Winter 2017 MIDTERM TEST #1 Wednesday, February 8 7:00pm to 8:30pm. Please do not write your U of C ID number on this cover page.

Size: px
Start display at page:

Download "Winter 2017 MIDTERM TEST #1 Wednesday, February 8 7:00pm to 8:30pm. Please do not write your U of C ID number on this cover page."

Transcription

1 page 1 of 5 University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructors: Steve Norman and Norm Bartley Winter 2017 MIDTERM TEST #1 Wednesday, February 8 7:00pm to 8:30pm Please do not write your U of C ID number on this cover page. Name (printed): Signature: Lecture section (01 is MWF 11:00am with S. Norman, 02 is MWF 10:00am with N. Bartley): General Instructions Marks will be recorded on the last page of this question paper. When you are told to start the test, the first thing you should do is to put your name, signature, U of C ID number, and lecture section in the appropriate spaces at the bottom of the last page. If you use a calculator, it must be one of the following models sanctioned by the Schulich School of Engineering: Casio FX-260, Casio FX-300MS, TI- 30XIIS. The test is closed-book. You may not refer to books or notes during the test, with one exception: you may refer to the Reference Material page that accompanies this test paper. You are not required to add comments to assembly language code you write, but you are strongly encouraged to do so, because writing good comments will improve the probability that your code is correct and will help you to check your code after it is finished. Some problems are relatively easy and some are relatively difficult. Go after the easy marks first. To reduce distraction to other students, you are not allowed to leave during the last ten minutes of the test. Write all answers on the question paper and hand in the question paper when you are done. Please print or write your answers legibly. What cannot be read cannot be marked. If you write anything you do not want marked, put a large X through it and write rough work beside it. You may use the backs of pages for rough work.

2 ENCM 369 Winter 2017: Midterm Test #1 page 2 of 5 PROBLEM 1 (11 marks) Consider the listed to the right. Translate the function foo into MARS assembly language. Follow the usual calling conventions from lectures and labs, and use only instructions from the Midterm Instruction Subset described on the Reference Material page. int bar(int x); int quux(int y); int foo(const int *a, int *b, int n) int j, k, aj; k = 0; for (j = 0; j < n; j++) aj = a[j]; if(bar(aj)!= 0) b[k] = quux(aj); k++; return k;

3 ENCM 369 Winter 2017: Midterm Test #1 page 3 of 5 PROBLEM 2 (total of 13 marks). In this problem, you are asked to translate sequences of one or more C statements into sequences of one or more MARS instructions, not complete MARS procedures. Use only instructions from the Midterm Instruction Subset. Use as many t-registers as you wish for intermediate values. Example. (No marks.) $s0 is used for x, of type int. x = 42; addi $s0, $zero, 42 Part a. (3 marks.) $s2 is used for p, of type int*. $s3 is used for q, also of type int*. *p = *q - 3; q = p - 2; Part b. (3 marks.) a is an array of char elements on the stack, and the address of a[0] is 20($sp). $s5 is used for p, of type char*. p = a; while (*p!= \0 ) p++; Part c. (4 marks.) j, in $s3, and k, in $s4, are both of type int. f takes an argument of type int and returns a value of type int. if (j < 10 f(j) < 100) k++; else k--; Part d. (3 marks.) y, in $s1, and x, in $s2, are both of type int. (Hint: 20 = ) y = 20 * x;

