From Design to Production

Size: px
Start display at page:

Download "From Design to Production"

Transcription

1 From Design to Production An integrated approach Paolo Fabbri Senior Engineer 2014 The MathWorks, Inc. 1

2 Do you know what it is? Requirements System Test Functional Spec Integration Test Detailed Design Unit Test Implementation 2

3 Is the industry still using this approach for Embedded Software Development? 3

4 For Sure! But it s more about Modeling and Simulation Requirements System Test Functional Model Design Spec Integration HIL Simulation Test Detailed Model Design V&V Code Unit Test V&V Code Implementation Generation 4

5 Case Study: Vehicle Speed Limiter 74 Speed limiter 72 X: 10.9 Y: 71.1 Requirements System Test Model Design HIL Simulation m/h 66 Actual speed Setpoint 64 Model V&V Code V&V 62 Code Generation Time 5

6 Project Management in Simulink 6

7 Simulink Project Collaborative development Source Control Integration Support for svn and git Model compare/merge Data compare/merge Files Management Dependencies Analysis Impact Analysis 7

8 Source Control Integration 8

9 Model Comparison 9

10 Data Dictionary Comparison 10

11 Dependency and Impact Analysis 11

12 Manage Complexity in Simulink 12

13 Typical challenges with large projects Reuse models among different teams and projects Manage multiple design options in a single-model workflow Share models outside the team protecting IP Ensure proper modeling rules and configuration Ensure data consistency across models...what else? 13

14 Component-Based Modeling Reuse models among different teams and projects Modular Architecture Reusable Models Plant Expert Variants Management IP Protection Control Designer Control Designer 14

15 Model and Subsystem Variants 15

16 Protected Models for IP Protection Read-Only View Support Simulation Support Code Generation Support 16

17 Model Advisor Technology Ensure proper modeling rules and configuration Modeling Standards MISRA-C:2004 MAAB Style Guidelines IEC-61508/ISO EN DO-178C/DO-331 Specialized Advisor Upgrade Advisor Performance Advisor Code Generation Advisor 17

18 Simulink Data Dictionary Ensure data consistency across models Design Data Configuration Sets Change tracking Data partitioning Scalability and performance Simulink Projects Integration 18

19 Simulink Data Management System Simulink Project + Define Collaborate Store Model Explorer Simulink Data Dictionary + Manage Partition Simulink Data Objects Access 19

20 Model Verification and Validation 20

21 Early Model Verification and Validation Simulation, simulation, simulation... Simulation Data Inspection Simulation Comparison Coverage Analysis Requirements Model Design HIL Simulation System Test Model V&V Code V&V Code Generation 21

22 Analyze Simulation Data with Simulation Data Inspector 22

23 Simulation Comparison 23

24 Model Coverage Analysis 24

25 Embedded Code Generation and Verification 25

26 Embedded Code Generation Unified Code Generation Objective-Based Workflow Code Report and Code Metrics Requirements Model Design HIL Simulation System Test Model V&V Code V&V Code Generation 26

27 Unified Code Generation Capabilities Simulink Unified Code Generation C Code C++ Code HDL Code PLC Code MATLAB Stateflow 27

28 BLACK BOX P O W E R V R C S I N P U T B L U E G R E E N R E D Algorithm Export Controller Model Communication Interfaces Comm Drivers Generated Algorithm Code Output Drivers M Actuators Sensors A B C Input Drivers Included Target Optimized Code Included Legacy Code Special Device Drivers RGBSplit-4 Scheduler/Operating System and Support Utilities Special Interfaces 28

29 BLACK BOX P O W E R V R C S I N P U T B L U E G R E E N R E D Full Executable Controller Model Driver Blocks Scheduler Communication Interfaces Comm Drivers Generated Algorithm Code Output Drivers M Actuators Sensors A B C Input Drivers Included Target Optimized Code Included Legacy Code Special Device Drivers RGBSplit-4 Scheduler/Operating System and Support Utilities Special Interfaces 29

30 Code Integration Approaches Purpose Algorithm Export Mass Production Full Executable On-Target Rapid Prototyping Low Volume Production Usage Systems and software engineers Systems engineers Hardware Any processor Specific Hardware Kits or Boards Flexibility Higher Lower Ease of Use (Turnkey) Works after one-time customization Works out-of-the-box 30

31 Objective-Based Code Generation 31

32 Code Report and Code Metrics 32

33 Embedded C Code Verification In-the-Loop Simulations Code Execution Profiling Source Level Debugging Code Coverage Analysis Requirements Model Design Model V&V Code V&V HIL Simulation System Test Run-Time Error Detection Code Generation 33

34 «In-the-Loop» Simulations 34

35 MIL/SIL/PIL Simulation Comparison 35

36 Code Execution Profiling 36

37 Source Level Debugging in SIL 37

38 Code Coverage Analysis 38

39 Polyspace Technology Finds bugs Checks coding rule conformance (MISRA/JSF/Custom) Provides metrics (Cyclomatic complexity etc) Proves the existence and absence of run-time errors Certification help for Functional Safety standards 39

