 0 of matrix. 8 ncol bytes: last row of matrix PROBLEM 5 (5 marks). Assume that the calls to malloc succeed in the program given below. In the space beside the program listing, draw a memory diagram for the first time the program gets to point one. #include <stdlib.h> #include <string.h> char **clone(char **p, int n) { char **result = malloc(n * sizeof(char *)); int i, j; for (i = 0; i < n; i++) { result[i] = malloc(strlen(p[i]) + 1); for (j = 0; p[i][j]!= \0 ; j++) { result[i][j] = p[i][j]; // point one result[i][j] = \0 ; return result; char *x[3] = {"ABC", "DE", "F"; char **y; y = clone(x, 3);

7 ENCM 339 Fall 2017 Section 01 Final Examination page 7 of 9 PROBLEM 6 (total of 9 marks). Miscellaneous short-answer questions about Python. Part a (3 marks). The add method of a class will be called if an object of that class is the left operand of the binary + operator, and the radd method of a class will be called if an object of that class is the right operand of the binary + operator. class Weirdo(): def init (self, s1, s2): self.s1 = s1 self.s2 = s2 def str (self): return Weirdo( + self.s1 +, + self.s2 + ) def add (self, rhs): return Weirdo(self.s1 + rhs, self.s2 + rhs) class WeirdoToo(Weirdo): def radd (self, lhs): return WeirdoToo(lhs + self.s1, lhs + self.s2) x = Weirdo( A, B ) y = x + C z = WeirdoToo( D, E ) z = F + z print(x, y, z) print( x a WeirdoToo?, isinstance(x, WeirdoToo)) print( z a Weirdo?, isinstance(z, Weirdo)) What is the output of the above program? Part b (3 marks). Note that attempting to evaluate something like int( xyz ) will raise a ValueError exception. Write the program output in the space beside the program listing. chunks = nope 101 #$%! for c1 in chunks.split(): try: i = int(c1) print( c1 as int:, i) except ValueError: print( not an int:, c1) try: for c2 in chunks.split(): i = int(c2) print( c2 as int:, i) except ValueError: print( not an int:, c2) Part c (3 marks). Write the program output in the space beside the program listing. def addem(x, lo, hi): print( lo =, lo, hi =, hi) if lo + 1 == hi: r = x[lo] else: mid = (lo + hi) // 2 r = addem(x, lo, mid) r += addem(x, mid, hi) print( r =, r) return r a = [5, 7, 11] print( starting... ) s = addem(a, 0, 3) print( done... s =, s)

8 ENCM 339 Fall 2017 Section 01 Final Examination page 8 of 9 PROBLEM 7 (total of 10 marks). In both parts, you do not need to write code to check for invalid parameter types or values. Part a (6 marks). Simpson s rule is an algorithm for finding the approximate value of the definite integral b a f(x)dx, by adding up some weighted values of f(x) for a finite number of evenly-spaced values of x between a and b. A parameter n indicates that n + 1 values of f(x) will be used to make the approximation. The sketch to the right uses n = 6. f(x) a x 1 x 2 x 3 x 4 x 5 b x Given a positive even integer n, the general formula for the approximate integral is ( ) b a ( f(a) + 4f(x 1 ) + 2f(x 2 ) + + 2f(x n 2) + 4f(x n 1) + f(b)) 3n Note that f(x k ) gets multiplied by 4 if k is odd and by 2 if k is even. Complete the following Python function definition. def simpson(f, a, b, n): """Return approximate integral of f(x) from x=a to x=b with parameter n. f must be a function that takes one float argument and return a float. n must be an int that is even and positive.""" Part b (4 marks). Write a Python function called maxcount that has one parameter a non-empty sequence of int values and returns the maximum value for the sequence along with the number of times that value is in the sequence. For example... biggest, howmany = maxcount((1, 7, 7, 6, 7))... should give biggest a value of 7 and howmany a value of 3.

9 ENCM 339 Fall 2017 Section 01 Final Examination page 9 of 9 PROBLEM 8 (9 marks) Joe Student sells bunches of bananas, bags of apples, and bags of oranges to help raise tuition money. Because this is an exam question and not real life, he records his sales in text files that look like this example: 2017 dec 4 10 apples 14 oranges 2017 dec 5 20 oranges 19 bananas 6 apples 2017 dec 6 23 bananas 2017 dec dec 8 16 bananas 22 oranges The first line of the example file indicates that on December 4, 2017, Joe sold 10 bags of apples and 14 bags of oranges, but no bunches of bananas. You can assume that every line of every file has space-separated fields with this organization: The first 3 fields describe a date. The remaining fields are in pairs an integer followed by a type of fruit. Your goal is to write a program to add up total sales in one of these input files. For example, for the above input file, the output should be something like this: 58 bunches of bananas 16 bags of apples 56 bags of oranges Complete the Python program started below. Note that it assumes that the name of the input file will be given by sys.argv[1]. You do not have to write code to check for failure to open the input file or for invalid data in input file. import sys if len(sys.argv)!= 2: print( wrong number of command-line arguments ) sys.exit(1) counts = { apples : 0, bananas : 0, oranges : 0