4 ENCM 369 Winter 2017: Midterm Test #1 page 4 of 5 PROBLEM 3 (13 marks). The MARS assembly-language program on this page is a correct translation of the C program. Fill in the table of GPRs and the blank boxes in the diagram of memory with numbers to show the state of the assembly-language program, at the third of the four times it will get to point one. label zed wye main exx address 0x0040_0030 0x0040_0044 0x0040_00b0 0x1001_0000 GPR value of GPR when main starts $s0 111 $s1 222 $s2 333 $sp 0x7fff_eb80 $ra 0x0040_0028 Use base ten or hexadecimal format for numbers, whichever is more convenient for any particular number. Note that some of the memory words in the diagram might not be used by the program. GPR values, third time at point one GPR $a0 $v0 $s0 $s1 $s2 $t3 $sp value Memory, third time at point one higher addresses STACK data saved before main was called..data int zed(int za) return za >= -8 && za < 9; void wye(int *a, int *aend, const int *b) while (a < aend) if (zed(*b)) *a = *b; else *a = 12; a++; b++; int exx[4] = -9, -8, 11, 8 ; int main(void) int ww[4]; wye(ww, ww + 4, exx); //...more code... zed:.globl zed addi $v0, $zero, 0 slti $t0, $a0, -8 bne $t0, $zero, L1 slti $v0, $a0, 9 # POINT ONE L1: jr $ra.globl wye wye: addi $sp, $sp, -16 sw $ra, 12($sp) sw $s2, 8($sp) sw $s1, 4($sp) sw $s0, 0($sp) add $s0, $a0, $zero add $s1, $a1, $zero add $s2, $a2, $zero L2: slt $t2, $s0, $s1 beq $t2, $zero, L3 lw $a0, ($s2) jal zed beq $v0, $zero, L4 lw $t3, ($s2) sw $t3, ($s0) j L5 L4: addi $t4, $zero, 12 sw $t4, ($s0) L5: addi $s0, $s0, 4 addi $s2, $s2, 4 j L2 L3: lw $s0, 0($sp) lw $s1, 4($sp) lw $s2, 8($sp) lw $ra, 12($sp) addi $sp, $sp, 16 jr $ra.data.globl exx exx:.word -9, -8, 11, 8.globl main main: addi $sp, $sp, -20 sw $ra, 16($sp) addi $a0, $sp, 0 addi $a1, $sp, 16 la $a2, exx jal wye #... more code... addi $v0, $zero, 0 lw $ra, 16($sp) addi $sp, $sp, 16 jr $ra 0x1001_0000 return 0;

5 ENCM 369 Winter 2017: Midterm Test #1 page 5 of 5 PROBLEM 4 (total of 7 marks) Part a. (4 marks.) Assume that $t0 contains 0x0003_5000 and $t1 contains 0x000a_6000 before the following sequence of instructions runs: and $t2, $t0, $t1 nor $t3, $t1, $zero srl $t4, $t2, 2 lui $t5, 0x73ac What are the values in $t2, $t3, $t4, and $t5 after the instructions have run? Give your answers as hexadecimal numbers. Part b. (3 marks.) In ENCM 369, the words preprocessor and compiler are the names for two tools in the toolchain for building executable files from C source files. Briefly but precisely describe what each of these two tools does. MARKS: The space below will be used to record your marks for each question and your overall test mark. Please put your name, signature, and U of C ID number in the appropriate boxes. Name (printed): Signature: U of Calgary ID number: Problem Mark 1 / 11 2 / 13 3 / 13 4 / 7 Lecture Section (01 is 11:00am with S. Norman, 02 is 10:00am with N. Bartley): TOTAL / 44

Winter 2012 MID-SESSION TEST Tuesday, March 6 6:30pm to 8:15pm. Please do not write your U of C ID number on this cover page.

Winter 2012 MID-SESSION TEST Tuesday, March 6 6:30pm to 8:15pm. Please do not write your U of C ID number on this cover page. University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructors: S. A. Norman and N. R. Bartley Winter 2012 MID-SESSION TEST Tuesday, March 6

More information

#1 #2 with corrections Monday, March 12 7:00pm to 8:30pm. Please do not write your U of C ID number on this cover page.

#1 #2 with corrections Monday, March 12 7:00pm to 8:30pm. Please do not write your U of C ID number on this cover page. page 1 of 6 University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructors: Steve Norman and Norm Bartley Winter 2018 MIDTERM TEST #1 #2 with

More information

Winter 2003 MID-SESSION TEST Monday, March 10 6:30 to 8:00pm

Winter 2003 MID-SESSION TEST Monday, March 10 6:30 to 8:00pm University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructors: Dr. S. A. Norman (L01) and Dr. S. Yanushkevich (L02) Winter 2003 MID-SESSION TEST Monday,

More information

University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructor: Steve Norman

University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructor: Steve Norman page of 9 University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructor: Steve Norman Winter 26 FINAL EXAMINATION (with corrections) Location: ICT 2

More information

Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium Tuesday, April 18 7:00pm to 10:00pm

Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium Tuesday, April 18 7:00pm to 10:00pm University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructor for L01 and L02: Dr. S. A. Norman Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium

More information

ENCM 369 Winter 2017 Lab 3 for the Week of January 30

ENCM 369 Winter 2017 Lab 3 for the Week of January 30 page 1 of 11 ENCM 369 Winter 2017 Lab 3 for the Week of January 30 Steve Norman Department of Electrical & Computer Engineering University of Calgary January 2017 Lab instructions and other documents for

More information

Winter 2009 FINAL EXAMINATION Location: Engineering A Block, Room 201 Saturday, April 25 noon to 3:00pm

