About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer

Size: px
Start display at page:

Download "About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer"

Transcription

1

2 About the Tutorial Assembly language is a low-level programming language for a computer or other programmable device specific to a particular computer architecture in contrast to most high-level programming languages, which are generally portable across multiple systems. Assembly language is converted into executable machine code by a utility program referred to as an assembler like NASM, MASM, etc. Audience This tutorial has been designed for those who want to learn the basics of assembly programming from scratch. This tutorial will give you enough understanding on assembly programming from where you can take yourself to higher levels of expertise. Prerequisites Before proceeding with this tutorial, you should have a basic understanding of Computer Programming terminologies. A basic understanding of any of the programming languages will help you in understanding the Assembly programming concepts and move fast on the learning track. Copyright & Disclaimer Copyright 2014 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at contact@tutorialspoint.com i

3 Table of Contents About the Tutorial i Audience i Prerequisites i Copyright & Disclaimer i Table of Contents ii 1. ASSEMBLY INTRODUCTION 1 What is Assembly Language? 1 Advantages of Assembly Language 1 Basic Features of PC Hardware 1 Binary Number System 2 Hexadecimal Number System 2 Binary Arithmetic 4 Addressing Data in Memory 5 2. ASSEMBLY ENVIORNMENT SETUP 7 Try it Option Online 7 Local Environment Setup 7 Installing NASM 8 3. ASSEMBLY BASIC SYNTAX 9 The data Section 9 The bss Section 9 The text section 9 Comments 9 Assembly Language Statements 10 Syntax of Assembly Language Statements 10 The Hello World Program in Assembly 10 ii

4 Compiling and Linking an Assembly Program in NASM ASSEMBLY MEMORY SEGMENTS 12 Memory Segments ASSEMBLY REGISTERS 14 Processor Registers 14 Data Registers 14 Pointer Registers 15 Index Registers 16 Control Registers 16 Segment Registers ASSEMBLY SYSTEM CALLS 19 Linux System Calls ASSEMBLY ADDRESSING MODES 22 Register Addressing 22 Immediate Addressing 22 Direct Memory Addressing 23 Direct-Offset Addressing 23 Indirect Memory Addressing 23 The MOV Instruction ASSEMBLY VARIABLES 26 Allocating Storage Space for Initialized Data 26 Allocating Storage Space for Uninitialized Data 27 Multiple Definitions 28 Multiple Initializations 28 iii

5 9. ASSEMBLY CONSTANTS 29 The EQU Directive 29 The %assign Directive 30 The %define Directive ASSEMBLY ARITHMETIC INSTRUCTIONS 32 The INC Instruction 32 The DEC Instruction 32 The ADD and SUB Instructions 33 The MUL/IMUL Instruction 37 The DIV/IDIV Instructions ASSEMBLY LOGICAL INSTRUCTIONS 42 The AND Instruction 42 The OR Instruction 44 The XOR Instruction 45 The TEST Instruction 45 The NOT Instruction ASSEMBLY CONDITIONS 47 CMP Instruction 47 Conditional Jump ASSEMBLY LOOPS ASSEMBLY NUMBERS 54 ASCII Representation 55 BCD Representation 56 iv

6 15. ASSEMBLY STRINGS 59 String Instructions 59 Repetition Prefixes ASSEMBLY ARRAYS ASSEMBLY PROCEDURES 65 Stacks Data Structure ASSEMBLY RECURSION ASSEMBLY MACROS ASSEMBLY FILE MANAGEMENT 73 File Descriptor 73 File Pointer 73 File Handling System Calls 73 Creating and Opening a File 74 Opening an Existing File 74 Reading from a File 74 Writing to a File 75 Closing a File 75 Updating a File ASSEMBLY MEMORY MANAGEMENT 78 v

7 1. Assembly Introduction Assembly Programming What is Assembly Language? Each personal computer has a microprocessor that manages the computer's arithmetical, logical, and control activities. Each family of processors has its own set of instructions for handling various operations such as getting input from keyboard, displaying information on screen, and performing various other jobs. These set of instructions are called 'machine language instructions'. A processor understands only machine language instructions, which are strings of 1's and 0's. However, machine language is too obscure and complex for using in software development. So, the low-level assembly language is designed for a specific family of processors that represents various instructions in symbolic code and a more understandable form. Advantages of Assembly Language Having an understanding of assembly language makes one aware of: How programs interface with OS, processor, and BIOS; How data is represented in memory and other external devices; How the processor accesses and executes instruction; How instructions access and process data; How a program accesses external devices. Other advantages of using assembly language are: It requires less memory and execution time; It allows hardware-specific complex jobs in an easier way; It is suitable for time-critical jobs; It is most suitable for writing interrupt service routines and other memory resident programs. Basic Features of PC Hardware The main internal hardware of a PC consists of processor, memory, and registers. Registers are processor components that hold data and address. To execute a program, the system copies it from the external device into the internal memory. The processor executes the program instructions. The fundamental unit of computer storage is a bit; it could be ON (1) or OFF (0). A group of nine related bits makes a byte, out of which eight bits are used for data and the last one is used for parity. According to the rule of parity, the number of bits that are ON (1) in each byte should always be odd. 1

8 So, the parity bit is used to make the number of bits in a byte odd. If the parity is even, the system assumes that there had been a parity error (though rare), which might have been caused due to hardware fault or electrical disturbance. The processor supports the following data sizes: Word: a 2-byte data item Doubleword: a 4-byte (32 bit) data item Quadword: an 8-byte (64 bit) data item Paragraph: a 16-byte (128 bit) area Kilobyte: 1024 bytes Megabyte: 1,048,576 bytes Binary Number System Every number system uses positional notation, i.e., each position in which a digit is written has a different positional value. Each position is power of the base, which is 2 for binary number system, and these powers begin at 0 and increase by 1. The following table shows the positional values for an 8-bit binary number, where all bits are set ON. Bit value Position value as a power of base Bit number The value of a binary number is based on the presence of 1 bits and their positional value. So, the value of a given binary number is: = 255 which is same as Hexadecimal Number System Hexadecimal number system uses base 16. The digits in this system range from 0 to 15. By convention, the letters A through F is used to represent the hexadecimal digits corresponding to decimal values 10 through 15. Hexadecimal numbers in computing is used for abbreviating lengthy binary representations. Basically, hexadecimal number system represents a binary data by dividing each byte in half and expressing the value of each half-byte. The following table provides the decimal, binary, and hexadecimal equivalents: 2

9 Decimal number Binary representation Hexadecimal representation A B C D E F 3

10 To convert a binary number to its hexadecimal equivalent, break it into groups of 4 consecutive groups each, starting from the right, and write those groups over the corresponding digits of the hexadecimal number. Example: Binary number is equivalent to hexadecimal - 8CD1 To convert a hexadecimal number to binary, just write each hexadecimal digit into its 4- digit binary equivalent. Example: Hexadecimal number FAD8 is equivalent to binary Binary Arithmetic The following table illustrates four simple rules for binary addition: (i) (ii) (iii) (iv) =0 =1 =10 =11 Rules (iii) and (iv) show a carry of a 1-bit into the next left position. Example Decimal Binary A negative binary value is expressed in two's complement notation. According to this rule, to convert a binary number to its negative value is to reverse its bit values and add 1. 4

11 Example Number Reverse the bits Add 1 1 Number To subtract one value from another, convert the number being subtracted to two's complement format and add the numbers. Example Subtract 42 from 53. Number Number Reverse the bits of Add 1 1 Number = Overflow of the last 1 bit is lost. Addressing Data in Memory The process through which the processor controls the execution of instructions is referred as the fetch-decode-execute cycle or the execution cycle. It consists of three continuous steps: Fetching the instruction from memory Decoding or identifying the instruction Executing the instruction The processor may access one or more bytes of memory at a time. Let us consider a hexadecimal number 0725H. This number will require two bytes of memory. The highorder byte or most significant byte is 07 and the low-order byte is 25. 5

12 The processor stores data in reverse-byte sequence, i.e., a low-order byte is stored in a low memory address and a high-order byte in high memory address. So, if the processor brings the value 0725H from register to memory, it will transfer 25 first to the lower memory address and 07 to the next memory address. x: memory address When the processor gets the numeric data from memory to register, it again reverses the bytes. There are two kinds of memory addresses: Absolute address a direct reference of specific location. Segment address (or offset) starting address of a memory segment with the offset value. 6

13 2. Assembly Enviornment Setup Assembly Programming Try it Option Online We already have set up NASM assembler to experiment with Assembly programming online, so that you can execute all the available examples online at the same time when you are doing your theory work. This gives you confidence in what you are reading and to check the result with different options. Feel free to modify any example and execute it online. Try the following example using our online compiler option available at section _start:.text global _start ;must be declared for linker (ld) ;tells linker entry point mov edx,len ;message length mov ecx,msg ;message to write mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov eax,1 ;system call number (sys_exit) section.data msg db 'Hello, world!', 0xa ;our dear string len equ $ - msg ;length of our dear string For most of the examples given in this tutorial, you will find a Try it option in our website code sections at the top right corner that will take you to the online compiler. So just make use of it and enjoy your learning. Local Environment Setup Assembly language is dependent upon the instruction set and the architecture of the processor. In this tutorial, we focus on Intel 32 processors like Pentium. To follow this tutorial, you will need: An IBM PC or any equivalent compatible computer A copy of Linux operating system A copy of NASM assembler program 7