40 Run-time checks proven by Code Prover C run-time checks Unreachable Code Out of Bounds Array Index Division by Zero Non-Initialized Variable Scalar and Float Overflow (left shift on signed variables, float underflow versus values near zero) Initialized Return Value Shift Operations (shift amount in 0..31/0..63, left operand of left shift is negative) Illegal Dereferenced Pointer (illegal pointer access to variable of structure field, pointer within bounds) Correctness Condition (array conversion must not extend range, function pointer does not point to a valid function) Non-Initialized Pointer User Assertion Non-Termination of Call (non-termination of calls and loops, arithmetic expressions) Known Non-Termination of Call Non-Termination of Loop Standard Library Function Call Absolute Address Inspection Points Green: reliable safe pointer access Red: faulty out of bounds error Gray: dead unreachable code Orange: unproven may be unsafe for some conditions static void pointer_arithmetic (void) { int array[100]; int *p = array; int i; for (i = 0; i < 100; i++) { *p = 0; p++; } if (get_bus_status() > 0) { if (get_oil_pressure() > 0) { *p = 5; } else { i++; } } i = get_bus_status(); if (i >= 0) { *(p - i) = 10; } } 40

41 That s Model-Based Design Requirements System Test Model Design HIL Simulation Model V&V Code V&V Code Generation 41

42 What is the current industry maturity in the adoption of Model-Based Design? 42

43 Model-Based Design Maturity Framework 43

44 Profile of the industries in the benchmark OEMs and Suppliers from all regions of the world Automotive: Passenger, Commercial, Off-Highway Aerospace: Commercial, Military, Space Other: Industrial Automation, Medical, Transportation, Electronics 44

45 Automotive vs. Aerospace: Leaders Modeling Enterprise Management Simulation and Analysis 20 0 Aero Auto Process, Tools and Infrastructure Implementation Verification and Validation 45

46 Thank you! 46

Verification and Test with Model-Based Design

Verification and Test with Model-Based Design Verification and Test with Model-Based Design Flight Software Workshop 2015 Jay Abraham 2015 The MathWorks, Inc. 1 The software development process Develop, iterate and specify requirements Create high

More information

Static Analysis in C/C++ code with Polyspace

Static Analysis in C/C++ code with Polyspace 1 Static Analysis in C/C++ code with Polyspace Yongchool Ryu Application Engineer gary.ryu@mathworks.com 2016 The MathWorks, Inc. 2 Agenda Efficient way to find problems in Software Category of Static

More information

Intro to Proving Absence of Errors in C/C++ Code

Intro to Proving Absence of Errors in C/C++ Code Intro to Proving Absence of Errors in C/C++ Code Develop high quality embedded software Kristian Lindqvist Senior Pilot Engineer MathWorks 2016 The MathWorks, Inc. 1 The Cost of Failure Ariane 5: Overflow

More information

Increasing Embedded Software Confidence Model and Code Verification. Daniel Martins Application Engineer MathWorks

Increasing Embedded Software Confidence Model and Code Verification. Daniel Martins Application Engineer MathWorks Increasing Embedded Software Confidence Model and Code Verification Daniel Martins Application Engineer MathWorks Daniel.martins@mathworks.fr 1 What is the Cost of Software Failure Ariane 5 $7,500,000,000

More information

Increasing Design Confidence Model and Code Verification

Increasing Design Confidence Model and Code Verification Increasing Design Confidence Model and Code Verification 2017 The MathWorks, Inc. 1 The Cost of Failure Ariane 5 $7,500,000,000 Rocket & payload lost 2 The Cost of Failure USS Yorktown 0 Knots Top speed

More information

Leveraging Formal Methods Based Software Verification to Prove Code Quality & Achieve MISRA compliance

Leveraging Formal Methods Based Software Verification to Prove Code Quality & Achieve MISRA compliance Leveraging Formal Methods Based Software Verification to Prove Code Quality & Achieve MISRA compliance Prashant Mathapati Senior Application Engineer MATLAB EXPO 2013 The MathWorks, Inc. 1 The problem

More information

Model-Based Design for High Integrity Software Development Mike Anthony Senior Application Engineer The MathWorks, Inc.