Winter 2009 FINAL EXAMINATION Location: Engineering A Block, Room 201 Saturday, April 25 noon to 3:00pm University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructors: S. A. Norman (L01), N. R. Bartley (L02) Winter 2009 FINAL EXAMINATION Location:

More information

Winter 2002 FINAL EXAMINATION

Winter 2002 FINAL EXAMINATION University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructors: Dr. S. A. Norman (L01) and Dr. S. Yanushkevich (L02) Note for Winter 2005 students Winter

More information

University of Calgary Department of Electrical and Computer Engineering ENCM 339 Lecture Section 01 Instructor: Steve Norman

University of Calgary Department of Electrical and Computer Engineering ENCM 339 Lecture Section 01 Instructor: Steve Norman page 1 of 6 University of Calgary Department of Electrical and Computer Engineering ENCM 339 Lecture Section 01 Instructor: Steve Norman Fall 2017 MIDTERM TEST Wednesday, November 1 7:00pm to 9:00pm This

More information

Contents. Slide Set 2. Outline of Slide Set 2. More about Pseudoinstructions. Avoid using pseudoinstructions in ENCM 369 labs

Contents. Slide Set 2. Outline of Slide Set 2. More about Pseudoinstructions. Avoid using pseudoinstructions in ENCM 369 labs Slide Set 2 for ENCM 369 Winter 2014 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2014 ENCM 369 W14 Section

More information

Slide Set 3. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng

Slide Set 3. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng Slide Set 3 for ENCM 369 Winter 2018 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary January 2018 ENCM 369 Winter 2018 Section

More information

EN164: Design of Computing Systems Lecture 11: Processor / ISA 4

EN164: Design of Computing Systems Lecture 11: Processor / ISA 4 EN164: Design of Computing Systems Lecture 11: Processor / ISA 4 Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

2) Using the same instruction set for the TinyProc2, convert the following hex values to assembly language: x0f

2) Using the same instruction set for the TinyProc2, convert the following hex values to assembly language: x0f CS2 Fall 28 Exam 2 Name: ) The Logisim TinyProc2 has four instructions, each using 8 bits. The instruction format is DR SR SR2 OpCode with OpCodes of for add, for subtract, and for multiply. Load Immediate

More information

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 MIPS/SPIM General Purpose Registers Powers of Two 0 $zero all bits are zero 16 $s0 local variable 1 $at assembler temporary 17 $s1 local

More information

Slide Set 4. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng

Slide Set 4. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng Slide Set 4 for ENCM 369 Winter 2018 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary January 2018 ENCM 369 Winter 2018 Section

More information

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 30 Introduction to Computer Engineering Study Problems, Set #3 Spring 2015 Use the MIPS assembly instructions listed below to solve the following problems. arithmetic add add sub subtract addi add

More information

Slide Set 1 (corrected)

Slide Set 1 (corrected) Slide Set 1 (corrected) for ENCM 369 Winter 2018 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary January 2018 ENCM 369 Winter 2018

More information

Contents. Slide Set 1. About these slides. Outline of Slide Set 1. Typographical conventions: Italics. Typographical conventions. About these slides

Contents. Slide Set 1. About these slides. Outline of Slide Set 1. Typographical conventions: Italics. Typographical conventions. About these slides Slide Set 1 for ENCM 369 Winter 2014 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2014 ENCM 369 W14 Section

More information

University of Calgary Department of Electrical and Computer Engineering ENCM 335 Instructor: Steve Norman

University of Calgary Department of Electrical and Computer Engineering ENCM 335 Instructor: Steve Norman page 1 of 6 University of Calgary Department of Electrical and Computer Engineering ENCM 335 Instructor: Steve Norman Fall 2018 MIDTERM TEST Thursday, November 1 6:30pm to 8:30pm Please do not write your

More information

Winter 2013 MIDTERM TEST #2 Wednesday, March 20 7:00pm to 8:15pm. Please do not write your U of C ID number on this cover page.

Winter 2013 MIDTERM TEST #2 Wednesday, March 20 7:00pm to 8:15pm. Please do not write your U of C ID number on this cover page. page of 7 University of Calgary Departent of Electrical and Copter Engineering ENCM 369: Copter Organization Lectre Instrctors: Steve Noran and Nor Bartley Winter 23 MIDTERM TEST #2 Wednesday, March 2

More information

comp 180 Lecture 10 Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions

comp 180 Lecture 10 Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions Procedure Calls A procedure of a subroutine is like an agent which needs certain information to perform a

More information

Chapter 2. Instructions:

Chapter 2. Instructions: Chapter 2 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