14 There are many good assembler programs such as: Microsoft Assembler (MASM) Borland Turbo Assembler (TASM) The GNU assembler (GAS) We will use the NASM assembler, as it is: Free. You can download it from various web sources. Well-documented and you will get lots of information on net. Could be used on both Linux and Windows. Installing NASM If you select "Development Tools" while installing Linux, you may get NASM installed along with the Linux operating system and you do not need to download and install it separately. For checking whether you already have NASM installed, take the following steps: 1. Open a Linux terminal. 2. Type whereis nasm and press ENTER. 3. If it is already installed, then a line like, nasm: /usr/bin/nasm appears. Otherwise, you will see just nasm:, then you need to install NASM. To install NASM, take the following steps: 1. Check The netwide assembler (NASM) website for the latest version. 2. Download the Linux source archive nasm-x.xx.ta.gz, where X.XX is the NASM version number in the archive. 3. Unpack the archive into a directory which creates a subdirectory nasm-x. XX. 4. cd to nasm-x. XX and type./configure. This shell script will find the best C compiler to use and set up Makefiles accordingly. 5. Type make to build the nasm and ndisasm binaries. 6. Type make install to install nasm and ndisasm in /usr/local/bin and to install the man pages. This should install NASM on your system. Alternatively, you can use an RPM distribution for the Fedora Linux. This version is simpler to install, just double-click the RPM file. 8

15 3. Assembly Basic Syntax Assembly Programming An assembly program can be divided into three sections: The data section, The bss section, and The text section. The data Section The data section is used for declaring initialized data or constants. This data does not change at runtime. You can declare various constant values, file names, or buffer size, etc., in this section. The syntax for declaring data section is: section.data The bss Section The bss section is used for declaring variables. The syntax for declaring bss section is: section.bss The text section The text section is used for keeping the actual code. This section must begin with the declaration global _start, which tells the kernel where the program execution begins. The syntax for declaring text section is: section.text global _start _start: Comments Assembly language comment begins with a semicolon (;). It may contain any printable character including blank. It can appear on a line by itself, like: ; This program displays a message on screen or, on the same line along with an instruction, like: add eax,ebx ; adds ebx to eax 9

16 Assembly Language Statements Assembly language programs consist of three types of statements: Executable instructions or instructions, Assembler directives or pseudo-ops, and Macros. The executable instructions or simply instructions tell the processor what to do. Each instruction consists of an operation code (opcode). Each executable instruction generates one machine language instruction. The assembler directives or pseudo-ops tell the assembler about the various aspects of the assembly process. These are non-executable and do not generate machine language instructions. Macros are basically a text substitution mechanism. Syntax of Assembly Language Statements Assembly language statements are entered one statement per line. Each statement follows the following format: [label] mnemonic [operands] [;comment] The fields in the square brackets are optional. A basic instruction has two parts, the first one is the name of the instruction (or the mnemonic), which is to be executed, and the second are the operands or the parameters of the command. Following are some examples of typical assembly language statements: INC COUNT MOV TOTAL, 48 ADD AH, BH AND MASK1, 128 ADD MARKS, 10 MOV AL, 10 ; Increment the memory variable COUNT ; Transfer the value 48 in the ; memory variable TOTAL ; Add the content of the ; BH register into the AH register ; Perform AND operation on the ; variable MASK1 and 128 ; Add 10 to the variable MARKS ; Transfer the value 10 to the AL register The Hello World Program in Assembly The following assembly language code displays the string 'Hello World' on the screen: section.text global _start _start: ;must be declared for linker (ld) ;tells linker entry point 10

17 mov edx,len ;message length mov ecx,msg ;message to write mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov eax,1 ;system call number (sys_exit) section.data msg db 'Hello, world!', 0xa ;our dear string len equ $ - msg ;length of our dear string When the above code is compiled and executed, it produces the following result: Hello, world! Compiling and Linking an Assembly Program in NASM Make sure you have set the path of nasm and ld binaries in your PATH environment variable. Now, take the following steps for compiling and linking the above program: 1. Type the above code using a text editor and save it as hello.asm. 2. Make sure that you are in the same directory as where you saved hello.asm. 3. To assemble the program, type nasm -f elf hello.asm 4. If there is any error, you will be prompted about that at this stage. Otherwise, an object file of your program named hello.o will be created. 5. To link the object file and create an executable file named hello, type ld -m elf_i386 -s -o hello hello.o 6. Execute the program by typing./hello If you have done everything correctly, it will display Hello, world! on the screen. 11

18 4. Assembly Memory Segments Assembly Programming We have already discussed the three sections of an assembly program. These sections represent various memory segments as well. Interestingly, if you replace the section keyword with segment, you will get the same result. Try the following code: segment.text _start: global _start mov edx,len mov ecx,msg mov ebx,1 mov eax,4 int 0x80 ;tell linker entry point ;code segment ;must be declared for linker ;message length ;message to write ;file descriptor (stdout) ;system call number (sys_write) ;call kernel mov eax,1 int 0x80 ;system call number (sys_exit) ;call kernel segment.data ;data segment msg db 'Hello, world!',0xa ;our dear string len equ $ - msg ;length of our dear string When the above code is compiled and executed, it produces the following result: Hello, world! Memory Segments A segmented memory model divides the system memory into groups of independent segments referenced by pointers located in the segment registers. Each segment is used to contain a specific type of data. One segment is used to contain instruction codes, another segment stores the data elements, and a third segment keeps the program stack. In the light of the above discussion, we can specify various memory segments as: Data segment - It is represented by.data section and the.bss. The.data section is used to declare the memory region, where data elements are stored for the program. This section cannot be expanded after the data elements are declared, and it remains static throughout the program. The.bss section is also a static memory section that contains buffers for data to be declared later in the program. This buffer memory is zero-filled. 12

19 Code segment - It is represented by.text section. This defines an area in memory that stores the instruction codes. This is also a fixed area. Stack - This segment contains data values passed to functions and procedures within the program. 13

20 5. Assembly Registers Assembly Programming Processor operations mostly involve processing data. This data can be stored in memory and accessed from thereon. However, reading data from and storing data into memory slows down the processor, as it involves complicated processes of sending the data request across the control bus and into the memory storage unit and getting the data through the same channel. To speed up the processor operations, the processor includes some internal memory storage locations, called registers. The registers store data elements for processing without having to access the memory. A limited number of registers are built into the processor chip. Processor Registers There are ten 32-bit and six 16-bit processor registers in IA-32 architecture. The registers are grouped into three categories: General registers, Control registers, and Segment registers. The general registers are further divided into the following groups: Data registers, Pointer registers, and Index registers. Data Registers Four 32-bit data registers are used for arithmetic, logical, and other operations. These 32-bit registers can be used in three ways: As complete 32-bit data registers: EAX, EBX, ECX, EDX. Lower halves of the 32-bit registers can be used as four 16-bit data registers: AX, BX, CX and DX. Lower and higher halves of the above-mentioned four 16-bit registers can be used as eight 8-bit data registers: AH, AL, BH, BL, CH, CL, DH, and DL. 14

21 Some of these data registers have specific use in arithmetical operations. AX is the primary accumulator; it is used in input/output and most arithmetic instructions. For example, in multiplication operation, one operand is stored in EAX or AX or AL register according to the size of the operand. BX is known as the base register, as it could be used in indexed addressing. CX is known as the count register, as the ECX, CX registers store the loop count in iterative operations. DX is known as the data register. It is also used in input/output operations. It is also used with AX register along with DX for multiply and divide operations involving large values. Pointer Registers The pointer registers are 32-bit EIP, ESP, and EBP registers and corresponding 16-bit right portions IP, SP, and BP. There are three categories of pointer registers: Instruction Pointer (IP) - The 16-bit IP register stores the offset address of the next instruction to be executed. IP in association with the CS register (as CS:IP) gives the complete address of the current instruction in the code segment. Stack Pointer (SP) - The 16-bit SP register provides the offset value within the program stack. SP in association with the SS register (SS:SP) refers to be current position of data or address within the program stack. Base Pointer (BP) - The 16-bit BP register mainly helps in referencing the parameter variables passed to a subroutine. The address in SS register is combined with the offset in BP to get the location of the parameter. BP can also be combined with DI and SI as base register for special addressing. 15

