Arithmetic for Computers. Hwansoo Han

Size: px
Start display at page:

Download "Arithmetic for Computers. Hwansoo Han"

Transcription

1 Arithmetic for Computers Hwansoo Han

2 Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation and operations 2

3 Integer Addition Example: Overflow if result out of range Adding positive(+) and negative( ) operands, no overflow Adding two positive(+) operands Overflow if result sign is 1 Adding two negative( ) operands Overflow if result sign is 0 3

4 Integer Subtraction Add negation of second operand Example: 7 6 = 7 + ( 6) +7: : : Overflow if result out of range Subtracting two positive(+) or two negative( ) operands, no overflow Subtracting positive(+) from negative( ) operand Overflow if result sign is 0 Subtracting negative( ) from positive(+) operand Overflow if result sign is 1 4

5 Dealing with Overflow Some languages (e.g., C) ignore overflow Use MIPS addu, addui, subu instructions Other languages (e.g., Ada, Fortran) require raising an exception Use MIPS add, addi, sub instructions On overflow, invoke exception handler Save PC in exception program counter (EPC) register Jump to predefined handler address mfc0 (move from coprocessor register) instruction can retrieve EPC value, to return after corrective action 5

6 Arithmetic for Multimedia Graphics and media processing operates on vectors of 8-bit and 16-bit data Use 64-bit adder, with partitioned carry chain Operate on 8 8-bit, 4 16-bit, or 2 32-bit vectors SIMD (single-instruction, multiple-data) Saturating operations On overflow, result is largest representable value vs. 2s-complement modulo arithmetic E.g., clipping in audio, saturation in video 6

7 Multiplication Start with long-multiplication approach multiplicand multiplier product Length of product is the sum of operand lengths 7

8 Multiplication Hardware Initially 0 8

9 Optimized Multiplier Perform steps in parallel: add/shift Product Multiplier Shift right Write One cycle per partial-product addition That s OK, if frequency of multiplications is low 9

10 Faster Multiplier Uses multiple adders Cost/performance tradeoff Can be pipelined 10 Several multiplication performed in parallel

11 MIPS Multiplication Two 32-bit registers for product (separately provided) HI: most-significant 32 bits LO: least-significant 32-bits Instructions mult rs, rt / multu rs, rt 64-bit product in HI/LO mfhi rd / mflo rd Move from HI/LO to rd Can test HI value to see if product overflows 32 bits mul rd, rs, rt Least-significant 32 bits of product > rd 11

12 Division Check for 0 divisor Long division approach If divisor dividend bits 1 bit in quotient, subtract Otherwise 0 bit in quotient, bring down next dividend bit Restoring division Do the subtract, and if remainder goes < 0, add divisor back Signed division Divide using absolute values Adjust sign of quotient and remainder as required divisor quotient dividend remainder n-bit operands yield n-bit quotient and remainder 12

13 Division Hardware Initially divisor in left half divisor divisor Shift left remainder dividend Write Initially dividend 13

14 Optimized Divider One cycle per partial-remainder subtraction Quotient in right half of 64-bit remainder register Looks a lot like a multiplier! Same hardware can be used for both 14

15 Faster Division Cannot use parallel hardware as in multiplier Subtraction is conditional on sign of remainder Faster dividers (e.g. SRT devision) generate multiple quotient bits per step Guess quotient bits and correct wrong guesses in subsequent steps Still require multiple steps 15

16 MIPS Division Use HI/LO registers for result HI: 32-bit remainder LO: 32-bit quotient Instructions div rs, rt / divu rs, rt No overflow or divide-by-0 checking Software must perform checks if required Use mfhi, mflo to access result 16

17 17

18 Floating Point We need a way to represent Numbers with fractions, e.g., Very small numbers, e.g., Very large numbers, e.g., x 10 9 Like Scientific notation In binary ±1.xxxxxxx 2 2 yyyy Types float and double in C 18

19 Floating Point Representation Sign, exponent, significand: ( 1) sign x significand x 2 exponent More bits for significand gives more accuracy More bits for exponent increases range IEEE 754 floating point standard: Single precision: 8 bit exponent, 23 bit significand, 1 bit sign Double precision: 11 bit exponent, 52 bit significand, 1 bit sign 19