ENCM 369 Winter 2019 Lab 6 for the Week of February 25

ENCM 369 Winter 2019 Lab 6 for the Week of February 25 page of ENCM 369 Winter 29 Lab 6 for the Week of February 25 Steve Norman Department of Electrical & Computer Engineering University of Calgary February 29 Lab instructions and other documents for ENCM

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Procedure calls and register saving conventions 1 Example Convert to assembly: while (save[i] == k) i += 1; i and k are in $s3 and $s5 and base of array save[]

More information

The University of Calgary. ENCM 339 Programming Fundamentals Fall 2016

The University of Calgary. ENCM 339 Programming Fundamentals Fall 2016 The University of Calgary ENCM 339 Programming Fundamentals Fall 2016 Instructors: S. Norman, and M. Moussavi Wednesday, November 2 7:00 to 9:00 PM The First Letter of your Last Name:! Please Print your

More information

Chapter 3. Instructions:

Chapter 3. Instructions: Chapter 3 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

ENEL 353: Digital Circuits Midterm Examination

ENEL 353: Digital Circuits Midterm Examination NAME: SECTION: L01: Norm Bartley, ST 143 L02: Steve Norman, ST 145 When you start the test, please repeat your name and section, and add your U of C ID number at the bottom of the last page. Instructions:

More information

EE 361 University of Hawaii Fall

EE 361 University of Hawaii Fall C functions Road Map Computation flow Implementation using MIPS instructions Useful new instructions Addressing modes Stack data structure 1 EE 361 University of Hawaii Implementation of C functions and

More information

Homework 4 - Solutions (Floating point representation, Performance, Recursion and Stacks) Maximum points: 80 points

Homework 4 - Solutions (Floating point representation, Performance, Recursion and Stacks) Maximum points: 80 points Homework 4 - Solutions (Floating point representation, Performance, Recursion and Stacks) Maximum points: 80 points Directions This assignment is due Friday, Feb. th. Submit your solutions on a separate

More information

ENCM 369 Winter 2018 Lab 9 for the Week of March 19

ENCM 369 Winter 2018 Lab 9 for the Week of March 19 page 1 of 9 ENCM 369 Winter 2018 Lab 9 for the Week of March 19 Steve Norman Department of Electrical & Computer Engineering University of Calgary March 2018 Lab instructions and other documents for ENCM

More information

Problem maximum score 1 35pts 2 22pts 3 23pts 4 15pts Total 95pts

Problem maximum score 1 35pts 2 22pts 3 23pts 4 15pts Total 95pts University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences CS61c Summer 2001 Woojin Yu Midterm Exam This is a closed-book exam. No calculators

More information

Computer Architecture I Midterm I

Computer Architecture I Midterm I Computer Architecture I Midterm I April 11 2017 Computer Architecture I Midterm I Chinese Name: Pinyin Name: E-Mail... @shanghaitech.edu.cn: Question Points Score 1 1 2 12 3 16 4 14 5 18 6 17 7 22 Total:

More information

COMP2611: Computer Organization MIPS function and recursion

COMP2611: Computer Organization MIPS function and recursion COMP2611 Fall2015 COMP2611: Computer Organization MIPS function and recursion Overview 2 You will learn the following in this lab: how to use MIPS functions in a program; the concept of recursion; how

More information

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont )

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont ) Chapter 2 Computer Abstractions and Technology Lesson 4: MIPS (cont ) Logical Operations Instructions for bitwise manipulation Operation C Java MIPS Shift left >>> srl Bitwise

More information

CS61C Machine Structures. Lecture 12 - MIPS Procedures II & Logical Ops. 2/13/2006 John Wawrzynek. www-inst.eecs.berkeley.

CS61C Machine Structures. Lecture 12 - MIPS Procedures II & Logical Ops. 2/13/2006 John Wawrzynek. www-inst.eecs.berkeley. CS61C Machine Structures Lecture 12 - MIPS Procedures II & Logical Ops 2/13/2006 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L12 MIPS Procedures II / Logical (1)

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Memory layout, numbers, control instructions Procedure calls 1 Memory Organization The space allocated on stack by a procedure is termed the activation record

More information

Slide Set 5. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng

Slide Set 5. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng Slide Set 5 for ENCM 369 Winter 2018 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary February 2018 ENCM 369 Winter 2018 Section

More information

CSCI 402: Computer Architectures. Instructions: Language of the Computer (3) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Instructions: Language of the Computer (3) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Instructions: Language of the Computer (3) Fengguang Song Department of Computer & Information Science IUPUI Recall Big endian, little endian Memory alignment Unsigned