Model-Based Design for High Integrity Software Development Mike Anthony Senior Application Engineer The MathWorks, Inc. Model-Based Design for High Integrity Software Development Mike Anthony Senior Application Engineer The MathWorks, Inc. Tucson, AZ USA 2009 The MathWorks, Inc. Model-Based Design for High Integrity Software

More information

Verification and Validation of High-Integrity Systems

Verification and Validation of High-Integrity Systems Verification and Validation of High-Integrity Systems Chethan CU, MathWorks Vaishnavi HR, MathWorks 2015 The MathWorks, Inc. 1 Growing Complexity of Embedded Systems Emergency Braking Body Control Module

More information

Automating Best Practices to Improve Design Quality

Automating Best Practices to Improve Design Quality Automating Best Practices to Improve Design Quality 임베디드 SW 개발에서의품질확보방안 이제훈차장 2015 The MathWorks, Inc. 1 Key Takeaways Author, manage requirements in Simulink Early verification to find defects sooner

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 신호처리응용을위한 Model Based Design Workflow 이웅재부장 2015 The MathWorks, Inc. 2 CASE: Software in Signal Processing Application (Medical) Medical devices are increasingly driven by complex

More information

Jay Abraham 1 MathWorks, Natick, MA, 01760

Jay Abraham 1 MathWorks, Natick, MA, 01760 Jay Abraham 1 MathWorks, Natick, MA, 01760 Stringent performance requirements and shorter development cycles are driving the use of modeling and simulation. Model-Based Design core of this development

More information

Verification and Validation of Models for Embedded Software Development Prashant Hegde MathWorks India Pvt. Ltd.

Verification and Validation of Models for Embedded Software Development Prashant Hegde MathWorks India Pvt. Ltd. Verification and Validation of Models for Embedded Software Development Prashant Hegde MathWorks India Pvt. Ltd. 2015 The MathWorks, Inc. 1 Designing complex systems Is there something I don t know about

More information

Implementation and Verification Daniel MARTINS Application Engineer MathWorks

Implementation and Verification Daniel MARTINS Application Engineer MathWorks Implementation and Verification Daniel MARTINS Application Engineer MathWorks Daniel.Martins@mathworks.fr 2014 The MathWorks, Inc. 1 Agenda Benefits of Model-Based Design Verification at Model level Code

More information

Automating Best Practices to Improve Design Quality

Automating Best Practices to Improve Design Quality Automating Best Practices to Improve Design Quality Adam Whitmill, Senior Application Engineer 2015 The MathWorks, Inc. 1 Growing Complexity of Embedded Systems Emergency Braking Body Control Module Voice

More information

Automatización de Métodos y Procesos para Mejorar la Calidad del Diseño

Automatización de Métodos y Procesos para Mejorar la Calidad del Diseño Automatización de Métodos y Procesos para Mejorar la Calidad del Diseño Luis López 2015 The MathWorks, Inc. 1 Growing Complexity of Embedded Systems Emergency Braking Body Control Module Voice Recognition

More information

Generating Industry Standards Production C Code Using Embedded Coder

Generating Industry Standards Production C Code Using Embedded Coder Generating Industry Standards Production C Code Using Embedded Coder Rajat Arora Durvesh Kulkarni 2015 The MathWorks, Inc. 1 Lines of Code (LOC) is exploding 2011 1M 2018 100M We ve got 100 million lines

More information

Developing AUTOSAR Compliant Embedded Software Senior Application Engineer Sang-Ho Yoon

Developing AUTOSAR Compliant Embedded Software Senior Application Engineer Sang-Ho Yoon Developing AUTOSAR Compliant Embedded Software Senior Application Engineer Sang-Ho Yoon 2015 The MathWorks, Inc. 1 Agenda AUTOSAR Compliant Code Generation AUTOSAR Workflows Starting from Software Component

More information

Verification, Validation, and Test with Model-Based Design

Verification, Validation, and Test with Model-Based Design 2008-01-2709 Verification, Validation, and Test with Model-Based Design Copyright 2008 The MathWorks, Inc Tom Erkkinen The MathWorks, Inc. Mirko Conrad The MathWorks, Inc. ABSTRACT Model-Based Design with

More information

WHITE PAPER. 10 Reasons to Use Static Analysis for Embedded Software Development

WHITE PAPER. 10 Reasons to Use Static Analysis for Embedded Software Development WHITE PAPER 10 Reasons to Use Static Analysis for Embedded Software Development Overview Software is in everything. And in many embedded systems like flight control, medical devices, and powertrains, quality

More information

What s New with the MATLAB and Simulink Product Families. Marta Wilczkowiak & Coorous Mohtadi Application Engineering Group

What s New with the MATLAB and Simulink Product Families. Marta Wilczkowiak & Coorous Mohtadi Application Engineering Group What s New with the MATLAB and Simulink Product Families Marta Wilczkowiak & Coorous Mohtadi Application Engineering Group 1 Area MATLAB Math, Statistics, and Optimization Application Deployment Parallel

More information

Using Model-Based Design in conformance with safety standards

Using Model-Based Design in conformance with safety standards Using Model-Based Design in conformance with safety standards MATLAB EXPO 2014 Kristian Lindqvist Senior Engineer 2014 The MathWorks, Inc. 1 High-Integrity Applications Software-based systems that are