22 Index Registers The 32-bit index registers, ESI and EDI, and their 16-bit rightmost portions, SI and DI, are used for indexed addressing and sometimes used in addition and subtraction. There are two sets of index pointers: Source Index (SI) - It is used as source index for string operations. Destination Index (DI) - It is used as destination index for string operations. Control Registers The 32-bit instruction pointer register and the 32-bit flags register combined are considered as the control registers. Many instructions involve comparisons and mathematical calculations and change the status of the flags and some other conditional instructions test the value of these status flags to take the control flow to other location. The common flag bits are: Overflow Flag (OF): It indicates the overflow of a high-order bit (leftmost bit) of data after a signed arithmetic operation. Direction Flag (DF): It determines left or right direction for moving or comparing string data. When the DF value is 0, the string operation takes left-toright direction and when the value is set to 1, the string operation takes right-toleft direction. Interrupt Flag (IF): It determines whether the external interrupts like keyboard entry, etc., are to be ignored or processed. It disables the external interrupt when the value is 0 and enables interrupts when set to 1. Trap Flag (TF): It allows setting the operation of the processor in single-step mode. The DEBUG program we used sets the trap flag, so we could step through the execution one instruction at a time. Sign Flag (SF): It shows the sign of the result of an arithmetic operation. This flag is set according to the sign of a data item following the arithmetic operation. The sign is indicated by the high-order of leftmost bit. A positive result clears the value of SF to 0 and negative result sets it to 1. Zero Flag (ZF): It indicates the result of an arithmetic or comparison operation. A nonzero result clears the zero flag to 0, and a zero result sets it to 1. Auxiliary Carry Flag (AF): It contains the carry from bit 3 to bit 4 following an arithmetic operation; used for specialized arithmetic. The AF is set when a 1-byte arithmetic operation causes a carry from bit 3 into bit 4. 16

23 Parity Flag (PF): It indicates the total number of 1-bits in the result obtained from an arithmetic operation. An even number of 1-bits clears the parity flag to 0 and an odd number of 1-bits sets the parity flag to 1. Carry Flag (CF): It contains the carry of 0 or 1 from a high-order bit (leftmost) after an arithmetic operation. It also stores the contents of last bit of a shift or rotate operation. The following table indicates the position of flag bits in the 16-bit Flags register: Flag: O D I T S Z A P C Bit no: Segment Registers Segments are specific areas defined in a program for containing data, code and stack. There are three main segments: Code Segment: It contains all the instructions to be executed. A 16-bit Code Segment register or CS register stores the starting address of the code segment. Data Segment: It contains data, constants and work areas. A 16-bit Data Segment register or DS register stores the starting address of the data segment. Stack Segment: It contains data and return addresses of procedures or subroutines. It is implemented as a 'stack' data structure. The Stack Segment register or SS register stores the starting address of the stack. Apart from the DS, CS and SS registers, there are other extra segment registers - ES (extra segment), FS and GS, which provide additional segments for storing data. In assembly programming, a program needs to access the memory locations. All memory locations within a segment are relative to the starting address of the segment. A segment begins in an address evenly divisible by 16 or hexadecimal 10. So, the rightmost hex digit in all such memory addresses is 0, which is not generally stored in the segment registers. The segment registers stores the starting addresses of a segment. To get the exact location of data or instruction within a segment, an offset value (or displacement) is required. To reference any memory location in a segment, the processor combines the segment address in the segment register with the offset value of the location. Example: Look at the following simple program to understand the use of registers in assembly programming. This program displays 9 stars on the screen along with a simple message: section.text global _start ;must be declared for linker (gcc) _start: ;tell linker entry point mov edx,len ;message length mov ecx,msg ;message to write 17

24 mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov edx,9 ;message length mov ecx,s2 ;message to write mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov eax,1 ;system call number (sys_exit) section.data msg db 'Displaying 9 stars',0xa ;a message len equ $ - msg ;length of message s2 times 9 db '*' When the above code is compiled and executed, it produces the following result: Displaying 9 stars ********* 18

25 6. Assembly System Calls Assembly Programming System calls are APIs for the interface between the user space and the kernel space. We have already used the system calls, sys_write and sys_exit, for writing into the screen and exiting from the program, respectively. Linux System Calls You can make use of Linux system calls in your assembly programs. You need to take the following steps for using Linux system calls in your program: Put the system call number in the EAX register. Store the arguments to the system call in the registers EBX, ECX, etc. Call the relevant interrupt (80h). The result is usually returned in the EAX register. There are six registers that store the arguments of the system call used. These are the EBX, ECX, EDX, ESI, EDI, and EBP. These registers take the consecutive arguments, starting with the EBX register. If there are more than six arguments, then the memory location of the first argument is stored in the EBX register. The following code snippet shows the use of the system call sys_exit: mov eax,1 int 0x80 ; system call number (sys_exit) ; call kernel The following code snippet shows the use of the system call sys_write: mov edx,4 mov ecx,msg mov ebx,1 mov eax,4 int 0x80 ; message length ; message to write ; file descriptor (stdout) ; system call number (sys_write) ; call kernel All the syscalls are listed in /usr/include/asm/unistd.h, together with their numbers (the value to put in EAX before you call int 80h). The following table shows some of the system calls used in this tutorial: %eax Name %ebx %ecx %edx %esx %edi 1 sys_exit int sys_fork struct pt_regs

26 3 sys_read unsigned int char * size_t sys_write unsigned int const char * size_t sys_open const char * int int sys_close unsigned int Example The following example reads a number from the keyboard and displays it on the screen: section.data ;Data segment usermsg db 'Please enter a number: ' ;Ask the user to enter a number lenusermsg equ $-usermsg ;The length of the message dispmsg db 'You have entered: ' lendispmsg equ $-dispmsg section.bss ;Uninitialized data num resb 5 section.text ;Code Segment global _start _start: ;User prompt mov eax, 4 mov ebx, 1 mov ecx, usermsg mov edx, lenusermsg int 80h ;Read and store the user input mov eax, 3 mov ebx, 2 mov ecx, num mov edx, 5 ;5 bytes (numeric, 1 for sign) of that information int 80h ;Output the message 'The entered number is: ' mov eax, 4 20

27 mov ebx, 1 mov ecx, dispmsg mov edx, lendispmsg int 80h ;Output the number entered mov eax, 4 mov ebx, 1 mov ecx, num mov edx, 5 int 80h ; Exit code mov eax, 1 mov ebx, 0 int 80h When the above code is compiled and executed, it produces the following result: Please enter a number: 1234 You have entered:

28 7. Assembly Addressing Modes Assembly Programming Most assembly language instructions require operands to be processed. An operand address provides the location, where the data to be processed is stored. Some instructions do not require an operand, whereas some other instructions may require one, two, or three operands. When an instruction requires two operands, the first operand is generally the destination, which contains data in a register or memory location and the second operand is the source. Source contains either the data to be delivered (immediate addressing) or the address (in register or memory) of the data. Generally, the source data remains unaltered after the operation. The three basic modes of addressing are: Register addressing Immediate addressing Memory addressing Register Addressing In this addressing mode, a register contains the operand. Depending upon the instruction, the register may be the first operand, the second operand or both. For example, MOV DX, TAX_RATE MOV COUNT, CX MOV EAX, EBX ; Register in first operand ; Register in second operand ; Both the operands are in registers As processing data between registers does not involve memory, it provides fastest processing of data. Immediate Addressing An immediate operand has a constant value or an expression. When an instruction with two operands uses immediate addressing, the first operand may be a register or memory location, and the second operand is an immediate constant. The first operand defines the length of the data. For example, BYTE_VALUE DB 150 WORD_VALUE DW 300 ADD BYTE_VALUE, 65 MOV AX, 45H ; A byte value is defined ; A word value is defined ; An immediate operand 65 is added ; Immediate constant 45H is transferred to AX 22

29 Direct Memory Addressing When operands are specified in memory addressing mode, direct access to main memory, usually to the data segment, is required. This way of addressing results in slower processing of data. To locate the exact location of data in memory, we need the segment start address, which is typically found in the DS register and an offset value. This offset value is also called effective address. In direct addressing mode, the offset value is specified directly as part of the instruction, usually indicated by the variable name. The assembler calculates the offset value and maintains a symbol table, which stores the offset values of all the variables used in the program. In direct memory addressing, one of the operands refers to a memory location and the other operand references a register. For example, ADD BYTE_VALUE, DL MOV BX, WORD_VALUE ; Adds the register in the memory location ; Operand from the memory is added to register Direct-Offset Addressing This addressing mode uses the arithmetic operators to modify an address. For example, look at the following definitions that define tables of data: BYTE_TABLE DB 14, 15, 22, 45 ; Tables of bytes WORD_TABLE DW 134, 345, 564, 123 ; Tables of words The following operations access data from the tables in the memory into registers: MOV CL, BYTE_TABLE[2] MOV CL, BYTE_TABLE + 2 MOV CX, WORD_TABLE[3] MOV CX, WORD_TABLE + 3 ; Gets the 3rd element of the BYTE_TABLE ; Gets the 3rd element of the BYTE_TABLE ; Gets the 4th element of the WORD_TABLE ; Gets the 4th element of the WORD_TABLE Indirect Memory Addressing This addressing mode utilizes the computer's ability of Segment:Offset addressing. Generally, the base registers EBX, EBP (or BX, BP) and the index registers (DI, SI), coded within square brackets for memory references, are used for this purpose. Indirect addressing is generally used for variables containing several elements like, arrays. Starting address of the array is stored in, say, the EBX register. The following code snippet shows how to access different elements of the variable. MY_TABLE TIMES 10 DW 0 ; Allocates 10 words (2 bytes) each initialized to 0 MOV EBX, [MY_TABLE] ; Effective Address of MY_TABLE in EBX MOV [EBX], 110 ; MY_TABLE[0] =