20 Fractional Binary Numbers Representation 20 2 i 2 i 1 b i b i 1 b 2 b 1 b 0. b 1 b 2 b 3 b j 1/2 1/4 1/8 Bits to right of binary point represent fractional power of 2 Represents rational number: i 2 j k j b k 2 k

21 Fractional Binary Numbers (cont d) Examples: Value Representation / / represents just below 1.0 1/2 + 1/4 + 1/ /2 i (notation 1.0 ) Representable Numbers Can only exactly represent numbers of the form x/2 k Other numbers have repeating bit representations Value Representation 1/ [01] 2 1/ [0011] 2 1/ [0011] 2 21

22 IEEE 754 FP: Normalized Values Condition: exponent and exponent Significand coded with implied leading 1 significand = 1.xxx x 2 Minimum when (significand = 1.0) Maximum when (significand = ) Get extra leading bit for free Exponent is biased to make sorting easier exponent: 1 ~ 254 bias: 127 for single precision (1023 for double precision) format: ( 1) sign x (1 + significand) x 2exponent bias sign exponent significand 22

23 IEEE 754 FP: Normalized Values (cont d) Example for Decimal: -.75 = - ( ½ + ¼ ) Binary: -.11 = -1.1 x 2-1 Floating point exponent = 126 = (-1= ) IEEE single precision: =(-1) 1 x ( ) x Another example for sign exponent significand = = x 2 13 significand = (implied leading 1) exponent = 140 = (exponent bias = 13, bias = 127) bias for single precision

24 IEEE 754 FP: Denormalized Values Condition: exp = Value exponent = 1 bias (e.g. single precision: -126 = 1-127) significand = 0.xxx x 2 (no implied leading 1) Cases exp = 000 0, frac = Represents value 0 Note that have distinct values +0 and -0 (depending on sign bit) exp = 000 0, frac Numbers very close to 0.0 (-1 x 2-126, 1 x ) Gradual underflow : possible numeric values are spaced evenly near 0.0 normalized denormalized normalized -1.0 x x

25 IEEE 754 FP: Special Values Condition: exp = exp = 111 1, frac = Represents value (infinity) Operation that overflows Both positive and negative e.g., 1.0/0.0 = -1.0/-0.0 = +, 1.0/-0.0 = - exp = 111 1, frac Not-a-Number (NaN) Represents case when no numeric value can be determined e.g., 0.0/0.0, sqrt(-1), - 25

26 IEEE 754 FP: Summary Single precision Double precision Object represented Exponent Fraction Exponent Fraction Nonzero 0 Nonzero denormalized number Anything Anything floating-point number Infinity 255 Nonzero 2047 Nonzero NaN (Not-a-Number) denormalized normalized special 26

27 Floating Point Addition Sketch of FP addition Align numbers to have the same exponent (the larger exponent) Add two significands with their signs and implied leading 1s Normalize the sum, checking overflow and underflow Round the sum and renormalize if necessary Example for FP format: 0.5 = x 2-1, = x 2-2 Align to the larger exponent: x 2-2 = x 2-1 Addition of significands: = 0001 Result: x 2-1 Normalize: x 2-4 Checking overflow and underflow:

28 FP Adder Hardware Step 1 Step 2 Step 3 Step 4 28

29 Floating-Point Multiplication Sketch of FP multiplication Add exponents without bias Multiply two significands Check for underflow and overflow Normalize the result Round and renormalize if necessary Set the sign bit Example for (1.000 x 2-1 ) x ( x 2-2 ) Exponents: -1 + (-2) = -3 Significand: x = Check : Normalize: x 2-3 Sign bit: x

30 FP Arithmetic Hardware FP multiplier is of similar complexity to FP adder But uses a multiplier for significands instead of an adder Operations are somewhat more complicated In addition to overflow we can have underflow FP arithmetic hardware usually does Addition, subtraction, multiplication, division, reciprocal, square-root FP integer conversion Operations usually takes several cycles Can be pipelined 30

31 FP Instructions in MIPS FP hardware is coprocessor 1 Adjunct processor that extends the ISA Separate FP registers 32 single-precision: $f0, $f1, $f31 Paired for double-precision: $f0/$f1, $f2/$f3, Release 2 of MIPs ISA supports bit FP registers FP instructions operate only on FP registers Generally no integer operations on FP data, or vice versa More registers with minimal code-size impact 31