The University of Calgary. ENCM 339 Programming Fundamentals Fall 2016

The University of Calgary. ENCM 339 Programming Fundamentals Fall 2016 The University of Calgary ENCM 339 Programming Fundamentals Fall 2016 Instructors: S. Norman, and M. Moussavi Wednesday, November 2 7:00 to 9:00 PM The First Letter of your Last Name:! Please Print your

More information

University of Calgary Department of Electrical and Computer Engineering ENCM 335 Instructor: Steve Norman

University of Calgary Department of Electrical and Computer Engineering ENCM 335 Instructor: Steve Norman page 1 of 6 University of Calgary Department of Electrical and Computer Engineering ENCM 335 Instructor: Steve Norman Fall 2018 MIDTERM TEST Thursday, November 1 6:30pm to 8:30pm Please do not write your

More information

University of Calgary Department of Electrical and Computer Engineering ENCM 339 Lecture Section 01 Instructor: Steve Norman

University of Calgary Department of Electrical and Computer Engineering ENCM 339 Lecture Section 01 Instructor: Steve Norman page 1 of 6 University of Calgary Department of Electrical and Computer Engineering ENCM 339 Lecture Section 01 Instructor: Steve Norman Fall 2017 MIDTERM TEST Wednesday, November 1 7:00pm to 9:00pm This

More information

ESC101N: Fundamentals of Computing End-sem st semester

ESC101N: Fundamentals of Computing End-sem st semester ESC101N: Fundamentals of Computing End-sem 2010-11 1st semester Instructor: Arnab Bhattacharya 8:00-11:00am, 15th November, 2010 Instructions 1. Please write your name, roll number and section below. 2.

More information

#1 #2 with corrections Monday, March 12 7:00pm to 8:30pm. Please do not write your U of C ID number on this cover page.

#1 #2 with corrections Monday, March 12 7:00pm to 8:30pm. Please do not write your U of C ID number on this cover page. page 1 of 6 University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructors: Steve Norman and Norm Bartley Winter 2018 MIDTERM TEST #1 #2 with

More information

Slide Set 8. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng

Slide Set 8. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng Slide Set 8 for ENCM 339 Fall 2017 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary October 2017 ENCM 339 Fall 2017 Section 01 Slide

More information

Winter 2017 MIDTERM TEST #1 Wednesday, February 8 7:00pm to 8:30pm. Please do not write your U of C ID number on this cover page.

Winter 2017 MIDTERM TEST #1 Wednesday, February 8 7:00pm to 8:30pm. Please do not write your U of C ID number on this cover page. page 1 of 5 University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructors: Steve Norman and Norm Bartley Winter 2017 MIDTERM TEST #1 Wednesday,

More information

Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium Tuesday, April 18 7:00pm to 10:00pm

Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium Tuesday, April 18 7:00pm to 10:00pm University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructor for L01 and L02: Dr. S. A. Norman Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium

More information

Winter 2012 MID-SESSION TEST Tuesday, March 6 6:30pm to 8:15pm. Please do not write your U of C ID number on this cover page.

Winter 2012 MID-SESSION TEST Tuesday, March 6 6:30pm to 8:15pm. Please do not write your U of C ID number on this cover page. University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructors: S. A. Norman and N. R. Bartley Winter 2012 MID-SESSION TEST Tuesday, March 6

More information

Winter 2003 MID-SESSION TEST Monday, March 10 6:30 to 8:00pm

Winter 2003 MID-SESSION TEST Monday, March 10 6:30 to 8:00pm University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructors: Dr. S. A. Norman (L01) and Dr. S. Yanushkevich (L02) Winter 2003 MID-SESSION TEST Monday,

More information

Winter 2009 FINAL EXAMINATION Location: Engineering A Block, Room 201 Saturday, April 25 noon to 3:00pm

Winter 2009 FINAL EXAMINATION Location: Engineering A Block, Room 201 Saturday, April 25 noon to 3:00pm University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructors: S. A. Norman (L01), N. R. Bartley (L02) Winter 2009 FINAL EXAMINATION Location:

More information

Midterm Examination # 2 Wednesday, March 18, Duration of examination: 75 minutes STUDENT NAME: STUDENT ID NUMBER:

Midterm Examination # 2 Wednesday, March 18, Duration of examination: 75 minutes STUDENT NAME: STUDENT ID NUMBER: Page 1 of 8 School of Computer Science 60-141-01 Introduction to Algorithms and Programming Winter 2015 Midterm Examination # 2 Wednesday, March 18, 2015 ANSWERS Duration of examination: 75 minutes STUDENT

More information

ENCM 339 Fall 2017 Tutorial for Week 8

ENCM 339 Fall 2017 Tutorial for Week 8 ENCM 339 Fall 2017 Tutorial for Week 8 for section T01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 2 November, 2017 ENCM 339 T01 Tutorial

More information

ECE264 Fall 2013 Exam 3, November 20, 2013

ECE264 Fall 2013 Exam 3, November 20, 2013 ECE264 Fall 2013 Exam 3, November 20, 2013 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing it.

More information

Slide Set 4. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng

Slide Set 4. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng Slide Set 4 for ENCM 339 Fall 2017 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary September 2017 ENCM 339 Fall 2017 Section 01

More information

Slide Set 15 (Complete)

Slide Set 15 (Complete) Slide Set 15 (Complete) for ENCM 339 Fall 2017 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary November 2017 ENCM 339 Fall 2017

More information

Slide Set 3. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng

Slide Set 3. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng Slide Set 3 for ENCM 339 Fall 2017 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary September 2017 ENCM 339 Fall 2017 Section 01

More information

Signature: ECE 551 Midterm Exam

Signature: ECE 551 Midterm Exam Name: ECE 551 Midterm Exam NetID: There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual work.

More information

ECE264 Fall 2013 Exam 1, September 24, 2013

ECE264 Fall 2013 Exam 1, September 24, 2013 ECE264 Fall 2013 Exam 1, September 24, 2013 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing it.

More information

University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructor: Steve Norman

University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructor: Steve Norman page of 9 University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructor: Steve Norman Winter 26 FINAL EXAMINATION (with corrections) Location: ICT 2

More information

Main Program. C Programming Notes. #include <stdio.h> main() { printf( Hello ); } Comments: /* comment */ //comment. Dr. Karne Towson University

Main Program. C Programming Notes. #include <stdio.h> main() { printf( Hello ); } Comments: /* comment */ //comment. Dr. Karne Towson University C Programming Notes Dr. Karne Towson University Reference for C http://www.cplusplus.com/reference/ Main Program #include main() printf( Hello ); Comments: /* comment */ //comment 1 Data Types

More information

Slide Set 2. for ENCM 335 in Fall Steve Norman, PhD, PEng

Slide Set 2. for ENCM 335 in Fall Steve Norman, PhD, PEng Slide Set 2 for ENCM 335 in Fall 2018 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary September 2018 ENCM 335 Fall 2018 Slide Set 2 slide

More information

ECE551 Midterm Version 1

ECE551 Midterm Version 1 Name: ECE551 Midterm Version 1 NetID: There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual

More information

Sample Examination. Family Name:... Other Names:... Signature:... Student Number:...

Sample Examination. Family Name:... Other Names:... Signature:... Student Number:... Family Name:... Other Names:... Signature:... Student Number:... THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF COMPUTER SCIENCE AND ENGINEERING Sample Examination COMP1917 Computing 1 EXAM DURATION: 2 HOURS

More information

Slide Set 4. for ENCM 335 in Fall Steve Norman, PhD, PEng

Slide Set 4. for ENCM 335 in Fall Steve Norman, PhD, PEng Slide Set 4 for ENCM 335 in Fall 2018 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary September 2018 ENCM 335 Fall 2018 Slide Set 4 slide

More information

Midterm Examination # 2 Wednesday, March 19, Duration of examination: 75 minutes STUDENT NAME: STUDENT ID NUMBER:

Midterm Examination # 2 Wednesday, March 19, Duration of examination: 75 minutes STUDENT NAME: STUDENT ID NUMBER: Page 1 of 7 School of Computer Science 60-141-01 Introduction to Algorithms and Programming Winter 2014 Midterm Examination # 2 Wednesday, March 19, 2014 ANSWERS Duration of examination: 75 minutes STUDENT

More information

MARKS: Q1 /20 /15 /15 /15 / 5 /30 TOTAL: /100

MARKS: Q1 /20 /15 /15 /15 / 5 /30 TOTAL: /100 FINAL EXAMINATION INTRODUCTION TO ALGORITHMS AND PROGRAMMING II 03-60-141-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Winter 2014 Last Name: First Name: Student