30 ADD EBX, 2 ; EBX = EBX +2 MOV [EBX], 123 ; MY_TABLE[1] = 123 The MOV Instruction We have already used the MOV instruction that is used for moving data from one storage space to another. The MOV instruction takes two operands. Syntax The syntax of the MOV instruction is: MOV destination, source The MOV instruction may have one of the following five forms: MOV register, register MOV register, immediate MOV memory, immediate MOV register, memory MOV memory, register Please note that: Both the operands in MOV operation should be of same size The value of source operand remains unchanged The MOV instruction causes ambiguity at times. For example, look at the statements: MOV EBX, [MY_TABLE] ; Effective Address of MY_TABLE in EBX MOV [EBX], 110 ; MY_TABLE[0] = 110 It is not clear whether you want to move a byte equivalent or word equivalent of the number 110. In such cases, it is wise to use a type specifier. Following table shows some of the common type specifiers: Type Specifier Bytes addressed BYTE 1 WORD 2 DWORD 4 QWORD 8 24

31 TBYTE 10 Example The following program illustrates some of the concepts discussed above. It stores a name 'Zara Ali' in the data section of the memory, then changes its value to another name 'Nuha Ali' programmatically and displays both the names. section _start:.text global _start ;must be declared for linker (ld) ;tell linker entry point ;writing the name 'Zara Ali' mov edx,9 ;message length mov ecx, name ;message to write mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov [name], dword 'Nuha' ; Changed the name to Nuha Ali ;writing the name 'Nuha Ali' mov edx,8 ;message length mov ecx,name ;message to write mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov eax,1 ;system call number (sys_exit) section.data name db 'Zara Ali ' When the above code is compiled and executed, it produces the following result: Zara Ali Nuha Ali 25

32 8. Assembly Variables Assembly Programming NASM provides various define directives for reserving storage space for variables. The define assembler directive is used for allocation of storage space. It can be used to reserve as well as initialize one or more bytes. Allocating Storage Space for Initialized Data The syntax for storage allocation statement for initialized data is: [variable-name] define-directive initial-value [,initial-value]... Where, variable-name is the identifier for each storage space. The assembler associates an offset value for each variable name defined in the data segment. There are five basic forms of the define directive: Directive Purpose Storage Space DB Define Byte allocates 1 byte DW Define Word allocates 2 bytes DD Define Doubleword allocates 4 bytes DQ Define Quadword allocates 8 bytes DT Define Ten Bytes allocates 10 bytes Following are some examples of using define directives: choice DB 'y' number DW neg_number DW big_number DQ real_number1 DD real_number2 DQ Please note that: Each byte of character is stored as its ASCII value in hexadecimal. Each decimal value is automatically converted to its 16-bit binary equivalent and stored as a hexadecimal number. 26

33 Processor uses the little-endian byte ordering. Negative numbers are converted to its 2's complement representation. Short and long floating-point numbers are represented using 32 or 64 bits, respectively. The following program shows the use of define directive: section.text global _start ;must be declared for linker (gcc) _start: ;tell linker entry point mov edx,1 ;message length mov ecx,choice ;message to write mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov eax,1 ;system call number (sys_exit) section.data choice DB 'y' When the above code is compiled and executed, it produces the following result: y Allocating Storage Space for Uninitialized Data The reserve directives are used for reserving space for uninitialized data. The reserve directives take a single operand that specifies the number of units of space to be reserved. Each define directive has a related reserve directive. There are five basic forms of the reserve directive: Directive Purpose RESB Reserve a Byte RESW Reserve a Word RESD Reserve a Doubleword 27

34 RESQ Reserve a Quadword REST Reserve a Ten Bytes Multiple Definitions You can have multiple data definition statements in a program. For example: choice DB 'Y' ;ASCII of y = 79H number1 DW ;12345D = 3039H number2 DD ; D = 75BCD15H The assembler allocates contiguous memory for multiple variable definitions. Multiple Initializations The TIMES directive allows multiple initializations to the same value. For example, an array named marks of size 9 can be defined and initialized to zero using the following statement: marks TIMES 9 DW 0 The TIMES directive is useful in defining arrays and tables. The following program displays 9 asterisks on the screen: section _start:.text global _start ;must be declared for linker (ld) ;tell linker entry point mov edx,9 ;message length mov ecx, stars ;message to write mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov eax,1 ;system call number (sys_exit) section stars.data times 9 db '*' When the above code is compiled and executed, it produces the following result: ********* 28

35 9. Assembly Constants Assembly Programming There are several directives provided by NASM that define constants. We have already used the EQU directive in previous chapters. We will particularly discuss three directives: EQU %assign %define The EQU Directive The EQU directive is used for defining constants. The syntax of the EQU directive is as follows: CONSTANT_NAME EQU expression For example, TOTAL_STUDENTS equ 50 You can then use this constant value in your code, like: mov ecx, TOTAL_STUDENTS cmp eax, TOTAL_STUDENTS The operand of an EQU statement can be an expression: LENGTH equ 20 WIDTH equ 10 AREA equ length * width Above code segment would define AREA as 200. Example The following example illustrates the use of the EQU directive: SYS_EXIT equ 1 SYS_WRITE equ 4 STDIN equ 0 STDOUT equ 1 section.text global _start _start: ;must be declared for using gcc ;tell linker entry point mov eax, SYS_WRITE 29

36 mov ebx, STDOUT mov ecx, msg1 mov edx, len1 int 0x80 mov eax, SYS_WRITE mov ebx, STDOUT mov ecx, msg2 mov edx, len2 int 0x80 mov eax, SYS_WRITE mov ebx, STDOUT mov ecx, msg3 mov edx, len3 int 0x80 mov eax,sys_exit int 0x80 ;system call number (sys_exit) ;call kernel section msg1 db.data len1 equ $ - msg1 'Hello, programmers!',0xa,0xd msg2 db 'Welcome to the world of,', 0xA,0xD len2 equ $ - msg2 msg3 db 'Linux assembly programming! ' len3 equ $- msg3 When the above code is compiled and executed, it produces the following result: Hello, programmers! Welcome to the world of, Linux assembly programming! The %assign Directive The %assign directive can be used to define numeric constants like the EQU directive. This directive allows redefinition. For example, you may define the constant TOTAL as: %assign TOTAL 10 30

37 Later in the code, you can redefine it as: %assign TOTAL 20 This directive is case-sensitive. The %define Directive The %define directive allows defining both numeric and string constants. This directive is similar to the #define in C. For example, you may define the constant PTR as: %define PTR [EBP+4] The above code replaces PTR by [EBP+4]. This directive also allows redefinition and it is case-sensitive. 31

38 10. Assembly Arithmetic Instructions The INC Instruction The INC instruction is used for incrementing an operand by one. It works on a single operand that can be either in a register or in memory. Syntax The INC instruction has the following syntax: INC destination The operand destination could be an 8-bit, 16-bit or 32-bit operand. Example INC EBX INC DL ; Increments 32-bit register ; Increments 8-bit register INC [count] ; Increments the count variable The DEC Instruction The DEC instruction is used for decrementing an operand by one. It works on a single operand that can be either in a register or in memory. Syntax The DEC instruction has the following syntax: DEC destination The operand destination could be an 8-bit, 16-bit or 32-bit operand. Example segment.data count dw 0 value db 15 segment.text inc [count] dec [value] mov ebx, count inc word [ebx] mov esi, value 32

39 dec byte [esi] The ADD and SUB Instructions The ADD and SUB instructions are used for performing simple addition/subtraction of binary data in byte, word and doubleword size, i.e., for adding or subtracting 8-bit, 16- bit or 32-bit operands, respectively. Syntax The ADD and SUB instructions have the following syntax: ADD/SUB destination, source The ADD/SUB instruction can take place between: Register to register Memory to register Register to memory Register to constant data Memory to constant data However, like other instructions, memory-to-memory operations are not possible using ADD/SUB instructions. An ADD or SUB operation sets or clears the overflow and carry flags. Example The following example will ask two digits from the user, store the digits in the EAX and EBX register, respectively, add the values, store the result in a memory location 'res' and finally display the result. SYS_EXIT equ 1 SYS_READ equ 3 SYS_WRITE equ 4 STDIN equ 0 STDOUT equ 1 segment.data msg1 db "Enter a digit ", 0xA,0xD len1 equ $- msg1 msg2 db "Please enter a second digit", 0xA,0xD len2 equ $- msg2 33