32 Floating Point Instructions (MIPS) Single precision and double precision instructions Addition : add.s, add.d Subtraction: sub.s, sub.d Multiplication: mul.s, mul.d Division: div.s, div.d Comparison sets or clear FP condition code bit c.xx.s, c.xx.d (xx can be eq, neq, lt, le, gt, ge) e.g., c.lt.s $f3, $f4 Branch on FP condition code true or false bc1t, bc1f e.g., bc1t targetlabel FP load and store instructions (from/to coprocessor 1) lwc1, ldc1, swc1, sdc1 (w: 32-bit data, d: 64-bit data) e.g., ldc1 $f8, 32($sp) 32

33 Accurate Arithmetic IEEE Std 754 specifies additional rounding control Extra bits of precision (guard, round, sticky) Choice of rounding modes Allows programmer to fine-tune numerical behavior of a computation Not all FP units implement all options Most programming languages and FP libraries just use defaults Trade-off between hardware complexity, performance, and market requirements 33

34 Ariane 5 Ariane 5 tragedy (June 4, 1996) Why? Exploded 37 seconds after liftoff Satellites worth $500 million Computed horizontal velocity as floating point number Converted to 16-bit integer Careful analysis of Ariane 4 trajectory proved 16-bit is enough Reused a module from 10-year-old software Overflowed for Ariane 5 No precise specification for the S/W 34

35 0.10 Gulf War in 1991 US Patriot missile failed to intercept Iraqi Scud missile 28 soldiers were killed Binary representation of 0.10 Patriot incremented a counter once every 0.10 seconds Implemented to multiply the counter value by 0.10 to get actual time 24-bit binary representation of 0.10 actually was which is off by (doesn t seem like much) After 100 hours, the time is off by 0.34 seconds Enough time for a Scud to travel 500 meters! 35

36 Summary Computer arithmetic is constrained by limited precision Bit patterns have no inherent meaning But standards do exist for number representations Two s complement, IEEE 754 floating point Computer instructions determine meaning of the bit patterns Performance and accuracy are important So there are many complexities in real machines Algorithm choice is important May lead to hardware optimizations for both space and time (e.g., multiplication) 36

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers VO

More information

Chapter 3. Arithmetic Text: P&H rev

Chapter 3. Arithmetic Text: P&H rev Chapter 3 Arithmetic Text: P&H rev3.29.16 Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

TDT4255 Computer Design. Lecture 4. Magnus Jahre

TDT4255 Computer Design. Lecture 4. Magnus Jahre 1 TDT4255 Computer Design Lecture 4 Magnus Jahre 2 Chapter 3 Computer Arithmetic ti Acknowledgement: Slides are adapted from Morgan Kaufmann companion material 3 Arithmetic for Computers Operations on

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

More information

Integer Arithmetic. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Integer Arithmetic. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Integer Arithmetic Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Computer Architecture and IC Design Lab. Chapter 3 Part 2 Arithmetic for Computers Floating Point

Computer Architecture and IC Design Lab. Chapter 3 Part 2 Arithmetic for Computers Floating Point Chapter 3 Part 2 Arithmetic for Computers Floating Point Floating Point Representation for non integral numbers Including very small and very large numbers 4,600,000,000 or 4.6 x 10 9 0.0000000000000000000000000166

More information

Chapter 3. Arithmetic for Computers

Chapter 3. Arithmetic for Computers Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Chapter 3 Arithmetic for Computers (Part 2)

Chapter 3 Arithmetic for Computers (Part 2) Department of Electr rical Eng ineering, Chapter 3 Arithmetic for Computers (Part 2) 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Depar rtment of Electr rical Eng ineering, Feng-Chia Unive

More information

Chapter 3. Arithmetic for Computers

Chapter 3. Arithmetic for Computers Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Floating Point Arithmetic. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Floating Point Arithmetic. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Floating Point Arithmetic Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Floating Point (1) Representation for non-integral numbers Including very

More information

Chapter 3. Arithmetic for Computers

Chapter 3. Arithmetic for Computers Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Written Homework 3. Floating-Point Example (1/2)

Written Homework 3. Floating-Point Example (1/2) Written Homework 3 Assigned on Tuesday, Feb 19 Due Time: 11:59pm, Feb 26 on Tuesday Problems: 3.22, 3.23, 3.24, 3.41, 3.43 Note: You have 1 week to work on homework 3. 3 Floating-Point Example (1/2) Q:

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Arithmetic for Computers Addition and Subtraction Gate Logic and K-Map Method Constructing a Basic ALU Arithmetic Logic Unit

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Boolean Algebra Boolean algebra is the basic math used in digital circuits and computers.