More information

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda MIPS ISA and MIPS Assembly CS301 Prof. Szajda Administrative HW #2 due Wednesday (9/11) at 5pm Lab #2 due Friday (9/13) 1:30pm Read Appendix B5, B6, B.9 and Chapter 2.5-2.9 (if you have not already done

More information

Lecture 6: Assembly Programs

Lecture 6: Assembly Programs Lecture 6: Assembly Programs Today s topics: Procedures Examples Large constants The compilation process A full example 1 Procedures Local variables, AR, $fp, $sp Scratchpad and saves/restores, $fp Arguments

More information

Computer Science 2500 Computer Organization Rensselaer Polytechnic Institute Spring Topic Notes: MIPS Programming

Computer Science 2500 Computer Organization Rensselaer Polytechnic Institute Spring Topic Notes: MIPS Programming Computer Science 2500 Computer Organization Rensselaer Polytechnic Institute Spring 2009 Topic Notes: MIPS Programming We spent some time looking at the MIPS Instruction Set Architecture. We will now consider

More information

Slide Set 5. for ENCM 369 Winter 2014 Lecture Section 01. Steve Norman, PhD, PEng

Slide Set 5. for ENCM 369 Winter 2014 Lecture Section 01. Steve Norman, PhD, PEng Slide Set 5 for ENCM 369 Winter 2014 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2014 ENCM 369 W14 Section

More information

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 21 October 2016

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 21 October 2016 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

COMP 303 Computer Architecture Lecture 3. Comp 303 Computer Architecture

COMP 303 Computer Architecture Lecture 3. Comp 303 Computer Architecture COMP 303 Computer Architecture Lecture 3 Comp 303 Computer Architecture 1 Supporting procedures in computer hardware The execution of a procedure Place parameters in a place where the procedure can access

More information

ENCM 369 Winter 2015 Lab 6 for the Week of March 2

ENCM 369 Winter 2015 Lab 6 for the Week of March 2 page of 2 ENCM 369 Winter 25 Lab 6 for the Week of March 2 Steve Norman Department of Electrical & Computer Engineering University of Calgary February 25 Lab instructions and other documents for ENCM 369

More information

Midterm. CS64 Spring Midterm Exam

Midterm. CS64 Spring Midterm Exam Midterm LAST NAME FIRST NAME PERM Number Instructions Please turn off all pagers, cell phones and beepers. Remove all hats & headphones. Place your backpacks, laptops and jackets at the front. Sit in every

More information

Branch Addressing. Jump Addressing. Target Addressing Example. The University of Adelaide, School of Computer Science 28 September 2015

Branch Addressing. Jump Addressing. Target Addressing Example. The University of Adelaide, School of Computer Science 28 September 2015 Branch Addressing Branch instructions specify Opcode, two registers, target address Most branch targets are near branch Forward or backward op rs rt constant or address 6 bits 5 bits 5 bits 16 bits PC-relative

More information

CS 61C: Great Ideas in Computer Architecture Strings and Func.ons. Anything can be represented as a number, i.e., data or instruc\ons

CS 61C: Great Ideas in Computer Architecture Strings and Func.ons. Anything can be represented as a number, i.e., data or instruc\ons CS 61C: Great Ideas in Computer Architecture Strings and Func.ons Instructor: Krste Asanovic, Randy H. Katz hdp://inst.eecs.berkeley.edu/~cs61c/sp12 Fall 2012 - - Lecture #7 1 New- School Machine Structures

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer

More information

CS/COE1541: Introduction to Computer Architecture

CS/COE1541: Introduction to Computer Architecture CS/COE1541: Introduction to Computer Architecture Dept. of Computer Science University of Pittsburgh http://www.cs.pitt.edu/~melhem/courses/1541p/index.html 1 Computer Architecture? Application pull Operating

More information

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction

More information

CSCI 2321 (Computer Design), Spring 2018 Homework 3

CSCI 2321 (Computer Design), Spring 2018 Homework 3 CSCI 2321 (Computer Design), Spring 2018 Homework 3 Credit: 50 points. 1 Reading Be sure you have read, or at least skimmed, all assigned sections of Chapter 2 and Appendix A. 2 Honor Code Statement Please

More information

We will study the MIPS assembly language as an exemplar of the concept.