40 msg3 db "The sum is: " len3 equ $- msg3 segment.bss num1 resb 2 num2 resb 2 res resb 1 section.text global _start ;must be declared for using gcc _start: ;tell linker entry point mov eax, SYS_WRITE mov ebx, STDOUT mov ecx, msg1 mov edx, len1 int 0x80 mov eax, SYS_READ mov ebx, STDIN mov ecx, num1 mov edx, 2 int 0x80 mov eax, SYS_WRITE mov ebx, STDOUT mov ecx, msg2 mov edx, len2 int 0x80 mov eax, SYS_READ mov ebx, STDIN mov ecx, num2 mov edx, 2 int 0x80 mov eax, SYS_WRITE 34

41 mov ebx, STDOUT mov ecx, msg3 mov edx, len3 int 0x80 ; moving the first number to eax register and second number to ebx ; and subtracting ascii '0' to convert it into a decimal number mov eax, [number1] sub eax, '0' mov ebx, [number2] sub ebx, '0' ; add eax and ebx add eax, ebx ; add '0' to to convert the sum from decimal to ASCII add eax, '0' ; storing the sum in memory location res mov [res], eax ; print the sum mov eax, SYS_WRITE mov ebx, STDOUT mov ecx, res mov edx, 1 int 0x80 exit: mov eax, SYS_EXIT xor ebx, ebx int 0x80 When the above code is compiled and executed, it produces the following result: Enter a digit: 3 Please enter a second digit: 4 The sum is: 35

42 7 The program with hardcoded variables: section.text global _start ;must be declared for using gcc _start: ;tell linker entry point mov eax,'3' sub eax, '0' mov ebx, '4' sub ebx, '0' add eax, ebx add eax, '0' mov [sum], eax mov ecx,msg mov edx, len mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov ecx,sum mov edx, 1 mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov eax,1 ;system call number (sys_exit) section.data msg db "The sum is:", 0xA,0xD len equ $ - msg segment.bss sum resb 1 When the above code is compiled and executed, it produces the following result: The sum is: 7 36

43 The MUL/IMUL Instruction There are two instructions for multiplying binary data. The MUL (Multiply) instruction handles unsigned data and the IMUL (Integer Multiply) handles signed data. Both instructions affect the Carry and Overflow flag. Syntax The syntax for the MUL/IMUL instructions is as follows: MUL/IMUL multiplier Multiplicand in both cases will be in an accumulator, depending upon the size of the multiplicand and the multiplier and the generated product is also stored in two registers depending upon the size of the operands. Following section explains MUL instructions with three different cases: SN Scenarios 1 When two bytes are multiplied - The multiplicand is in the AL register, and the multiplier is a byte in the memory or in another register. The product is in AX. High-order 8 bits of the product is stored in AH and the low-order 8 bits are stored in AL. 2 When two one-word values are multiplied - The multiplicand should be in the AX register, and the multiplier is a word in memory or another register. For example, for an instruction like MUL DX, you must store the multiplier in DX and the multiplicand in AX. The resultant product is a doubleword, which will need two registers. The highorder (leftmost) portion gets stored in DX and the lower-order (rightmost) portion gets stored in AX. 3 When two doubleword values are multiplied - When two doubleword values are multiplied, the multiplicand should be in EAX and the multiplier is a doubleword value stored in memory or in another register. The product generated is stored in the EDX:EAX registers, i.e., the high order 32 bits gets stored in the EDX register and the low order 32-bits are stored in the EAX register. 37

44 Example MOV AL, 10 MOV DL, 25 MUL DL... MOV DL, 0FFH ; DL= -1 MOV AL, 0BEH ; AL = -66 IMUL DL Example The following example multiplies 3 with 2, and displays the result: section.text global _start ;must be declared for using gcc _start: ;tell linker entry point mov al,'3' sub al, '0' mov bl, '2' sub bl, '0' mul bl add al, '0' mov [res], al mov ecx,msg mov edx, len mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov ecx,res mov edx, 1 mov ebx,1 ;file descriptor (stdout) mov eax,4 ;system call number (sys_write) mov eax,1 ;system call number (sys_exit) 38

45 section.data msg db "The result is:", 0xA,0xD len equ $- msg segment.bss res resb 1 When the above code is compiled and executed, it produces the following result: The result is: 6 The DIV/IDIV Instructions The division operation generates two elements - a quotient and a remainder. In case of multiplication, overflow does not occur because double-length registers are used to keep the product. However, in case of division, overflow may occur. The processor generates an interrupt if overflow occurs. The DIV (Divide) instruction is used for unsigned data and the IDIV (Integer Divide) is used for signed data. Syntax The format for the DIV/IDIV instruction: DIV/IDIV divisor The dividend is in an accumulator. Both the instructions can work with 8-bit, 16-bit or 32-bit operands. The operation affects all six status flags. Following section explains three cases of division with different operand size: SN Scenarios 1 When the divisor is 1 byte - The dividend is assumed to be in the AX register (16 bits). After division, the quotient goes to the AL register and the remainder goes to the AH register. 39

46 2 When the divisor is 1 word - The dividend is assumed to be 32 bits long and in the DX:AX registers. The highorder 16 bits are in DX and the low-order 16 bits are in AX. After division, the 16-bit quotient goes to the AX register and the 16-bit remainder goes to the DX register. 3 When the divisor is doubleword - The dividend is assumed to be 64 bits long and in the EDX:EAX registers. The high-order 32 bits are in EDX and the low-order 32 bits are in EAX. After division, the 32-bit quotient goes to the EAX register and the 32-bit remainder goes to the EDX register. Example The following example divides 8 with 2. The dividend 8 is stored in the 16-bit AX register and the divisor 2 is stored in the 8-bit BL register. section _start:.text global _start mov sub mov sub div add mov ;must be declared for using gcc ;tell linker entry point ax,'8' ax, '0' bl, '2' bl bl, '0' ax, '0' [res], ax 40

ASSEMBLY - QUICK GUIDE ASSEMBLY - INTRODUCTION

ASSEMBLY - QUICK GUIDE ASSEMBLY - INTRODUCTION ASSEMBLY - QUICK GUIDE http://www.tutorialspoint.com/assembly_programming/assembly_quick_guide.htm Copyright tutorialspoint.com What is Assembly Language? ASSEMBLY - INTRODUCTION Each personal computer

More information

ALT-Assembly Language Tutorial

ALT-Assembly Language Tutorial ALT-Assembly Language Tutorial ASSEMBLY LANGUAGE TUTORIAL Let s Learn in New Look SHAIK BILAL AHMED i A B O U T T H E T U TO R I A L Assembly Programming Tutorial Assembly language is a low-level programming

More information

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM EXPERIMENT WRITE UP AIM: Assembly language program for 16 bit BCD addition LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM TOOLS/SOFTWARE

More information

Lecture 15 Intel Manual, Vol. 1, Chapter 3. Fri, Mar 6, Hampden-Sydney College. The x86 Architecture. Robb T. Koether. Overview of the x86

Lecture 15 Intel Manual, Vol. 1, Chapter 3. Fri, Mar 6, Hampden-Sydney College. The x86 Architecture. Robb T. Koether. Overview of the x86 Lecture 15 Intel Manual, Vol. 1, Chapter 3 Hampden-Sydney College Fri, Mar 6, 2009 Outline 1 2 Overview See the reference IA-32 Intel Software Developer s Manual Volume 1: Basic, Chapter 3. Instructions

More information

The x86 Architecture

The x86 Architecture The x86 Architecture Lecture 24 Intel Manual, Vol. 1, Chapter 3 Robb T. Koether Hampden-Sydney College Fri, Mar 20, 2015 Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015

More information

Module 3 Instruction Set Architecture (ISA)

Module 3 Instruction Set Architecture (ISA) Module 3 Instruction Set Architecture (ISA) I S A L E V E L E L E M E N T S O F I N S T R U C T I O N S I N S T R U C T I O N S T Y P E S N U M B E R O F A D D R E S S E S R E G I S T E R S T Y P E S O

More information

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil Microprocessor By Mrs. R.P.Chaudhari Mrs.P.S.Patil Chapter 1 Basics of Microprocessor CO-Draw Architecture Of 8085 Salient Features of 8085 It is a 8 bit microprocessor. It is manufactured with N-MOS technology.

More information

We can study computer architectures by starting with the basic building blocks. Adders, decoders, multiplexors, flip-flops, registers,...