More information

Slide Set 9. for ENCM 335 in Fall Steve Norman, PhD, PEng

Slide Set 9. for ENCM 335 in Fall Steve Norman, PhD, PEng Slide Set 9 for ENCM 335 in Fall 2018 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary October 2018 ENCM 335 Fall 2018 Slide Set 9 slide 2/32

More information

EXAMINATION REGULATIONS and REFERENCE MATERIAL for ENCM 339 Fall 2017 Section 01 Final Examination

EXAMINATION REGULATIONS and REFERENCE MATERIAL for ENCM 339 Fall 2017 Section 01 Final Examination EXAMINATION REGULATIONS and REFERENCE MATERIAL for ENCM 339 Fall 2017 Section 01 Final Examination The following regulations are taken from the front cover of a University of Calgary examination answer

More information

COP 3223 Introduction to Programming with C - Study Union - Fall 2017

COP 3223 Introduction to Programming with C - Study Union - Fall 2017 COP 3223 Introduction to Programming with C - Study Union - Fall 2017 Chris Marsh and Matthew Villegas Contents 1 Code Tracing 2 2 Pass by Value Functions 4 3 Statically Allocated Arrays 5 3.1 One Dimensional.................................

More information

Winter 2002 FINAL EXAMINATION

Winter 2002 FINAL EXAMINATION University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructors: Dr. S. A. Norman (L01) and Dr. S. Yanushkevich (L02) Note for Winter 2005 students Winter

More information

Final CSE 131B Spring 2005

Final CSE 131B Spring 2005 Login name Signature Name Student ID Final CSE 131B Spring 2005 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 (27 points) (24 points) (32 points) (24 points) (32 points) (26 points) (31 points)

More information

ECE551 Midterm Version 2

ECE551 Midterm Version 2 Name: ECE551 Midterm Version 2 NetID: There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual

More information

CSE 303 Midterm Exam

CSE 303 Midterm Exam CSE 303 Midterm Exam October 29, 2008 Name Sample Solution The exam is closed book, except that you may have a single page of hand written notes for reference. If you don t remember the details of how

More information

PDS Class Test 2. Room Sections No of students

PDS Class Test 2. Room Sections No of students PDS Class Test 2 Date: October 27, 2016 Time: 7pm to 8pm Marks: 20 (Weightage 50%) Room Sections No of students V1 Section 8 (All) Section 9 (AE,AG,BT,CE, CH,CS,CY,EC,EE,EX) V2 Section 9 (Rest, if not

More information

Kurt Schmidt. October 30, 2018

Kurt Schmidt. October 30, 2018 to Structs Dept. of Computer Science, Drexel University October 30, 2018 Array Objectives to Structs Intended audience: Student who has working knowledge of Python To gain some experience with a statically-typed

More information

Slide Set 3. for ENCM 339 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 3. for ENCM 339 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 3 for ENCM 339 Fall 2016 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary September 2016 ENCM 339 Fall 2016 Slide Set 3 slide 2/46

More information

ECE264 Spring 2013 Final Exam, April 30, 2013

ECE264 Spring 2013 Final Exam, April 30, 2013 ECE264 Spring 2013 Final Exam, April 30, 2013 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing

More information

CSE 333 Midterm Exam 2/14/14

CSE 333 Midterm Exam 2/14/14 Name There are 4 questions worth a total of 100 points. Please budget your time so you get to all of the questions. Keep your answers brief and to the point. The exam is closed book, closed notes, closed

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING APS 105 Computer Fundamentals Final Examination December 16, 2013 2:00 p.m. 4:30 p.m. (150 minutes) Examiners: J. Anderson, B. Korst, J.

More information

ENCM 339 Fall 2017 Lecture Section 01 Lab 3 for the Week of October 2

ENCM 339 Fall 2017 Lecture Section 01 Lab 3 for the Week of October 2 page 1 of 11 ENCM 339 Fall 2017 Lecture Section 01 Lab 3 for the Week of October 2 Steve Norman Department of Electrical & Computer Engineering University of Calgary September 2017 Lab instructions and

More information

Subject: PROBLEM SOLVING THROUGH C Time: 3 Hours Max. Marks: 100

Subject: PROBLEM SOLVING THROUGH C Time: 3 Hours Max. Marks: 100 Code: DC-05 Subject: PROBLEM SOLVING THROUGH C Time: 3 Hours Max. Marks: 100 NOTE: There are 11 Questions in all. Question 1 is compulsory and carries 16 marks. Answer to Q. 1. must be written in the space

More information

ENCM 335 Fall 2018 Tutorial for Week 13

ENCM 335 Fall 2018 Tutorial for Week 13 ENCM 335 Fall 2018 Tutorial for Week 13 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 06 December, 2018 ENCM 335 Tutorial 06 Dec 2018 slide

More information

ECE264 Spring 2014 Exam 2, March 11, 2014

ECE264 Spring 2014 Exam 2, March 11, 2014 ECE264 Spring 2014 Exam 2, March 11, 2014 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing it.