More information

Boolean Algebra. Chapter 3. Boolean Algebra. Chapter 3 Arithmetic for Computers 1. Fundamental Boolean Operations. Arithmetic for Computers

Boolean Algebra. Chapter 3. Boolean Algebra. Chapter 3 Arithmetic for Computers 1. Fundamental Boolean Operations. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic

More information

CSCI 402: Computer Architectures. Arithmetic for Computers (4) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Arithmetic for Computers (4) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Arithmetic for Computers (4) Fengguang Song Department of Computer & Information Science IUPUI Homework 4 Assigned on Feb 22, Thursday Due Time: 11:59pm, March 5 on Monday

More information

Review: MIPS Organization

Review: MIPS Organization 1 MIPS Arithmetic Review: MIPS Organization Processor Memory src1 addr 5 src2 addr 5 dst addr 5 write data Register File registers ($zero - $ra) bits src1 data src2 data read/write addr 1 1100 2 30 words

More information

Computer Architecture. Chapter 3: Arithmetic for Computers

Computer Architecture. Chapter 3: Arithmetic for Computers 182.092 Computer Architecture Chapter 3: Arithmetic for Computers Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, Morgan Kaufmann Publishers and Mary Jane Irwin

More information

Signed Multiplication Multiply the positives Negate result if signs of operand are different

Signed Multiplication Multiply the positives Negate result if signs of operand are different Another Improvement Save on space: Put multiplier in product saves on speed: only single shift needed Figure: Improved hardware for multiplication Signed Multiplication Multiply the positives Negate result

More information

Computer Architecture Chapter 3. Fall 2005 Department of Computer Science Kent State University

Computer Architecture Chapter 3. Fall 2005 Department of Computer Science Kent State University Computer Architecture Chapter 3 Fall 2005 Department of Computer Science Kent State University Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point

More information

5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner. Topic 3: Arithmetic

5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner. Topic 3: Arithmetic 5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner Topic 3: Arithmetic These slides are mostly taken verbatim, or with minor changes, from those

More information

3.5 Floating Point: Overview

3.5 Floating Point: Overview 3.5 Floating Point: Overview Floating point (FP) numbers Scientific notation Decimal scientific notation Binary scientific notation IEEE 754 FP Standard Floating point representation inside a computer

More information

Lecture 13: (Integer Multiplication and Division) FLOATING POINT NUMBERS

Lecture 13: (Integer Multiplication and Division) FLOATING POINT NUMBERS Lecture 13: (Integer Multiplication and Division) FLOATING POINT NUMBERS Lecture 13 Floating Point I (1) Fall 2005 Integer Multiplication (1/3) Paper and pencil example (unsigned): Multiplicand 1000 8

More information

MIPS Integer ALU Requirements

MIPS Integer ALU Requirements MIPS Integer ALU Requirements Add, AddU, Sub, SubU, AddI, AddIU: 2 s complement adder/sub with overflow detection. And, Or, Andi, Ori, Xor, Xori, Nor: Logical AND, logical OR, XOR, nor. SLTI, SLTIU (set

More information

Floating Point COE 308. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Floating Point COE 308. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Floating Point COE 38 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Floating-Point Numbers IEEE 754 Floating-Point

More information

Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

More information

Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

More information

Chapter 3 Arithmetic for Computers

Chapter 3 Arithmetic for Computers Chapter 3 Arithmetic for Computers 1 Outline Signed and unsigned numbers (Sec. 3.2) Addition and subtraction (Sec. 3.3) Multiplication (Sec. 3.4) Division (Sec. 3.5) Floating point (Sec. 3.6) 2 Representation

More information

Representing and Manipulating Floating Points. Jo, Heeseung

Representing and Manipulating Floating Points. Jo, Heeseung Representing and Manipulating Floating Points Jo, Heeseung The Problem How to represent fractional values with finite number of bits? 0.1 0.612 3.14159265358979323846264338327950288... 2 Fractional Binary