We can study computer architectures by starting with the basic building blocks. Adders, decoders, multiplexors, flip-flops, registers,... COMPUTER ARCHITECTURE II: MICROPROCESSOR PROGRAMMING We can study computer architectures by starting with the basic building blocks Transistors and logic gates To build more complex circuits Adders, decoders,

More information

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313)

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 02/06/2018 Section 1 Weighting 40% of

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND 8086 CPU has 8 general purpose registers listed below: AX - the accumulator register (divided into AH / AL): 1. Generates shortest machine code 2. Arithmetic, logic and data transfer 3. One

More information

Intel 8086: Instruction Set

Intel 8086: Instruction Set IUST-EE (Chapter 6) Intel 8086: Instruction Set 1 Outline Instruction Set Data Transfer Instructions Arithmetic Instructions Bit Manipulation Instructions String Instructions Unconditional Transfer Instruction

More information

Dr. Ramesh K. Karne Department of Computer and Information Sciences, Towson University, Towson, MD /12/2014 Slide 1

Dr. Ramesh K. Karne Department of Computer and Information Sciences, Towson University, Towson, MD /12/2014 Slide 1 Dr. Ramesh K. Karne Department of Computer and Information Sciences, Towson University, Towson, MD 21252 rkarne@towson.edu 11/12/2014 Slide 1 Intel x86 Aseembly Language Assembly Language Assembly Language

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

Defining and Using Simple Data Types

Defining and Using Simple Data Types 85 CHAPTER 4 Defining and Using Simple Data Types This chapter covers the concepts essential for working with simple data types in assembly-language programs The first section shows how to declare integer

More information

CC411: Introduction To Microprocessors

CC411: Introduction To Microprocessors CC411: Introduction To Microprocessors OBJECTIVES this chapter enables the student to: Describe the Intel family of microprocessors from 8085 to Pentium. In terms of bus size, physical memory & special

More information

System calls and assembler

System calls and assembler System calls and assembler Michal Sojka sojkam1@fel.cvut.cz ČVUT, FEL License: CC-BY-SA 4.0 System calls (repetition from lectures) A way for normal applications to invoke operating system (OS) kernel's

More information

Computer Architecture and Assembly Language. Practical Session 5

Computer Architecture and Assembly Language. Practical Session 5 Computer Architecture and Assembly Language Practical Session 5 Addressing Mode - "memory address calculation mode" An addressing mode specifies how to calculate the effective memory address of an operand.

More information

Chapter 3: Addressing Modes

Chapter 3: Addressing Modes Chapter 3: Addressing Modes Chapter 3 Addressing Modes Note: Adapted from (Author Slides) Instructor: Prof. Dr. Khalid A. Darabkh 2 Introduction Efficient software development for the microprocessor requires

More information

Instructions moving data

Instructions moving data do not affect flags. Instructions moving data mov register/mem, register/mem/number (move data) The difference between the value and the address of a variable mov al,sum; value 56h al mov ebx,offset Sum;

More information

Ethical Hacking. Assembly Language Tutorial

Ethical Hacking. Assembly Language Tutorial Ethical Hacking Assembly Language Tutorial Number Systems Memory in a computer consists of numbers Computer memory does not store these numbers in decimal (base 10) Because it greatly simplifies the hardware,

More information

ORG ; TWO. Assembly Language Programming

ORG ; TWO. Assembly Language Programming Dec 2 Hex 2 Bin 00000010 ORG ; TWO Assembly Language Programming OBJECTIVES this chapter enables the student to: Explain the difference between Assembly language instructions and pseudo-instructions. Identify

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013)

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) UNIT I THE 8086 MICROPROCESSOR PART A (2 MARKS) 1. What are the functional

More information

Introduction to IA-32. Jo, Heeseung

Introduction to IA-32. Jo, Heeseung Introduction to IA-32 Jo, Heeseung IA-32 Processors Evolutionary design Starting in 1978 with 8086 Added more features as time goes on Still support old features, although obsolete Totally dominate computer

More information

US06CCSC04: Introduction to Microprocessors and Assembly Language UNIT 1: Assembly Language Terms & Directives

US06CCSC04: Introduction to Microprocessors and Assembly Language UNIT 1: Assembly Language Terms & Directives Introduction: US06CCSC04: Introduction to Microprocessors and A microprocessor is the chip containing some control and logic circuits that is capable of a making arithmetic and logical decision based on

More information

Assembly basics CS 2XA3. Term I, 2017/18

Assembly basics CS 2XA3. Term I, 2017/18 Assembly basics CS 2XA3 Term I, 2017/18 Outline What is Assembly Language? Assemblers NASM Program structure I/O First program Compiling Linking What is Assembly Language? In a high level language (HLL),

More information

INTRODUCTION TO IA-32. Jo, Heeseung

INTRODUCTION TO IA-32. Jo, Heeseung INTRODUCTION TO IA-32 Jo, Heeseung IA-32 PROCESSORS Evolutionary design Starting in 1978 with 8086 Added more features as time goes on Still support old features, although obsolete Totally dominate computer

More information

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

EC 333 Microprocessor and Interfacing Techniques (3+1)

EC 333 Microprocessor and Interfacing Techniques (3+1) EC 333 Microprocessor and Interfacing Techniques (3+1) Lecture 6 8086/88 Microprocessor Programming (Arithmetic Instructions) Dr Hashim Ali Fall 2018 Department of Computer Science and Engineering HITEC

More information

Addressing Modes on the x86

Addressing Modes on the x86 Addressing Modes on the x86 register addressing mode mov ax, ax, mov ax, bx mov ax, cx mov ax, dx constant addressing mode mov ax, 25 mov bx, 195 mov cx, 2056 mov dx, 1000 accessing data in memory There

More information

COMPUTER ARCHITECTURE AND ORGANIZATION SEM-4 TH SECTION-B (NOTES)

COMPUTER ARCHITECTURE AND ORGANIZATION SEM-4 TH SECTION-B (NOTES) COMPUTER ARCHITECTURE AND ORGANIZATION SEM-4 TH SECTION-B (NOTES) INSTRUCTION SET CLASSIFICATION: An instruction set, with its instruction set architecture (ISA), is the interface between a computer's

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information

Arithmetic Instructions

Arithmetic Instructions Segment 3C Arithmetic Instructions This topic covers the following instructions: Addition (ADD, INC, ADC) Subtraction (SUB, DEC, SBB,CMP) Multiplication (MUL, IMUL) Division (DIV, IDIV) BCD Arithmetic

More information

Basic Execution Environment

Basic Execution Environment Basic Execution Environment 3 CHAPTER 3 BASIC EXECUTION ENVIRONMENT This chapter describes the basic execution environment of an Intel Architecture processor as seen by assembly-language programmers.

More information

8086 INTERNAL ARCHITECTURE

8086 INTERNAL ARCHITECTURE 8086 INTERNAL ARCHITECTURE Segment 2 Intel 8086 Microprocessor The 8086 CPU is divided into two independent functional parts: a) The Bus interface unit (BIU) b) Execution Unit (EU) Dividing the work between

More information

The Instruction Set. Chapter 5

The Instruction Set. Chapter 5 The Instruction Set Architecture Level(ISA) Chapter 5 1 ISA Level The ISA level l is the interface between the compilers and the hardware. (ISA level code is what a compiler outputs) 2 Memory Models An

More information

EC-333 Microprocessor and Interfacing Techniques

EC-333 Microprocessor and Interfacing Techniques EC-333 Microprocessor and Interfacing Techniques Lecture 3 The Microprocessor and its Architecture Dr Hashim Ali Fall - 2018 Department of Computer Science and Engineering HITEC University Taxila Slides

More information

Complex Instruction Set Computer (CISC)

Complex Instruction Set Computer (CISC) Introduction ti to IA-32 IA-32 Processors Evolutionary design Starting in 1978 with 886 Added more features as time goes on Still support old features, although obsolete Totally dominate computer market

More information

Hardware and Software Architecture. Chapter 2

Hardware and Software Architecture. Chapter 2 Hardware and Software Architecture Chapter 2 1 Basic Components The x86 processor communicates with main memory and I/O devices via buses Data bus for transferring data Address bus for the address of a

More information

ADVANCE MICROPROCESSOR & INTERFACING

ADVANCE MICROPROCESSOR & INTERFACING VENUS INTERNATIONAL COLLEGE OF TECHNOLOGY Gandhinagar Department of Computer Enggineering ADVANCE MICROPROCESSOR & INTERFACING Name : Enroll no. : Class Year : 2014-15 : 5 th SEM C.E. VENUS INTERNATIONAL

More information

Practical Malware Analysis

Practical Malware Analysis Practical Malware Analysis Ch 4: A Crash Course in x86 Disassembly Revised 1-16-7 Basic Techniques Basic static analysis Looks at malware from the outside Basic dynamic analysis Only shows you how the

More information

6/17/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to:

6/17/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to: Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Introduction This chapter presents the microprocessor

More information

Chapter 2: The Microprocessor and its Architecture

Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Introduction This chapter presents the microprocessor

More information

Assembly Language Each statement in an assembly language program consists of four parts or fields.