More information

Slide Set 6. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng

Slide Set 6. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng Slide Set 6 for ENCM 339 Fall 2017 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary October 2017 ENCM 339 Fall 2017 Section 01 Slide

More information

today cs3157-fall2002-sklar-lect05 1

today cs3157-fall2002-sklar-lect05 1 today homework #1 due on monday sep 23, 6am some miscellaneous topics: logical operators random numbers character handling functions FILE I/O strings arrays pointers cs3157-fall2002-sklar-lect05 1 logical

More information

ECE 264 Exam 2. 6:30-7:30PM, March 9, You must sign here. Otherwise you will receive a 1-point penalty.

ECE 264 Exam 2. 6:30-7:30PM, March 9, You must sign here. Otherwise you will receive a 1-point penalty. ECE 264 Exam 2 6:30-7:30PM, March 9, 2011 I certify that I will not receive nor provide aid to any other student for this exam. Signature: You must sign here. Otherwise you will receive a 1-point penalty.

More information

Recursion. Data and File Structures Laboratory. DFS Lab (ISI) Recursion 1 / 27

Recursion. Data and File Structures Laboratory.  DFS Lab (ISI) Recursion 1 / 27 Recursion Data and File Structures Laboratory http://www.isical.ac.in/~dfslab/2017/index.html DFS Lab (ISI) Recursion 1 / 27 Definition A recursive function is a function that calls itself. The task should

More information

PRINCIPLES OF OPERATING SYSTEMS

PRINCIPLES OF OPERATING SYSTEMS PRINCIPLES OF OPERATING SYSTEMS Tutorial-1&2: C Review CPSC 457, Spring 2015 May 20-21, 2015 Department of Computer Science, University of Calgary Connecting to your VM Open a terminal (in your linux machine)

More information

Wawrzynek & Weaver CS 61C. Sp 2018 Great Ideas in Computer Architecture MT 1. Print your name:,

Wawrzynek & Weaver CS 61C. Sp 2018 Great Ideas in Computer Architecture MT 1. Print your name:, Wawrzynek & Weaver CS 61C Sp 2018 Great Ideas in Computer Architecture MT 1 Print your name:, (last) (first) I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that any academic

More information

Language Design COMS W4115. Prof. Stephen A. Edwards Spring 2003 Columbia University Department of Computer Science

Language Design COMS W4115. Prof. Stephen A. Edwards Spring 2003 Columbia University Department of Computer Science Language Design COMS W4115 Prof. Stephen A. Edwards Spring 2003 Columbia University Department of Computer Science Language Design Issues Syntax: how programs look Names and reserved words Instruction

More information

C mini reference. 5 Binary numbers 12

C mini reference. 5 Binary numbers 12 C mini reference Contents 1 Input/Output: stdio.h 2 1.1 int printf ( const char * format,... );......................... 2 1.2 int scanf ( const char * format,... );.......................... 2 1.3 char

More information

CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community

CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community http://csc.cs.rit.edu History and Evolution of Programming Languages 1. Explain the relationship between machine

More information

Common Misunderstandings from Exam 1 Material

Common Misunderstandings from Exam 1 Material Common Misunderstandings from Exam 1 Material Kyle Dewey Stack and Heap Allocation with Pointers char c = c ; char* p1 = malloc(sizeof(char)); char** p2 = &p1; Where is c allocated? Where is p1 itself

More information

ECE551 Midterm. There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly.

ECE551 Midterm. There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. Name: ECE551 Midterm NetID: There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual work. You

More information

School of Computer Science Introduction to Algorithms and Programming Winter Midterm Examination # 1 Wednesday, February 11, 2015

School of Computer Science Introduction to Algorithms and Programming Winter Midterm Examination # 1 Wednesday, February 11, 2015 Page 1 of 8 School of Computer Science 60-141-01 Introduction to Algorithms and Programming Winter 2015 Midterm Examination # 1 Wednesday, February 11, 2015 Marking Exemplar Duration of examination: 75

More information

Problem 2 Add the two 2 s complement signed 8-bit values given below, and express your answer in decimal.