More information

Simulink 를이용한 효율적인레거시코드 검증방안

Simulink 를이용한 효율적인레거시코드 검증방안 Simulink 를이용한 효율적인레거시코드 검증방안 류성연 2015 The MathWorks, Inc. 1 Agenda Overview to V&V in Model-Based Design Legacy code integration using Simulink Workflow for legacy code verification 2 Model-Based Design

More information

Simulink 모델과 C/C++ 코드에대한매스웍스의정형검증툴소개 The MathWorks, Inc. 1

Simulink 모델과 C/C++ 코드에대한매스웍스의정형검증툴소개 The MathWorks, Inc. 1 Simulink 모델과 C/C++ 코드에대한매스웍스의정형검증툴소개 2012 The MathWorks, Inc. 1 Agenda Formal Verification Key concept Applications Verification of designs against (functional) requirements Design error detection Test

More information

Production Code Generation and Verification for Industry Standards Sang-Ho Yoon Senior Application Engineer

Production Code Generation and Verification for Industry Standards Sang-Ho Yoon Senior Application Engineer Production Code Generation and Verification for Industry Standards Sang-Ho Yoon Senior Application Engineer 2012 The MathWorks, Inc. 1 High-Integrity Applications Often Require Certification Software-based

More information

Verification, Validation and Test in Model Based Design Manohar Reddy

Verification, Validation and Test in Model Based Design Manohar Reddy Verification, Validation and Test in Model Based Design Manohar Reddy 2015 The MathWorks, Inc. 1 Continuous Test & Verification Productivity + Model & Code Quality System & Component Dynamic testing &

More information

Model-Based Design for Safety-Critical and Mission-Critical Applications Bill Potter Technical Marketing April 17, 2008

Model-Based Design for Safety-Critical and Mission-Critical Applications Bill Potter Technical Marketing April 17, 2008 Model-Based Design for Safety-Critical and Mission-Critical Applications Bill Potter Technical Marketing April 17, 2008 2008 The MathWorks, Inc. Safety-Critical Model-Based Design Workflow Validate Trace:

More information

DRYING CONTROL LOGIC DEVELOPMENT USING MODEL BASED DESIGN

DRYING CONTROL LOGIC DEVELOPMENT USING MODEL BASED DESIGN DRYING CONTROL LOGIC DEVELOPMENT USING MODEL BASED DESIGN Problem Definition To generate and deploy automatic code for Drying Control Logics compatible with new SW architecture in 6 months using MBD, a

More information

Model-Based Design for Safety Critical Automotive Applications

Model-Based Design for Safety Critical Automotive Applications Model-Based Design for Safety Critical Automotive Applications Mirko Conrad Senior Team Lead Simulink Certification and Standards 2008 The MathWorks, Inc. Model-Based Design for Safety-Critical Applications

More information

Team-Based Collaboration in Simulink Chris Fillyaw Application Engineer Detroit, MI

Team-Based Collaboration in Simulink Chris Fillyaw Application Engineer Detroit, MI Team-Based Collaboration in Simulink Chris Fillyaw Application Engineer Detroit, MI 2012 The MathWorks, Inc. Development of a complex system Agenda Team-based workflow considerations Reproducing the design

More information

Simulink as Your Enterprise Simulation Platform

Simulink as Your Enterprise Simulation Platform Simulink as Your Enterprise Simulation Platform Stephan van Beek Manager, Applications Engineering Group 2015 The MathWorks, Inc. 1 Why simulation? 2 Hyperloop 3 TU Delft Wins Elon Musk Hyperloop Competition

More information

Standardkonforme Absicherung mit Model-Based Design

Standardkonforme Absicherung mit Model-Based Design Standardkonforme Absicherung mit Model-Based Design MATLAB EXPO 2014 Dr. Marc Segelken Principal Application Engineer 2014 The MathWorks, Inc. 1 Safety Standards for Embedded Systems IEC 61508 ISO 26262

More information

Guidelines for deployment of MathWorks R2010a toolset within a DO-178B-compliant process

Guidelines for deployment of MathWorks R2010a toolset within a DO-178B-compliant process Guidelines for deployment of MathWorks R2010a toolset within a DO-178B-compliant process UK MathWorks Aerospace & Defence Industry Working Group Guidelines for deployment of MathWorks R2010a toolset within

More information

By V-cubed Solutions, Inc. Page1. All rights reserved by V-cubed Solutions, Inc.

By V-cubed Solutions, Inc.   Page1. All rights reserved by V-cubed Solutions, Inc. By V-cubed Solutions, Inc. Page1 Purpose of Document This document will demonstrate the efficacy of CODESCROLL CODE INSPECTOR, CONTROLLER TESTER, and QUALITYSCROLL COVER, which has been developed by V-cubed

More information

정형기법을활용한 AUTOSAR SWC 의구현확인및정적분석

정형기법을활용한 AUTOSAR SWC 의구현확인및정적분석 정형기법을활용한 AUTOSAR SWC 의구현확인및정적분석 Develop high quality embedded software 이영준 Principal Application Engineer 2015 The MathWorks, Inc. 1 Agendas Unit-proving of AUTOSAR Component and Runtime error Secure Coding

More information

MATLAB/Simulink in der Mechatronik So einfach geht s!