Assembly Language Each statement in an assembly language program consists of four parts or fields. Chapter 3: Addressing Modes Assembly Language Each statement in an assembly language program consists of four parts or fields. The leftmost field is called the label. - used to identify the name of a memory

More information

Basic Assembly SYSC-3006

Basic Assembly SYSC-3006 Basic Assembly Program Development Problem: convert ideas into executing program (binary image in memory) Program Development Process: tools to provide people-friendly way to do it. Tool chain: 1. Programming

More information

Microprocessor and Assembly Language Week-5. System Programming, BCS 6th, IBMS (2017)

Microprocessor and Assembly Language Week-5. System Programming, BCS 6th, IBMS (2017) Microprocessor and Assembly Language Week-5 System Programming, BCS 6th, IBMS (2017) High Speed Memory Registers CPU store data temporarily in these location CPU process, store and transfer data from one

More information

Language of x86 processor family

Language of x86 processor family Assembler lecture 2 S.Šimoňák, DCI FEEI TU of Košice Language of x86 processor family Assembler commands: instructions (processor, instructions of machine language) directives (compiler translation control,

More information

Faculty of Engineering Computer Engineering Department Islamic University of Gaza Assembly Language Lab # 2 Assembly Language Fundamentals

Faculty of Engineering Computer Engineering Department Islamic University of Gaza Assembly Language Lab # 2 Assembly Language Fundamentals Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2011 Assembly Language Lab # 2 Assembly Language Fundamentals Assembly Language Lab # 2 Assembly Language Fundamentals

More information

6/20/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to:

6/20/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to: Introduction Efficient software development for the microprocessor requires a complete familiarity with the addressing modes employed by each instruction. This chapter explains the operation of the stack

More information

UMBC. A register, an immediate or a memory address holding the values on. Stores a symbolic name for the memory location that it represents.

UMBC. A register, an immediate or a memory address holding the values on. Stores a symbolic name for the memory location that it represents. Intel Assembly Format of an assembly instruction: LABEL OPCODE OPERANDS COMMENT DATA1 db 00001000b ;Define DATA1 as decimal 8 START: mov eax, ebx ;Copy ebx to eax LABEL: Stores a symbolic name for the

More information

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit 1 1. introduction The internal function of 8086 processor are partitioned logically into processing units,bus Interface Unit(BIU)

More information

EEM336 Microprocessors I. The Microprocessor and Its Architecture

EEM336 Microprocessors I. The Microprocessor and Its Architecture EEM336 Microprocessors I The Microprocessor and Its Architecture Introduction This chapter presents the microprocessor as a programmable device by first looking at its internal programming model and then

More information

Computer Architecture and Assembly Language. Practical Session 3

Computer Architecture and Assembly Language. Practical Session 3 Computer Architecture and Assembly Language Practical Session 3 Advanced Instructions division DIV r/m - unsigned integer division IDIV r/m - signed integer division Dividend Divisor Quotient Remainder

More information

Scott M. Lewandowski CS295-2: Advanced Topics in Debugging September 21, 1998

Scott M. Lewandowski CS295-2: Advanced Topics in Debugging September 21, 1998 Scott M. Lewandowski CS295-2: Advanced Topics in Debugging September 21, 1998 Assembler Syntax Everything looks like this: label: instruction dest,src instruction label Comments: comment $ This is a comment

More information

Computer Processors. Part 2. Components of a Processor. Execution Unit The ALU. Execution Unit. The Brains of the Box. Processors. Execution Unit (EU)

Computer Processors. Part 2. Components of a Processor. Execution Unit The ALU. Execution Unit. The Brains of the Box. Processors. Execution Unit (EU) Part 2 Computer Processors Processors The Brains of the Box Computer Processors Components of a Processor The Central Processing Unit (CPU) is the most complex part of a computer In fact, it is the computer

More information

UNIT 2 PROCESSORS ORGANIZATION CONT.

UNIT 2 PROCESSORS ORGANIZATION CONT. UNIT 2 PROCESSORS ORGANIZATION CONT. Types of Operand Addresses Numbers Integer/floating point Characters ASCII etc. Logical Data Bits or flags x86 Data Types Operands in 8 bit -Byte 16 bit- word 32 bit-

More information

Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB

Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB Lab # 9 Integer Arithmetic and Bit Manipulation April, 2014 1 Assembly Language LAB Bitwise

More information

Computer Architecture and System Software Lecture 04: Floating Points & Intro to Assembly

Computer Architecture and System Software Lecture 04: Floating Points & Intro to Assembly Computer Architecture and System Software Lecture 04: Floating Points & Intro to Assembly Instructor: Rob Bergen Applied Computer Science University of Winnipeg Decimal Addition Review decimal addition

More information

Signed number Arithmetic. Negative number is represented as

Signed number Arithmetic. Negative number is represented as Signed number Arithmetic Signed and Unsigned Numbers An 8 bit number system can be used to create 256 combinations (from 0 to 255), and the first 128 combinations (0 to 127) represent positive numbers

More information

X86-NASM STANDARD COMMANDS. Comment your code with a semicolon (;)! The assembler won t read anything after it.

X86-NASM STANDARD COMMANDS. Comment your code with a semicolon (;)! The assembler won t read anything after it. X86-NASM STANDARD COMMANDS Comment your code with a semicolon (;)! The assembler won t read anything after it. Move mov ax,bx ; ax = bx Use this command when you want to move a value around. You can also

More information

The Microprocessor and its Architecture

The Microprocessor and its Architecture The Microprocessor and its Architecture Contents Internal architecture of the Microprocessor: The programmer s model, i.e. The registers model The processor model (organization) Real mode memory addressing

More information

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات 1) Input/output In computing, input/output or I/O, is the communication between an information processing system (such as a computer) and the outside world, possibly a human or another information processing

More information

Computer Architecture and System Programming Laboratory. TA Session 3

Computer Architecture and System Programming Laboratory. TA Session 3 Computer Architecture and System Programming Laboratory TA Session 3 Stack - LIFO word-size data structure STACK is temporary storage memory area register points on top of stack (by default, it is highest

More information

Lab 2: Introduction to Assembly Language Programming

Lab 2: Introduction to Assembly Language Programming COE 205 Lab Manual Lab 2: Introduction to Assembly Language Programming - page 16 Lab 2: Introduction to Assembly Language Programming Contents 2.1. Intel IA-32 Processor Architecture 2.2. Basic Program

More information

Lecture (02) The Microprocessor and Its Architecture By: Dr. Ahmed ElShafee

Lecture (02) The Microprocessor and Its Architecture By: Dr. Ahmed ElShafee Lecture (02) The Microprocessor and Its Architecture By: Dr. Ahmed ElShafee ١ INTERNAL MICROPROCESSOR ARCHITECTURE Before a program is written or instruction investigated, internal configuration of the

More information

CMSC Lecture 03. UMBC, CMSC313, Richard Chang

CMSC Lecture 03. UMBC, CMSC313, Richard Chang CMSC Lecture 03 Moore s Law Evolution of the Pentium Chip IA-32 Basic Execution Environment IA-32 General Purpose Registers Hello World in Linux Assembly Language Addressing Modes UMBC, CMSC313, Richard

More information

Machine and Assembly Language Principles

Machine and Assembly Language Principles Machine and Assembly Language Principles Assembly language instruction is synonymous with a machine instruction. Therefore, need to understand machine instructions and on what they operate - the architecture.

More information

Marking Scheme. Examination Paper. Module: Microprocessors (630313)

Marking Scheme. Examination Paper. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 12/06/2017 Section 1 Weighting 40% of

More information

icroprocessor istory of Microprocessor ntel 8086:

icroprocessor istory of Microprocessor ntel 8086: Microprocessor A microprocessor is an electronic device which computes on the given input similar to CPU of a computer. It is made by fabricating millions (or billions) of transistors on a single chip.

More information

Internal architecture of 8086

Internal architecture of 8086 Case Study: Intel Processors Internal architecture of 8086 Slide 1 Case Study: Intel Processors FEATURES OF 8086 It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 220 memory locations (1

More information

Assembler Programming. Lecture 2

Assembler Programming. Lecture 2 Assembler Programming Lecture 2 Lecture 2 8086 family architecture. From 8086 to Pentium4. Registers, flags, memory organization. Logical, physical, effective address. Addressing modes. Processor Processor

More information

CS401 Assembly Language Solved MCQS From Midterm Papers

CS401 Assembly Language Solved MCQS From Midterm Papers CS401 Assembly Language Solved MCQS From Midterm Papers May 14,2011 MC100401285 Moaaz.pk@gmail.com MC100401285@gmail.com PSMD01(IEMS) Question No:1 ( Marks: 1 ) - Please choose one The first instruction

More information

9/25/ Software & Hardware Architecture

9/25/ Software & Hardware Architecture 8086 Software & Hardware Architecture 1 INTRODUCTION It is a multipurpose programmable clock drive register based integrated electronic device, that reads binary instructions from a storage device called

More information

Lecture 2 Assembly Language

Lecture 2 Assembly Language Lecture 2 Assembly Language Computer and Network Security 9th of October 2017 Computer Science and Engineering Department CSE Dep, ACS, UPB Lecture 2, Assembly Language 1/37 Recap: Explorations Tools assembly

More information

MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN

MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN ROAD MAP SDK-86 Intel 8086 Features 8086 Block Diagram 8086 Architecture Bus Interface Unit Execution Unit 8086 Architecture 8086 Programmer s Model Flag Register

More information

Assembly Language. Lecture 2 - x86 Processor Architecture. Ahmed Sallam

Assembly Language. Lecture 2 - x86 Processor Architecture. Ahmed Sallam Assembly Language Lecture 2 - x86 Processor Architecture Ahmed Sallam Introduction to the course Outcomes of Lecture 1 Always check the course website Don t forget the deadline rule!! Motivations for studying

More information

Name: CMSC 313 Fall 2001 Computer Organization & Assembly Language Programming Exam 1. Question Points I. /34 II. /30 III.