We will study the MIPS assembly language as an exemplar of the concept. MIPS Assembly Language 1 We will study the MIPS assembly language as an exemplar of the concept. MIPS assembly instructions each consist of a single token specifying the command to be carried out, and

More information

CENG3420 Computer Organization and Design Lab 1-2: System calls and recursions

CENG3420 Computer Organization and Design Lab 1-2: System calls and recursions CENG3420 Computer Organization and Design Lab 1-2: System calls and recursions Wen Zong Department of Computer Science and Engineering The Chinese University of Hong Kong wzong@cse.cuhk.edu.hk Overview

More information

CS222: MIPS Instruction Set

CS222: MIPS Instruction Set CS222: MIPS Instruction Set Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Previous Introduction to MIPS Instruction Set MIPS Arithmetic's Register Vs Memory, Registers

More information

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College Assembly Language Programming CPSC 252 Computer Organization Ellen Walker, Hiram College Instruction Set Design Complex and powerful enough to enable any computation Simplicity of equipment MIPS Microprocessor

More information

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

CS222: Dr. A. Sahu. Indian Institute of Technology Guwahati

CS222: Dr. A. Sahu. Indian Institute of Technology Guwahati CS222: (a) Activation Record of Merge Sort (b) Architecture Space RISC/CISC Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Activation Record in Recursion: Merge

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) More MIPS Machine Language

CS 61C: Great Ideas in Computer Architecture (Machine Structures) More MIPS Machine Language CS 61C: Great Ideas in Computer Architecture (Machine Structures) More MIPS Machine Language Instructors: Randy H. Katz David A. PaGerson hgp://inst.eecs.berkeley.edu/~cs61c/sp11 1 2 Machine Interpreta4on

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.1: MIPS ISA: Introduction Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted d from lectures on Computer Organization and Design, Patterson & Hennessy,

More information

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 23 October Your Name (please print clearly) Signed.

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 23 October Your Name (please print clearly) Signed. Your Name (please print clearly) This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions

More information

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam Two 11 March Your Name (please print) total

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam Two 11 March Your Name (please print) total Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #7. Warehouse Scale Computer

Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #7. Warehouse Scale Computer CS 61C: Great Ideas in Computer Architecture Everything is a Number Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13 9/19/13 Fall 2013 - - Lecture #7 1 New- School Machine Structures

More information

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam 29 April 2015

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam 29 April 2015 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

SPIM Procedure Calls

SPIM Procedure Calls SPIM Procedure Calls 22C:60 Jonathan Hall March 29, 2008 1 Motivation We would like to create procedures that are easy to use and easy to read. To this end we will discuss standard conventions as it relates

More information

Computer Organization MIPS ISA

Computer Organization MIPS ISA CPE 335 Computer Organization MIPS ISA Dr. Iyad Jafar Adapted from Dr. Gheith Abandah Slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html CPE 232 MIPS ISA 1 (vonneumann) Processor Organization

More information

Computer Organization and Components

Computer Organization and Components Computer Organization and Components IS1500, fall 2016 Lecture 2: Assembly Languages Associate Professor, KTH Royal Institute of Technology Slides version 1.0 2 Course Structure Module 1: C and Assembly

More information

CSE Lecture In Class Example Handout

CSE Lecture In Class Example Handout CSE 30321 Lecture 07-09 In Class Example Handout Part A: A Simple, MIPS-based Procedure: Swap Procedure Example: Let s write the MIPS code for the following statement (and function call): if (A[i] > A

More information

Computer Architecture. Chapter 2-2. Instructions: Language of the Computer

Computer Architecture. Chapter 2-2. Instructions: Language of the Computer Computer Architecture Chapter 2-2 Instructions: Language of the Computer 1 Procedures A major program structuring mechanism Calling & returning from a procedure requires a protocol. The protocol is a sequence

More information

University of Calgary Department of Electrical and Computer Engineering ENCM 339: Programming Fundamentals, Section 01 Instructor: Steve Norman

University of Calgary Department of Electrical and Computer Engineering ENCM 339: Programming Fundamentals, Section 01 Instructor: Steve Norman page 1 of 9 University of Calgary Department of Electrical and Computer Engineering ENCM 339: Programming Fundamentals, Section 01 Instructor: Steve Norman Fall 2017 FINAL EXAMINATION Location: ENG 60

More information

ECE 473 Computer Architecture and Organization Project: Design of a Five Stage Pipelined MIPS-like Processor Project Team TWO Objectives

ECE 473 Computer Architecture and Organization Project: Design of a Five Stage Pipelined MIPS-like Processor Project Team TWO Objectives ECE 473 Computer Architecture and Organization Project: Design of a Five Stage Pipelined MIPS-like Processor Due: December 8, 2011 Instructor: Dr. Yifeng Zhu Project Team This is a team project. All teams

More information

CS64 Week 5 Lecture 1. Kyle Dewey

CS64 Week 5 Lecture 1. Kyle Dewey CS64 Week 5 Lecture 1 Kyle Dewey Overview More branches in MIPS Memory in MIPS MIPS Calling Convention More Branches in MIPS else_if.asm nested_if.asm nested_else_if.asm Memory in MIPS Accessing Memory