More information

Arithmetic for Computers. Integer Addition. Chapter 3

Arithmetic for Computers. Integer Addition. Chapter 3 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

More information

Arithmetic. Chapter 3 Computer Organization and Design

Arithmetic. Chapter 3 Computer Organization and Design Arithmetic Chapter 3 Computer Organization and Design Addition Addition is similar to decimals 0000 0111 + 0000 0101 = 0000 1100 Subtraction (negate) 0000 0111 + 1111 1011 = 0000 0010 Over(under)flow For

More information

Integer Subtraction. Chapter 3. Overflow conditions. Arithmetic for Computers. Signed Addition. Integer Addition. Arithmetic for Computers

Integer Subtraction. Chapter 3. Overflow conditions. Arithmetic for Computers. Signed Addition. Integer Addition. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Integer Subtraction Chapter 3 Arithmetic for Computers Add negation of second operand Example: 7 6 = 7 + ( 6) +7: 0000 0000

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

More information

Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Representing and Manipulating Floating Points Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE23: Introduction to Computer Systems, Spring 218,

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

More information

Chapter 3. Arithmetic for Computers

Chapter 3. Arithmetic for Computers Chapter 3 Arithmetic for Computers Arithmetic for Computers Unsigned vs. Signed Integers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point

More information

Representing and Manipulating Floating Points. Computer Systems Laboratory Sungkyunkwan University

Representing and Manipulating Floating Points. Computer Systems Laboratory Sungkyunkwan University Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

More information

xx.yyyy Lecture #11 Floating Point II Summary (single precision): Precision and Accuracy Fractional Powers of 2 Representation of Fractions

xx.yyyy Lecture #11 Floating Point II Summary (single precision): Precision and Accuracy Fractional Powers of 2 Representation of Fractions CS61C L11 Floating Point II (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #11 Floating Point II 2007-7-12 Scott Beamer, Instructor Sony & Nintendo make E3 News www.nytimes.com Review

More information

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Systems I Floating Point Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IEEE Floating Point IEEE Standard 754 Established in 1985 as uniform standard for

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Arithmetic for Computers James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Arithmetic for

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic ICS 233 Computer Architecture and Assembly Language Dr. Aiman El-Maleh College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals [Adapted from

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

IEEE Standard 754 for Binary Floating-Point Arithmetic.

IEEE Standard 754 for Binary Floating-Point Arithmetic. CS61C L11 Floating Point II (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #11 Floating Point II 2005-10-05 There is one handout today at the front and back of the room! Lecturer

More information

Homework 3. Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) CSCI 402: Computer Architectures

Homework 3. Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) CSCI 402: Computer Architectures Homework 3 Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) 1 CSCI 402: Computer Architectures Arithmetic for Computers (2) Fengguang Song Department

More information

Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers.

Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers. class04.ppt 15-213 The course that gives CMU its Zip! Topics Floating Point Jan 22, 2004 IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Floating Point Puzzles For

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #11 Floating Point II Scott Beamer, Instructor Sony & Nintendo make E3 News 2007-7-12 CS61C L11 Floating Point II (1) www.nytimes.com Review

More information

Divide: Paper & Pencil

Divide: Paper & Pencil Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Floating Point Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture are based

More information

Giving credit where credit is due

Giving credit where credit is due JDEP 284H Foundations of Computer Systems Floating Point Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created by Drs. Bryant

More information

Chapter 3 Arithmetic for Computers. ELEC 5200/ From P-H slides

Chapter 3 Arithmetic for Computers. ELEC 5200/ From P-H slides Chapter 3 Arithmetic for Computers 1 Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

Computer Organization: A Programmer's Perspective

Computer Organization: A Programmer's Perspective A Programmer's Perspective Representing Numbers Gal A. Kaminka galk@cs.biu.ac.il Fractional Binary Numbers 2 i 2 i 1 4 2 1 b i b i 1 b 2 b 1 b 0. b 1 b 2 b 3 b j 1/2 1/4 1/8 Representation Bits to right

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } L11 Floating Point 1 What is the problem? Many numeric applications require numbers over a VERY large range. (e.g. nanoseconds to centuries)

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 10: Multiplication & Floating Point Representation Adapted from Computer Organization and Design, Patterson & Hennessy, UCB MIPS Division Two 32-bit registers

More information

CS61C Floating Point Operations & Multiply/Divide. Lecture 9. February 17, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson)