MATLAB/Simulink in der Mechatronik So einfach geht s! MATLAB/Simulink in der Mechatronik So einfach geht s! Executable s with Simulation Models Continuous Test and Verification Automatic Generation Tobias Kuschmider Applikationsingenieur 2014 The MathWorks,

More information

SOFTWARE QUALITY OBJECTIVES FOR SOURCE CODE

SOFTWARE QUALITY OBJECTIVES FOR SOURCE CODE Software Quality Objectives Page 1/21 Version 2.0 SOFTWARE QUALITY OBJECTIVES FOR SOURCE CODE The MathWorks 2 rue de Paris 92196 Meudon France 01 41 14 87 00 http://www.mathworks.fr Revision table Index

More information

Architecture-driven development of Climate Control Software LMS Imagine.Lab Embedded Software Designer Siemens DF PL

Architecture-driven development of Climate Control Software LMS Imagine.Lab Embedded Software Designer Siemens DF PL Architecture-driven development of Climate Control Software LMS Imagine.Lab Embedded Software Designer Siemens DF PL Restricted Siemens AG 2017 Realize innovation. Content 1 Overview 3 2 LMS Imagine.Lab

More information

Testing, Validating, and Verifying with Model-Based Design Phil Rottier

Testing, Validating, and Verifying with Model-Based Design Phil Rottier Testing, Validating, and Verifying with Model-Based Design Phil Rottier 2015 The MathWorks, Inc. 1 Summary MATLAB, Simulink and Stateflow help individuals and teams rapidly develop complex designs These

More information

Workflow for Control System Design and Implementation

Workflow for Control System Design and Implementation Workflow for Control System Design and Implementation - Dhirendra Singh, Application Engineer - Shobhit Shanker, Application Engineer 2012 The MathWorks, Inc. 1 Agenda Industry Trends and Challenges Design

More information

A Model-Based Reference Workflow for the Development of Safety-Related Software

A Model-Based Reference Workflow for the Development of Safety-Related Software A Model-Based Reference Workflow for the Development of Safety-Related Software 2010-01-2338 Published 10/19/2010 Michael Beine dspace GmbH Dirk Fleischer dspace Inc. Copyright 2010 SAE International ABSTRACT

More information

Leveraging Formal Methods for Verifying Models and Embedded Code Prashant Mathapati Application Engineering Group

Leveraging Formal Methods for Verifying Models and Embedded Code Prashant Mathapati Application Engineering Group Leveraging Formal Methods for Verifying Models and Embedded Code Prashant Mathapati Application Engineering Group 2014 The MathWorks, Inc. 1 The Cost of Failure News reports: Recall Due to ECU software

More information

Automatic Code Generation Technology Adoption Lessons Learned from Commercial Vehicle Case Studies

Automatic Code Generation Technology Adoption Lessons Learned from Commercial Vehicle Case Studies 08AE-22 Automatic Code Generation Technology Adoption Lessons Learned from Commercial Vehicle Case Studies Copyright 2007 The MathWorks, Inc Tom Erkkinen The MathWorks, Inc. Scott Breiner John Deere ABSTRACT

More information

Ein Modell - viele Zielsysteme

Ein Modell - viele Zielsysteme Ein Modell - viele Zielsysteme Automatische Codegenerierung aus MATLAB und Simulink Dr.-Ing. Daniel Weida 2015 The MathWorks, Inc. 1 Industry trends Code generation is expanding rapidly C C++ VHDL Verilog

More information

Utilisation des Méthodes Formelles Sur le code et sur les modèles

Utilisation des Méthodes Formelles Sur le code et sur les modèles Utilisation des Méthodes Formelles Sur le code et sur les modèles Patrick Munier Co-fondateur de PolySpace Technologies Polyspace Development Manager, MathWorks Patrick.Munier@mathworks.fr Forum Méthodes

More information

Applications of Program analysis in Model-Based Design

Applications of Program analysis in Model-Based Design Applications of Program analysis in Model-Based Design Prahlad Sampath (Prahlad.Sampath@mathworks.com) 2018 by The MathWorks, Inc., MATLAB, Simulink, Stateflow, are registered trademarks of The MathWorks,

More information

Simulation-based Test Management and Automation Sang-Ho Yoon Senior Application Engineer

Simulation-based Test Management and Automation Sang-Ho Yoon Senior Application Engineer 1 Simulation-based Test Management and Automation Sang-Ho Yoon Senior Application Engineer 2016 The MathWorks, Inc. 2 Today s Agenda Verification Activities in MBD Simulation-Based Test Manage and Automate