Name: CMSC 313 Fall 2001 Computer Organization & Assembly Language Programming Exam 1. Question Points I. /34 II. /30 III. CMSC 313 Fall 2001 Computer Organization & Assembly Language Programming Exam 1 Name: Question Points I. /34 II. /30 III. /36 TOTAL: /100 Instructions: 1. This is a closed-book, closed-notes exam. 2. You

More information

We will first study the basic instructions for doing multiplications and divisions

We will first study the basic instructions for doing multiplications and divisions MULTIPLICATION, DIVISION AND NUMERICAL CONVERSIONS We will first study the basic instructions for doing multiplications and divisions We then use these instructions to 1. Convert a string of ASCII digits

More information

complement) Multiply Unsigned: MUL (all operands are nonnegative) AX = BH * AL IMUL BH IMUL CX (DX,AX) = CX * AX Arithmetic MUL DWORD PTR [0x10]

complement) Multiply Unsigned: MUL (all operands are nonnegative) AX = BH * AL IMUL BH IMUL CX (DX,AX) = CX * AX Arithmetic MUL DWORD PTR [0x10] The following pages contain references for use during the exam: tables containing the x86 instruction set (covered so far) and condition codes. You do not need to submit these pages when you finish your

More information

Reverse Engineering II: The Basics

Reverse Engineering II: The Basics Reverse Engineering II: The Basics Gergely Erdélyi Senior Manager, Anti-malware Research Protecting the irreplaceable f-secure.com Binary Numbers 1 0 1 1 - Nibble B 1 0 1 1 1 1 0 1 - Byte B D 1 0 1 1 1

More information

CNIT 127: Exploit Development. Ch 1: Before you begin. Updated

CNIT 127: Exploit Development. Ch 1: Before you begin. Updated CNIT 127: Exploit Development Ch 1: Before you begin Updated 1-14-16 Basic Concepts Vulnerability A flaw in a system that allows an attacker to do something the designer did not intend, such as Denial

More information

Reverse Engineering II: Basics. Gergely Erdélyi Senior Antivirus Researcher

Reverse Engineering II: Basics. Gergely Erdélyi Senior Antivirus Researcher Reverse Engineering II: Basics Gergely Erdélyi Senior Antivirus Researcher Agenda Very basics Intel x86 crash course Basics of C Binary Numbers Binary Numbers 1 Binary Numbers 1 0 1 1 Binary Numbers 1

More information

IBM PC Hardware CPU 8088, Pentium... ALU (Arithmetic and Logic Unit) Registers. CU (Control Unit) IP.

IBM PC Hardware CPU 8088, Pentium... ALU (Arithmetic and Logic Unit) Registers. CU (Control Unit) IP. IBM PC Hardware CPU 8088, 8086 80286 80386 80486 Pentium... ALU (Arithmetic and Logic Unit) Registers CU (Control Unit) IP Memory ROM BIOS I/O RAM OS Programs Video memory BIOS data Interrupt Vectors Memory

More information

SOEN228, Winter Revision 1.2 Date: October 25,

SOEN228, Winter Revision 1.2 Date: October 25, SOEN228, Winter 2003 Revision 1.2 Date: October 25, 2003 1 Contents Flags Mnemonics Basic I/O Exercises Overview of sample programs 2 Flag Register The flag register stores the condition flags that retain

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor The microprocessor is a general purpose programmable logic device. It is the brain of the computer and it performs all the computational tasks, calculations data processing

More information

Credits and Disclaimers

Credits and Disclaimers Credits and Disclaimers 1 The examples and discussion in the following slides have been adapted from a variety of sources, including: Chapter 3 of Computer Systems 2 nd Edition by Bryant and O'Hallaron

More information

1. Introduction to Assembly Language

1. Introduction to Assembly Language www.vchowk.com 1. Introduction to Assembly Language Solved EXERCISE 1 Note: Dear fellows I tried my best to solve this exercise questions if there s any mistake or doubt in any question correct it and

More information

MODE (mod) FIELD CODES. mod MEMORY MODE: 8-BIT DISPLACEMENT MEMORY MODE: 16- OR 32- BIT DISPLACEMENT REGISTER MODE

MODE (mod) FIELD CODES. mod MEMORY MODE: 8-BIT DISPLACEMENT MEMORY MODE: 16- OR 32- BIT DISPLACEMENT REGISTER MODE EXERCISE 9. Determine the mod bits from Figure 7-24 and write them in Table 7-7. MODE (mod) FIELD CODES mod 00 01 10 DESCRIPTION MEMORY MODE: NO DISPLACEMENT FOLLOWS MEMORY MODE: 8-BIT DISPLACEMENT MEMORY

More information

Inline Assembler. Willi-Hans Steeb and Yorick Hardy. International School for Scientific Computing

Inline Assembler. Willi-Hans Steeb and Yorick Hardy. International School for Scientific Computing Inline Assembler Willi-Hans Steeb and Yorick Hardy International School for Scientific Computing e-mail: steebwilli@gmail.com Abstract We provide a collection of inline assembler programs. 1 Using the

More information

Question Bank Part-A UNIT I- THE 8086 MICROPROCESSOR 1. What is microprocessor? A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device that reads binary information

More information

EEM336 Microprocessors I. Data Movement Instructions

EEM336 Microprocessors I. Data Movement Instructions EEM336 Microprocessors I Data Movement Instructions Introduction This chapter concentrates on common data movement instructions. 2 Chapter Objectives Upon completion of this chapter, you will be able to:

More information

SYSC3601 Microprocessor Systems. Unit 2: The Intel 8086 Architecture and Programming Model

SYSC3601 Microprocessor Systems. Unit 2: The Intel 8086 Architecture and Programming Model SYSC3601 Microprocessor Systems Unit 2: The Intel 8086 Architecture and Programming Model Topics/Reading SYSC3601 2 Microprocessor Systems 1. Registers and internal architecture (Ch 2) 2. Address generation

More information

Assembly Language. Lecture 2 x86 Processor Architecture

Assembly Language. Lecture 2 x86 Processor Architecture Assembly Language Lecture 2 x86 Processor Architecture Ahmed Sallam Slides based on original lecture slides by Dr. Mahmoud Elgayyar Introduction to the course Outcomes of Lecture 1 Always check the course

More information

LAB 5 Arithmetic Operations Simple Calculator

LAB 5 Arithmetic Operations Simple Calculator LAB 5 Arithmetic Operations Simple Calculator Objective: Practice arithmetic operation for the 80x86, such as add, subtract, multiple, divide, and mod. When dealing with the multiply, divide, and mod instructions

More information

CMSC 313 Lecture 07. Short vs Near Jumps Logical (bit manipulation) Instructions AND, OR, NOT, SHL, SHR, SAL, SAR, ROL, ROR, RCL, RCR

CMSC 313 Lecture 07. Short vs Near Jumps Logical (bit manipulation) Instructions AND, OR, NOT, SHL, SHR, SAL, SAR, ROL, ROR, RCL, RCR CMSC 313 Lecture 07 Short vs Near Jumps Logical (bit manipulation) Instructions AND, OR, NOT, SHL, SHR, SAL, SAR, ROL, ROR, RCL, RCR More Arithmetic Instructions NEG, MUL, IMUL, DIV Indexed Addressing:

More information

Week /8086 Microprocessor Programming I

Week /8086 Microprocessor Programming I Week 4 8088/8086 Microprocessor Programming I Example. The PC Typewriter Write an 80x86 program to input keystrokes from the PC s keyboard and display the characters on the system monitor. Pressing any

More information

CS Basics 5) Programming in Assembly Language

CS Basics 5) Programming in Assembly Language CS Basics 5) Programming in Assembly Language Emmanuel Benoist Fall Term 2016-17 Berner Fachhochschule Haute cole spcialise bernoise Berne University of Applied Sciences 1 Programming in Assembly Language

More information

CS 31: Intro to Systems ISAs and Assembly. Martin Gagné Swarthmore College February 7, 2017

CS 31: Intro to Systems ISAs and Assembly. Martin Gagné Swarthmore College February 7, 2017 CS 31: Intro to Systems ISAs and Assembly Martin Gagné Swarthmore College February 7, 2017 ANNOUNCEMENT All labs will meet in SCI 252 (the robot lab) tomorrow. Overview How to directly interact with hardware

More information

mith College Computer Science CSC231 - Assembly Week #4 Dominique Thiébaut

mith College Computer Science CSC231 - Assembly Week #4 Dominique Thiébaut mith College Computer Science CSC231 - Assembly Week #4 Dominique Thiébaut dthiebaut@smith.edu Homework Solutions Outline Review Hexdump Pentium Data Registers 32-bit, 16-bit and 8-bit quantities (registers

More information

CS401 - Computer Architecture and Assembly Language Programming Glossary By

CS401 - Computer Architecture and Assembly Language Programming Glossary By CS401 - Computer Architecture and Assembly Language Programming Glossary By absolute address : A virtual (not physical) address within the process address space that is computed as an absolute number.

More information