CS61C Floating Point Operations & Multiply/Divide. Lecture 9. February 17, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) CS61C Floating Point Operations & Multiply/Divide Lecture 9 February 17, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html cs 61C L9 FP.1 Review 1/2

More information

Review 1/2 Big Idea: Instructions determine meaning of data; nothing inherent inside the data Characters: ASCII takes one byte

Review 1/2 Big Idea: Instructions determine meaning of data; nothing inherent inside the data Characters: ASCII takes one byte CS61C Floating Point Operations & Multiply/Divide Lecture 9 February 17, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html Review 1/2 Big Idea: Instructions

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

More information

Floating Point Numbers. Lecture 9 CAP

Floating Point Numbers. Lecture 9 CAP Floating Point Numbers Lecture 9 CAP 3103 06-16-2014 Review of Numbers Computers are made to deal with numbers What can we represent in N bits? 2 N things, and no more! They could be Unsigned integers:

More information

Tailoring the 32-Bit ALU to MIPS

Tailoring the 32-Bit ALU to MIPS Tailoring the 32-Bit ALU to MIPS MIPS ALU extensions Overflow detection: Carry into MSB XOR Carry out of MSB Branch instructions Shift instructions Slt instruction Immediate instructions ALU performance

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: September 18, 2017 at 12:48 CS429 Slideset 4: 1 Topics of this Slideset

More information

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

More information

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } Reading: Study Chapter 4. L12 Multiplication 1 Why Floating Point? Aren t Integers enough? Many applications require numbers with a VERY

More information

EE260: Logic Design, Spring n Integer multiplication. n Booth s algorithm. n Integer division. n Restoring, non-restoring

EE260: Logic Design, Spring n Integer multiplication. n Booth s algorithm. n Integer division. n Restoring, non-restoring EE 260: Introduction to Digital Design Arithmetic II Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa Overview n Integer multiplication n Booth s algorithm n Integer division

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

Chapter Three. Arithmetic

Chapter Three. Arithmetic Chapter Three 1 Arithmetic Where we've been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing

More information

Math in MIPS. Subtracting a binary number from another binary number also bears an uncanny resemblance to the way it s done in decimal.

Math in MIPS. Subtracting a binary number from another binary number also bears an uncanny resemblance to the way it s done in decimal. Page < 1 > Math in MIPS Adding and Subtracting Numbers Adding two binary numbers together is very similar to the method used with decimal numbers, except simpler. When you add two binary numbers together,

More information

Arithmetic for Computers

Arithmetic for Computers MIPS Arithmetic Instructions Cptr280 Dr Curtis Nelson Arithmetic for Computers Operations on integers Addition and subtraction; Multiplication and division; Dealing with overflow; Signed vs. unsigned numbers.

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 11: Floating Point & Floating Point Addition Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Last time: Single Precision Format

More information

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers CSE 675.02: Introduction to Computer Architecture MIPS Processor Memory Instruction Set Architecture of MIPS Processor CPU Arithmetic Logic unit Registers $0 $31 Multiply divide Coprocessor 1 (FPU) Registers

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides

More information

Floating Point January 24, 2008

Floating Point January 24, 2008 15-213 The course that gives CMU its Zip! Floating Point January 24, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties class04.ppt 15-213, S 08 Floating

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 15: Midterm 1 Review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Basics Midterm to cover Book Sections (inclusive) 1.1 1.5

More information

CO212 Lecture 10: Arithmetic & Logical Unit

CO212 Lecture 10: Arithmetic & Logical Unit CO212 Lecture 10: Arithmetic & Logical Unit Shobhanjana Kalita, Dept. of CSE, Tezpur University Slides courtesy: Computer Architecture and Organization, 9 th Ed, W. Stallings Integer Representation For

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 15

CO Computer Architecture and Programming Languages CAPL. Lecture 15 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 15 Dr. Kinga Lipskoch Fall 2017 How to Compute a Binary Float Decimal fraction: 8.703125 Integral part: 8 1000 Fraction part: 0.703125

More information

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science)

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition Example and properties

More information

System Programming CISC 360. Floating Point September 16, 2008

System Programming CISC 360. Floating Point September 16, 2008 System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:

More information

Lecture 10: Floating Point, Digital Design

Lecture 10: Floating Point, Digital Design Lecture 10: Floating Point, Digital Design Today s topics: FP arithmetic Intro to Boolean functions 1 Examples Final representation: (-1) S x (1 + Fraction) x 2 (Exponent Bias) Represent -0.75 ten in single

More information

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. !