More information

Volvo Car Group Jonn Lantz Agile by Models

Volvo Car Group Jonn Lantz Agile by Models Volvo Car Group Jonn Lantz Agile by Models Challenge Scaling agile model driven development of AUTOSAR embedded software. Lift the abstraction level of in-house development. Create reliable, automated

More information

Simulink for AUTOSAR: Best Practices

Simulink for AUTOSAR: Best Practices Simulink for AUTOSAR: Best Practices 李智慧高级技术咨询顾问 2015 The MathWorks, Inc. 1 What is AUTOSAR? AUTomotive Open System ARchitecture Objective: Establish an open standard for automotive E/E architecture Partnership

More information

StackAnalyzer Proving the Absence of Stack Overflows

StackAnalyzer Proving the Absence of Stack Overflows StackAnalyzer Proving the Absence of Stack Overflows AbsInt GmbH 2012 2 Functional Safety Demonstration of functional correctness Well-defined criteria Automated and/or model-based testing Formal techniques:

More information

Formal Verification of Flight Control Applications along a Model- Based Development Process A Case Study

Formal Verification of Flight Control Applications along a Model- Based Development Process A Case Study Formal Verification of Flight Control Applications along a Model- ased Development Process A Case Study München, 5 th of October, 2016 Hochstrasser Markus, Hornauer Markus, Holzapfel Florian Examples provided

More information

Development and Deployment of ECU based Control Systems through MBD. Imperative role of Model based design in System Engineering

Development and Deployment of ECU based Control Systems through MBD. Imperative role of Model based design in System Engineering Development and Deployment of ECU based Control Systems through MBD Imperative role of Model based design in System Engineering Outline Scope of Work Problem Definition Solution System Engineering Model

More information

GAIO. Solution. Corporate Profile / Product Catalog. Contact Information

GAIO. Solution. Corporate Profile / Product Catalog. Contact Information GAIO Solution Corporate Profile / Product Catalog Contact Information GAIO TECHNOLOGY Headquarters Tennouzu First Tower 25F 2-2-4 Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-0002 Japan Tel: +81-3-4455-4767

More information

Team-Based Collaboration in Simulink

Team-Based Collaboration in Simulink Team-Based Collaboration in Simulink Sonia Bridge 2015 The MathWorks, Inc. 1 Create tools that make it easy for teams to manage the full lifecycle of their Model-Based Design projects Collaborate Integrate

More information

Introduction to Control Systems Design

Introduction to Control Systems Design Experiment One Introduction to Control Systems Design Control Systems Laboratory Dr. Zaer Abo Hammour Dr. Zaer Abo Hammour Control Systems Laboratory 1.1 Control System Design The design of control systems

More information

Formal Verification of Models and Code Prashant Mathapati Application Engineer Polyspace & Model Verification

Formal Verification of Models and Code Prashant Mathapati Application Engineer Polyspace & Model Verification Formal Verification of Models and Code Prashant Mathapati Application Engineer Polyspace & Model Verification 2011 The MathWorks, Inc. 1 Agenda Examples of Software Defect Failures Gaps in Simulation Based

More information

SCADE. SCADE Suite Tailored for Critical Applications EMBEDDED SOFTWARE

SCADE. SCADE Suite Tailored for Critical Applications EMBEDDED SOFTWARE EMBEDDED SOFTWARE SCADE SCADE Suite 19.2 SCADE Suite is part of the ANSYS Embedded Software product line, which empowers users with a Model-Based Development Environment for critical embedded software.

More information

What s New in MATLAB & Simulink. Prashant Rao Technical Manager MathWorks India

What s New in MATLAB & Simulink. Prashant Rao Technical Manager MathWorks India What s New in MATLAB & Simulink Prashant Rao Technical Manager MathWorks India Agenda Flashback Key Areas of Focus from 2013 Key Areas of Focus & What s New in 2013b/2014a MATLAB product family Simulink

More information

Introducing Simulink R2012b for Signal Processing & Communications Graham Reith Senior Team Leader, UK Application Engineering

Introducing Simulink R2012b for Signal Processing & Communications Graham Reith Senior Team Leader, UK Application Engineering Introducing Simulink R2012b for Signal Processing & Communications Graham Reith Senior Team Leader, UK Application Engineering 2012 The MathWorks, Inc. 1 Simulink R2012b the most significant upgrade to

More information

Optimize DSP Designs and Code using Fixed-Point Designer

Optimize DSP Designs and Code using Fixed-Point Designer Optimize DSP Designs and Code using Fixed-Point Designer MathWorks Korea 이웅재부장 Senior Application Engineer 2013 The MathWorks, Inc. 1 Agenda Fixed-point concepts Introducing Fixed-Point Designer Overview

More information

Introducing Simulink Release 2012b for Control System Development Mark Walker MathWorks

Introducing Simulink Release 2012b for Control System Development Mark Walker MathWorks Introducing Simulink Release 2012b for Control System Development Mark Walker MathWorks 2012 The MathWorks, Inc. 1 Simulink R2012b the most significant upgrade to Simulink ever Who does Simulink R2012b

More information

Hardware and Software Co-Design for Motor Control Applications

Hardware and Software Co-Design for Motor Control Applications Hardware and Software Co-Design for Motor Control Applications GianCarlo Pacitti Senior Application Engineer, MathWorks 2015 The MathWorks, Inc. 1 Agenda Why use Hardware and Software for motor control?