Problem 2 Add the two 2 s complement signed 8-bit values given below, and express your answer in decimal. Problem 1 Recall the definition of root in project 1. (The declaration of struct entrynode appears below.) struct entrynode * root; Give the type of each of the following expressions. The answer may be

More information

Why arrays? To group distinct variables of the same type under a single name.

Why arrays? To group distinct variables of the same type under a single name. Lesson #7 Arrays Why arrays? To group distinct variables of the same type under a single name. Suppose you need 100 temperatures from 100 different weather stations: A simple (but time consuming) solution

More information

First of all, it is a variable, just like other variables you studied

First of all, it is a variable, just like other variables you studied Pointers: Basics What is a pointer? First of all, it is a variable, just like other variables you studied So it has type, storage etc. Difference: it can only store the address (rather than the value)

More information

Wawrzynek & Weaver CS 61C. Sp 2018 Great Ideas in Computer Architecture MT 1. Print your name:,

Wawrzynek & Weaver CS 61C. Sp 2018 Great Ideas in Computer Architecture MT 1. Print your name:, Wawrzynek & Weaver CS 61C Sp 2018 Great Ideas in Computer Architecture MT 1 Print your name:, (last) (first) I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that any academic

More information

CS150 - Sample Final

CS150 - Sample Final CS150 - Sample Final Name: Honor code: You may use the following material on this exam: The final exam cheat sheet which I have provided The matlab basics handout (without any additional notes) Up to two

More information

CSE 333 Midterm Exam 5/10/13

CSE 333 Midterm Exam 5/10/13 Name There are 5 questions worth a total of 100 points. Please budget your time so you get to all of the questions. Keep your answers brief and to the point. The exam is closed book, closed notes, closed

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING APS 105 Computer Fundamentals Final Examination December 21, 2015 9:30 a.m. 12:00 p.m. (150 minutes) Examiners: J. Anderson, B. Li, J. Rose

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING APS 105 Computer Fundamentals Final Examination December 14, 2012 2:00 p.m. 4:30 p.m. (150 minutes) Examiners: J. Anderson, B. Li, M. Sadoghi,

More information

Answer all questions. Write your answers only in the space provided. Full marks = 50

Answer all questions. Write your answers only in the space provided. Full marks = 50 Answer all questions. Write your answers only in the space provided. Full marks = 50 1. Answer the following: [2+3+2+1=8 marks] a) What are the minimum and maximum numbers that can be represented in 10-bit

More information

Language Design COMS W4115. Prof. Stephen A. Edwards Fall 2006 Columbia University Department of Computer Science

Language Design COMS W4115. Prof. Stephen A. Edwards Fall 2006 Columbia University Department of Computer Science Language Design COMS W4115 Katsushika Hokusai, In the Hollow of a Wave off the Coast at Kanagawa, 1827 Prof. Stephen A. Edwards Fall 2006 Columbia University Department of Computer Science Language Design

More information

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures CS113: Lecture 9 Topics: Dynamic Allocation Dynamic Data Structures 1 What s wrong with this? char *big_array( char fill ) { char a[1000]; int i; for( i = 0; i < 1000; i++ ) a[i] = fill; return a; void

More information

ENCM 339 Fall 2017 Lecture Section 01 Lab 9 for the Week of November 20

ENCM 339 Fall 2017 Lecture Section 01 Lab 9 for the Week of November 20 page 1 of 9 ENCM 339 Fall 2017 Lecture Section 01 Lab 9 for the Week of November 20 Steve Norman Department of Electrical & Computer Engineering University of Calgary November 2017 Lab instructions and

More information

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures CS113: Lecture 9 Topics: Dynamic Allocation Dynamic Data Structures 1 What s wrong with this? char *big_array( char fill ) { char a[1000]; int i; for( i = 0; i < 1000; i++ ) a[i] = fill; return a; void

More information

Contents of Lecture 3

Contents of Lecture 3 Contents of Lecture 3 Repetition of matrices double a[3][4]; double* b; double** c; Terminology Linkage Types Conversions Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 1 / 33 A global matrix: double a[3][4]

More information

ECE 2035 Programming HW/SW Systems Spring problems, 5 pages Exam Three 8 April Your Name (please print clearly)

ECE 2035 Programming HW/SW Systems Spring problems, 5 pages Exam Three 8 April Your Name (please print clearly) Your Name (please print clearly) This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions

More information

Variables Data types Variable I/O. C introduction. Variables. Variables 1 / 14

Variables Data types Variable I/O. C introduction. Variables. Variables 1 / 14 C introduction Variables Variables 1 / 14 Contents Variables Data types Variable I/O Variables 2 / 14 Usage Declaration: t y p e i d e n t i f i e r ; Assignment: i d e n t i f i e r = v a l u e ; Definition