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. ! Floating point Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties Next time! The machine model Chris Riesbeck, Fall 2011 Checkpoint IEEE Floating point Floating

More information

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

More information

Chapter 3 Arithmetic for Computers

Chapter 3 Arithmetic for Computers Chapter 3 Arithmetic for Computers 1 Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Number Systems and Their Representations

Number Systems and Their Representations Number Representations Cptr280 Dr Curtis Nelson Number Systems and Their Representations In this presentation you will learn about: Representation of numbers in computers; Signed vs. unsigned numbers;

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 483 Computer Organization Chapter 3. Arithmetic for Computers Chansu Yu Table of Contents Ch.1 Introduction Ch. 2 Instruction: Machine Language Ch. 3-4 CPU Implementation Ch. 5 Cache and VM Ch. 6-7

More information

Lecture 8: Addition, Multiplication & Division

Lecture 8: Addition, Multiplication & Division Lecture 8: Addition, Multiplication & Division Today s topics: Signed/Unsigned Addition Multiplication Division 1 Signed / Unsigned The hardware recognizes two formats: unsigned (corresponding to the C

More information

Foundations of Computer Systems

Foundations of Computer Systems 18-600 Foundations of Computer Systems Lecture 4: Floating Point Required Reading Assignment: Chapter 2 of CS:APP (3 rd edition) by Randy Bryant & Dave O Hallaron Assignments for This Week: Lab 1 18-600

More information

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W4-W

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W4-W CE 01 Computer Organization Hugh Chesser, CEB 101U Agenda for Today 1. Floating Point Addition, Multiplication. FP Instructions. Quiz 1 Patterson: ections. Floating Point: ingle Precision 1. In MIP, decimal

More information

Divide: Paper & Pencil CS152. Computer Architecture and Engineering Lecture 7. Divide, Floating Point, Pentium Bug. DIVIDE HARDWARE Version 1

Divide: Paper & Pencil CS152. Computer Architecture and Engineering Lecture 7. Divide, Floating Point, Pentium Bug. DIVIDE HARDWARE Version 1 Divide: Paper & Pencil Computer Architecture and Engineering Lecture 7 Divide, Floating Point, Pentium Bug 1001 Quotient 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-A Floating-Point Arithmetic Israel Koren ECE666/Koren Part.4a.1 Preliminaries - Representation

More information

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon Carnegie Mellon Floating Point 15-213/18-213/14-513/15-513: Introduction to Computer Systems 4 th Lecture, Sept. 6, 2018 Today: Floating Point Background: Fractional binary numbers IEEE floating point

More information

CS222: Processor Design

CS222: Processor Design CS222: Processor Design Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Previous Class: Floating points: Add, Sub, Mul,Div, Rounding Processor Design: Introduction

More information

Floating Point. CSE 238/2038/2138: Systems Programming. Instructor: Fatma CORUT ERGİN. Slides adapted from Bryant & O Hallaron s slides

Floating Point. CSE 238/2038/2138: Systems Programming. Instructor: Fatma CORUT ERGİN. Slides adapted from Bryant & O Hallaron s slides Floating Point CSE 238/2038/2138: Systems Programming Instructor: Fatma CORUT ERGİN Slides adapted from Bryant & O Hallaron s slides Today: Floating Point Background: Fractional binary numbers IEEE floating

More information

Computer Architecture Set Four. Arithmetic

Computer Architecture Set Four. Arithmetic Computer Architecture Set Four Arithmetic Arithmetic Where we ve been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What

More information

Floating Point : Introduction to Computer Systems 4 th Lecture, May 25, Instructor: Brian Railing. Carnegie Mellon

Floating Point : Introduction to Computer Systems 4 th Lecture, May 25, Instructor: Brian Railing. Carnegie Mellon Floating Point 15-213: Introduction to Computer Systems 4 th Lecture, May 25, 2018 Instructor: Brian Railing Today: Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14

CO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 13 & 14 Dr. Kinga Lipskoch Fall 2017 Frame Pointer (1) The stack is also used to store variables that are local to function, but

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Fractions in Binary Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU)

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information