More information

Production Code Generation Introduction and New Technologies

Production Code Generation Introduction and New Technologies Production Code Generation Introduction and New Technologies Tom Erkkinen Embedded Applications Manager The MathWorks, Inc. 2007 The MathWorks, Inc. Agenda Historical Review Code Generation 1999 (Release

More information

Better than Hand Generating Highly Optimized Code using Simulink and Embedded Coder

Better than Hand Generating Highly Optimized Code using Simulink and Embedded Coder Better than Hand Generating Highly Optimized Code using Simulink and Embedded Coder Lars Krause Application Engineering 2015 The MathWorks, Inc. 1 Challenges Limited time and resources are common constraints

More information

Simulink to Embedded Hardware Paul Peeling MathWorks

Simulink to Embedded Hardware Paul Peeling MathWorks Simulink to Embedded Hardware Paul Peeling MathWorks 2014 The MathWorks, Inc. 1 Model-Based Design for Hardware Stakeholder Needs Requirements Manage Requirements Traceability Complete Integration and

More information

Designing and Analysing Power Electronics Systems Using Simscape and SimPowerSystems

Designing and Analysing Power Electronics Systems Using Simscape and SimPowerSystems Designing and Analysing Power Electronics Systems Using Simscape and SimPowerSystems Gernot Schraberger Industry Manager, Europe Industrial Automation & Machinery, Energy Production MathWorks 2012 The

More information

AVS: A Test Suite for Automatically Generated Code

AVS: A Test Suite for Automatically Generated Code AVS: A Test Suite for Automatically Generated Code Ekkehard Pofahl Ford Motor Company Torsten Sauer Continental Automotive Systems Oliver Busa TUV Rheinland Industrie Service GmbH Page 1 of 22 AVS: Automotive

More information

Reuse MATLAB Functions and Simulink Models in UVM Environments with Automatic SystemVerilog DPI Component Generation

Reuse MATLAB Functions and Simulink Models in UVM Environments with Automatic SystemVerilog DPI Component Generation Reuse MATLAB Functions and Simulink Models in UVM Environments with Automatic SystemVerilog DPI Component Generation by Tao Jia, HDL Verifier Development Lead, and Jack Erickson, HDL Product Marketing

More information

Making the Most of your MATLAB Models to Improve Verification

Making the Most of your MATLAB Models to Improve Verification Making the Most of your MATLAB Models to Improve Verification Verification Futures 2016 Graham Reith Industry Manager: Communications, Electronics & Semiconductors Graham.Reith@mathworks.co.uk 2015 The

More information

Hardware Implementation and Verification by Model-Based Design Workflow - Communication Models to FPGA-based Radio

Hardware Implementation and Verification by Model-Based Design Workflow - Communication Models to FPGA-based Radio Hardware Implementation and Verification by -Based Design Workflow - Communication s to FPGA-based Radio Katsuhisa Shibata Industry Marketing MathWorks Japan 2015 The MathWorks, Inc. 1 Agenda Challenges

More information

What s New in MATLAB and Simulink Prashant Rao Technical Manager MathWorks India

What s New in MATLAB and Simulink Prashant Rao Technical Manager MathWorks India What s New in MATLAB and Simulink Prashant Rao Technical Manager MathWorks India 2013 The MathWorks, Inc. 1 MathWorks Product Overview 2 Core MathWorks Products The leading environment for technical computing

More information

Verifying source code

Verifying source code Software and Systems Verification (VIMIMA01) Verifying source code Akos Hajdu, Istvan Majzik, Zoltan Micskei Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest

More information

Entwicklung zuverlässiger Software-Systeme, Stuttgart 30.Juni 2011

Entwicklung zuverlässiger Software-Systeme, Stuttgart 30.Juni 2011 Entwicklung zuverlässiger Software-Systeme, Stuttgart 30.Juni 2011 Tools and Methods for Validation and Verification as requested by ISO26262 1 Introduction ISO26262 ISO 26262 is the adaptation of IEC

More information

Experiences with AUTOSAR compliant Autocode generation using TargetLink

Experiences with AUTOSAR compliant Autocode generation using TargetLink dspace User Conference 2010 India Sept 24 th 10 Experiences with AUTOSAR compliant Autocode generation using TargetLink Naveen Alwandi, Manjunath BC Delphi Electronics & Safety ABSTRACT Increased safety,

More information

Implementing MATLAB Algorithms in FPGAs and ASICs By Alexander Schreiber Senior Application Engineer MathWorks