More information

Final Exam 1 /12 2 /12 3 /10 4 /7 5 /4 6 /10 7 /8 8 /9 9 /8 10 /11 11 /8 12 /10 13 /9 14 /13 15 /10 16 /10 17 /12. Faculty of Computer Science

Final Exam 1 /12 2 /12 3 /10 4 /7 5 /4 6 /10 7 /8 8 /9 9 /8 10 /11 11 /8 12 /10 13 /9 14 /13 15 /10 16 /10 17 /12. Faculty of Computer Science Faculty of Computer Science Page 1 of 21 Final Exam Term: Fall 2018 (Sep4-Dec4) Student ID Information Last name: First name: Student ID #: CS.Dal.Ca userid: Course ID: CSCI 2132 Course Title: Instructor:

More information

C Language Part 2 Digital Computer Concept and Practice Copyright 2012 by Jaejin Lee

C Language Part 2 Digital Computer Concept and Practice Copyright 2012 by Jaejin Lee C Language Part 2 (Minor modifications by the instructor) 1 Scope Rules A variable declared inside a function is a local variable Each local variable in a function comes into existence when the function

More information

Final Intro to C Review

Final Intro to C Review Final Exam Content: Final Intro to C Review - Pass by reference Functions - General Syntax - Structures - Recursion(maybe?) - Programming by nature is cumulative so any past material is up for grabs as

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam December 16, 2016 Section I A DATA STRUCTURES NO books, notes, or calculators may be used, and you must work entirely on your own. SOLUTION Question # Max Pts Category

More information

CSC209H Lecture 4. Dan Zingaro. January 28, 2015

CSC209H Lecture 4. Dan Zingaro. January 28, 2015 CSC209H Lecture 4 Dan Zingaro January 28, 2015 Strings (King Ch 13) String literals are enclosed in double quotes A string literal of n characters is represented as a n+1-character char array C adds a

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Warmup January 9th, What is the value of the following C expression? 8*9 % 10/ 2

Warmup January 9th, What is the value of the following C expression? 8*9 % 10/ 2 Warmup January 9th, 2018 What is the value of the following C expression? 8*9 % 10/ 2 Warmup January 11th, 2018 What is the value of the following C expression? ( -42 3!= 3) && ( -3 < -2 < -1) Warmup January

More information

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator EXAMINATION ( End Semester ) SEMESTER ( Spring ) Roll Number Section Name Subject Number C S 1 0 0 0 1 Subject Name Programming

More information

University of California San Diego Department of Electrical and Computer Engineering. ECE 15 Final Exam

University of California San Diego Department of Electrical and Computer Engineering. ECE 15 Final Exam University of California San Diego Department of Electrical and Computer Engineering ECE 15 Final Exam Tuesday, March 21, 2017 3:00 p.m. 6:00 p.m. Room 109, Pepper Canyon Hall Name Class Account: ee15w

More information

Pointers and File Handling

Pointers and File Handling 1 Pointers and File Handling From variables to their addresses Pallab Dasgupta Professor, Dept. of Computer Sc & Engg INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2 Basics of Pointers INDIAN INSTITUTE OF TECHNOLOGY

More information

Advanced Pointer Topics

Advanced Pointer Topics Advanced Pointer Topics Pointers to Pointers A pointer variable is a variable that takes some memory address as its value. Therefore, you can have another pointer pointing to it. int x; int * px; int **

More information

High Performance Programming Programming in C part 1

High Performance Programming Programming in C part 1 High Performance Programming Programming in C part 1 Anastasia Kruchinina Uppsala University, Sweden April 18, 2017 HPP 1 / 53 C is designed on a way to provide a full control of the computer. C is the

More information

Midterm Exam Nov 8th, COMS W3157 Advanced Programming Columbia University Fall Instructor: Jae Woo Lee.

Midterm Exam Nov 8th, COMS W3157 Advanced Programming Columbia University Fall Instructor: Jae Woo Lee. Midterm Exam Nov 8th, 2012 COMS W3157 Advanced Programming Columbia University Fall 2012 Instructor: Jae Woo Lee About this exam: - There are 4 problems totaling 100 points: problem 1: 30 points problem

More information

ECE264 Summer 2013 Exam 1, June 20, 2013

ECE264 Summer 2013 Exam 1, June 20, 2013 ECE26 Summer 2013 Exam 1, June 20, 2013 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing it. I

More information

The output will be: marks all or nothing. 1 #include <stdio.h> 2 main() { 3 int i; int j; 4 int *p; int *q; 6 p = &i; 7 q = &j; 8 i = 1;