More information

bits 5..0 the sub-function of opcode 0, 32 for the add instruction

bits 5..0 the sub-function of opcode 0, 32 for the add instruction CS2 Computer Systems note 1a Some MIPS instructions More details on these, and other instructions in the MIPS instruction set, can be found in Chapter 3 of Patterson and Hennessy. A full listing of MIPS

More information

Procedure Call and Return Procedure call

Procedure Call and Return Procedure call Procedures int len(char *s) { for (int l=0; *s!= \0 ; s++) l++; main return l; } void reverse(char *s, char *r) { char *p, *t; int l = len(s); reverse(s,r) N/A *(r+l) = \0 ; reverse l--; for (p=s+l t=r;

More information

MIPS Functions and Instruction Formats

MIPS Functions and Instruction Formats MIPS Functions and Instruction Formats 1 The Contract: The MIPS Calling Convention You write functions, your compiler writes functions, other compilers write functions And all your functions call other

More information

Lab 4 : MIPS Function Calls

Lab 4 : MIPS Function Calls Lab 4 : MIPS Function Calls Name: Sign the following statement: On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work 1 Objective The objective of this lab

More information

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#:

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#: Computer Science and Engineering 331 Midterm Examination #1 Fall 2000 Name: Solutions S.S.#: 1 41 2 13 3 18 4 28 Total 100 Instructions: This exam contains 4 questions. It is closed book and notes. Calculators

More information

CSc 256 Midterm (green) Fall 2018

CSc 256 Midterm (green) Fall 2018 CSc 256 Midterm (green) Fall 2018 NAME: Problem 1 (5 points): Suppose we are tracing a C/C++ program using a debugger such as gdb. The code showing all function calls looks like this: main() { bat(5);

More information

I-Format Instructions (3/4) Define fields of the following number of bits each: = 32 bits

I-Format Instructions (3/4) Define fields of the following number of bits each: = 32 bits CS61C L10 MIPS Instruction Representation II (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #10 Instruction Representation II 2007-7-8 Review There are register calling conventions!

More information

ECE 331 Hardware Organization and Design. Professor Jay Taneja UMass ECE - Discussion 3 2/8/2018

ECE 331 Hardware Organization and Design. Professor Jay Taneja UMass ECE - Discussion 3 2/8/2018 ECE 331 Hardware Organization and Design Professor Jay Taneja UMass ECE - jtaneja@umass.edu Discussion 3 2/8/2018 Study Jams Leader: Chris Bartoli Tuesday 5:30-6:45pm Elab 325 Wednesday 8:30-9:45pm Elab

More information

Lecture 7: MIPS Functions Part 2. Nested Function Calls. Lecture 7: Character and String Operations. SPIM Syscalls. Recursive Functions

Lecture 7: MIPS Functions Part 2. Nested Function Calls. Lecture 7: Character and String Operations. SPIM Syscalls. Recursive Functions Part Part Part What if we need to call a function inside of a function? Will this work? int twofun(int a, int b) { int res; res = addfun(a, b) a / ; return res; } twofun: addi $sp, $sp, -4 sw $s0, 0($sp)

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture MIPS Functions July 1, 2014 Review I RISC Design Principles Smaller is faster: 32 registers, fewer instructions Keep it simple: rigid syntax, fixed instruction length MIPS Registers: $s0-$s7,$t0-$t9, $0

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 11 Introduction to MIPS Procedures I Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia CS61C L11 Introduction to MIPS: Procedures I

More information

ECE 2035 A Programming Hw/Sw Systems Fall problems, 8 pages Final Exam 8 December 2014

ECE 2035 A Programming Hw/Sw Systems Fall problems, 8 pages Final Exam 8 December 2014 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Computer Architecture Instruction Set Architecture part 2. Mehran Rezaei

Computer Architecture Instruction Set Architecture part 2. Mehran Rezaei Computer Architecture Instruction Set Architecture part 2 Mehran Rezaei Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a MIPS Interpreter

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION Lecture 17 Executing Programs: Compiling, Assembling, Linking and Loading (Part II) Project #3 Due June 10, 5pm Announcements Submit via email Homework #4 Due June 5, 5pm

More information

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero 25 Comparisons Set on less than (slt) compares its source registers

More information

(a) Implement processor with the following instructions: addi, sw, lw, add, sub, and, andi, or, ori, nor, sll, srl, mul

(a) Implement processor with the following instructions: addi, sw, lw, add, sub, and, andi, or, ori, nor, sll, srl, mul Brown University School of Engineering EN1640 Design of Computing Systems Professor Sherief Reda LAB 04 (200 points) Final report due on April 4th (Milestones on March 21 st ) In this lab you are required

More information

CS61c MIDTERM EXAM: 3/17/99

CS61c MIDTERM EXAM: 3/17/99 CS61c MIDTERM EXAM: 3/17/99 D. A. Patterson Last name Student ID number First name Login: cs61c- Please circle the last two letters of your login name. a b c d e f g h i j k l m n o p q r s t u v w x y

More information

1/26/2014. Previously. CSE 2021: Computer Organization. The Load/Store Family (1) Memory Organization. The Load/Store Family (2)

1/26/2014. Previously. CSE 2021: Computer Organization. The Load/Store Family (1) Memory Organization. The Load/Store Family (2) CSE 202: Computer Organization Lecture-4 Code Translation-2 Memory, Data transfer instructions, Data segment,, Procedures, Stack Shakil M. Khan (adapted from Prof. Roumani) Previously Registers $s0 - $s7,

More information

CPSC 330 Computer Organization

CPSC 330 Computer Organization CPSC 330 Computer Organization Chapter 2-II Instructions: Language of the computer MIPS Instructions - Review Instruction Meaning add $s1,$s2,$s3 $s1 = $s2 + $s3 sub $s1,$s2,$s3 $s1 = $s2 $s3 addi $s1,$s1,4

More information

MIPS%Assembly% E155%

MIPS%Assembly% E155% MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage $0 0 the constant value 0 $at 1 assembler temporary

More information

CSE 141 Computer Architecture Spring Lecture 3 Instruction Set Architecute. Course Schedule. Announcements

CSE 141 Computer Architecture Spring Lecture 3 Instruction Set Architecute. Course Schedule. Announcements CSE141: Introduction to Computer Architecture CSE 141 Computer Architecture Spring 2005 Lecture 3 Instruction Set Architecute Pramod V. Argade April 4, 2005 Instructor: TAs: Pramod V. Argade (p2argade@cs.ucsd.edu)

More information

ECE Exam I February 19 th, :00 pm 4:25pm

ECE Exam I February 19 th, :00 pm 4:25pm ECE 3056 Exam I February 19 th, 2015 3:00 pm 4:25pm 1. The exam is closed, notes, closed text, and no calculators. 2. The Georgia Tech Honor Code governs this examination. 3. There are 4 questions and

More information

101 Assembly. ENGR 3410 Computer Architecture Mark L. Chang Fall 2009

101 Assembly. ENGR 3410 Computer Architecture Mark L. Chang Fall 2009 101 Assembly ENGR 3410 Computer Architecture Mark L. Chang Fall 2009 What is assembly? 79 Why are we learning assembly now? 80 Assembly Language Readings: Chapter 2 (2.1-2.6, 2.8, 2.9, 2.13, 2.15), Appendix

More information

Lecture 7: Examples, MARS, Arithmetic

Lecture 7: Examples, MARS, Arithmetic Lecture 7: Examples, MARS, Arithmetic Today s topics: More examples MARS intro Numerical representations 1 Dealing with Characters Instructions are also provided to deal with byte-sized and half-word quantities:

More information

MIPS R-format Instructions. Representing Instructions. Hexadecimal. R-format Example. MIPS I-format Example. MIPS I-format Instructions

MIPS R-format Instructions. Representing Instructions. Hexadecimal. R-format Example. MIPS I-format Example. MIPS I-format Instructions Representing Instructions Instructions are encoded in binary Called machine code MIPS instructions Encoded as 32-bit instruction words Small number of formats encoding operation code (opcode), register

More information

Machine Organization & Assembly Language

Machine Organization & Assembly Language Name: 1 CSE 378 Fall 2010 Machine Organization & Assembly Language Final Exam Solution Write your answers on these pages. Additional pages may be attached (with staple) if necessary. Please ensure that

More information

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam Solutions 29 April 2015

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam Solutions 29 April 2015 Problem 1 (20 points) Optimization Perform at least five standard compiler optimizations on the following C code fragment by writing the optimized version (in C) to the right. Assume f and g are pure functions

More information

Procedure Calling. Procedure Calling. Register Usage. 25 September CSE2021 Computer Organization

Procedure Calling. Procedure Calling. Register Usage. 25 September CSE2021 Computer Organization CSE2021 Computer Organization Chapter 2: Part 2 Procedure Calling Procedure (function) performs a specific task and return results to caller. Supporting Procedures Procedure Calling Calling program place

More information