The output will be: marks all or nothing. 1 #include <stdio.h> 2 main() { 3 int i; int j; 4 int *p; int *q; 6 p = &i; 7 q = &j; 8 i = 1; p. 2 of 9 Q1. [5 marks] The following program compiles and runs with no problems. Indicate what the output of the program is going to be (no explanation necessary). 1 #include 2 main() { 3 int

More information

CIS 2107 Computer Systems and Low-Level Programming Fall 2011 Midterm

CIS 2107 Computer Systems and Low-Level Programming Fall 2011 Midterm Fall 2011 Name: Page Points Score 1 5 2 10 3 10 4 7 5 8 6 15 7 4 8 7 9 16 10 18 Total: 100 Instructions The exam is closed book, closed notes. You may not use a calculator, cell phone, etc. For each of

More information

CSE351 Winter 2016, Final Examination March 16, 2016

CSE351 Winter 2016, Final Examination March 16, 2016 CSE351 Winter 2016, Final Examination March 16, 2016 Please do not turn the page until 2:30. Rules: The exam is closed-book, closed-note, etc. Please stop promptly at 4:20. There are 125 (not 100) points,

More information

The C Language Reference Manual

The C Language Reference Manual The C Language Reference Manual Stephen A. Edwards Columbia University Summer 2014 Katsushika Hokusai, In the Hollow of a Wave off the Coast at Kanagawa, 1827 Part I The History of C C History Developed

More information

15110 PRINCIPLES OF COMPUTING SAMPLE EXAM 2

15110 PRINCIPLES OF COMPUTING SAMPLE EXAM 2 15110 PRINCIPLES OF COMPUTING SAMPLE EXAM 2 Name Section Directions: Answer each question neatly in the space provided. Please read each question carefully. You have 50 minutes for this exam. No electronic

More information

CS201 Some Important Definitions

CS201 Some Important Definitions CS201 Some Important Definitions For Viva Preparation 1. What is a program? A program is a precise sequence of steps to solve a particular problem. 2. What is a class? We write a C++ program using data

More information

CS61, Fall 2012 Section 2 Notes

CS61, Fall 2012 Section 2 Notes CS61, Fall 2012 Section 2 Notes (Week of 9/24-9/28) 0. Get source code for section [optional] 1: Variable Duration 2: Memory Errors Common Errors with memory and pointers Valgrind + GDB Common Memory Errors

More information

Lecture 04 Introduction to pointers

Lecture 04 Introduction to pointers Lecture 04 Introduction to pointers A pointer is an address in the memory. One of the unique advantages of using C is that it provides direct access to a memory location through its address. A variable

More information

ECE264 Fall 2013 Exam 2, October 24, 2013

ECE264 Fall 2013 Exam 2, October 24, 2013 ECE Fall 0 Exam, October, 0 If this is an on-line exam, you have 0 minutes to finish the exam. When the time limit is reached, the system will automatically close. If this is a paper exam, you have 0 minutes.

More information

CSE 333 Midterm Exam July 24, Name UW ID#

CSE 333 Midterm Exam July 24, Name UW ID# Name UW ID# There are 6 questions worth a total of 100 points. Please budget your time so you get to all of the questions. Keep your answers brief and to the point. The exam is closed book, closed notes,

More information

16.216: ECE Application Programming Spring 2015 Exam 3 Solution

16.216: ECE Application Programming Spring 2015 Exam 3 Solution 16.216: ECE Application Programming Spring 2015 Exam 3 Solution 1. (20 points, 4 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

Fundamentals of Programming Session 8

Fundamentals of Programming Session 8 Fundamentals of Programming Session 8 Instructor: Reza Entezari-Maleki Email: entezari@ce.sharif.edu 1 Fall 2013 These slides have been created using Deitel s slides Sharif University of Technology Outlines

More information

arrays and strings week 3 Ritsumeikan University College of Information Science and Engineering Ian Piumarta 1 / 22 imperative programming review

arrays and strings week 3 Ritsumeikan University College of Information Science and Engineering Ian Piumarta 1 / 22 imperative programming review of char imperative week 3 and Ritsumeikan University College of Information Science and Engineering Ian Piumarta 1 / 22 : miscellaneous of char several library functions are have put or get in their name

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Data Structures and Algorithms. Final Examination T09:00

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Data Structures and Algorithms. Final Examination T09:00 University of Waterloo Department of Electrical and Computer Engineering ECE 250 Data Structures and Algorithms Instructor: Douglas Wilhelm Harder Time: 2.5 hours Aides: none 18 pages Final Examination

More information