Implementing MATLAB Algorithms in FPGAs and ASICs By Alexander Schreiber Senior Application Engineer MathWorks Implementing MATLAB Algorithms in FPGAs and ASICs By Alexander Schreiber Senior Application Engineer MathWorks 2014 The MathWorks, Inc. 1 Traditional Implementation Workflow: Challenges Algorithm Development

More information

Integrated Workflow to Implement Embedded Software and FPGA Designs on the Xilinx Zynq Platform Puneet Kumar Senior Team Lead - SPC

Integrated Workflow to Implement Embedded Software and FPGA Designs on the Xilinx Zynq Platform Puneet Kumar Senior Team Lead - SPC Integrated Workflow to Implement Embedded Software and FPGA Designs on the Xilinx Zynq Platform Puneet Kumar Senior Team Lead - SPC 2012 The MathWorks, Inc. 1 Agenda Integrated Hardware / Software Top

More information

Hardware Software Co-Design and Testing Using Simulink Real-Time Paul Berry and Brian Steenson

Hardware Software Co-Design and Testing Using Simulink Real-Time Paul Berry and Brian Steenson Hardware Software Co-Design and Testing Using Simulink Real-Time Paul Berry and Brian Steenson www.thalesgroup.com Overview Process Development Introduction to THALES Overview of design process Development

More information

Testing and Validation of Simulink Models with Reactis

Testing and Validation of Simulink Models with Reactis Testing and Validation of Simulink Models with Reactis Build better embedded software faster. Generate tests from Simulink models. Detect runtime errors. Execute and debug Simulink models. Track coverage.

More information

Guido Sandmann MathWorks GmbH. Michael Seibt Mentor Graphics GmbH ABSTRACT INTRODUCTION - WORKFLOW OVERVIEW

Guido Sandmann MathWorks GmbH. Michael Seibt Mentor Graphics GmbH ABSTRACT INTRODUCTION - WORKFLOW OVERVIEW 2012-01-0962 AUTOSAR-Compliant Development Workflows: From Architecture to Implementation Tool Interoperability for Round-Trip Engineering and Verification & Validation Copyright 2012 The MathWorks, Inc.

More information

Effective Verification Strategies for Distributed Body Control Applications based on Plant Modeling and Test Case Reuse

Effective Verification Strategies for Distributed Body Control Applications based on Plant Modeling and Test Case Reuse Effective Verification Strategies for Distributed Body Control Applications based on Plant Modeling and Test Case Reuse Jinming Yang, Jason Bauman Lear Corporation April 27, 2010 Introduction Challenges

More information

automatisiertensoftwaretests

automatisiertensoftwaretests FunktionaleSicherheitmit automatisiertensoftwaretests SOFTWARE CONSIDERATIONS IN AIRBORNE SYSTEMS AND EQUIPMENT CERTIFICAION RTCA DO-178B RTCA Dynamisch& Statisch 0 Agenda Übersicht über Sicherheitsstandards

More information

Using Cost Effective Distributed HIL for Rapid Prototyping

Using Cost Effective Distributed HIL for Rapid Prototyping Using Cost Effective Distributed HIL for Rapid Prototyping Renesas Electronics America Inc. Enabling Smart Solutions Embedded Control Systems need Hardware-in-Loop Simulation 2 Innovation using HIL Simulation

More information

Model to Code, Made Simple and Easy Sebastien Dupertuis Application Engineer Applications Engineering Group MathWorks Switzerland June 11, 2015

Model to Code, Made Simple and Easy Sebastien Dupertuis Application Engineer Applications Engineering Group MathWorks Switzerland June 11, 2015 Model to Code, Made Simple and Easy Sebastien Dupertuis Application Engineer Applications Engineering Group MathWorks Switzerland June 11, 2015 2015 The MathWorks, Inc. 1 Challenges to bring an idea into

More information

Simulink Verification and Validation

Simulink Verification and Validation Simulink Verification and Validation Mark Walker MathWorks 7 th October 2014 2014 The MathWorks, Inc. 1 V Diagrams 3 When to Stop? A perfectly tested design would never be released Time spent on V&V is

More information

Extending Model-Based Design for HW/SW Design and Verification in MPSoCs Jim Tung MathWorks Fellow

Extending Model-Based Design for HW/SW Design and Verification in MPSoCs Jim Tung MathWorks Fellow Extending Model-Based Design for HW/SW Design and Verification in MPSoCs Jim Tung MathWorks Fellow jim@mathworks.com 2014 The MathWorks, Inc. 1 Model-Based Design: From Concept to Production RESEARCH DESIGN

More information

Automatic Qualification of Abstract Interpretation-based Static Analysis Tools. Christian Ferdinand, Daniel Kästner AbsInt GmbH 2013

Automatic Qualification of Abstract Interpretation-based Static Analysis Tools. Christian Ferdinand, Daniel Kästner AbsInt GmbH 2013 Automatic Qualification of Abstract Interpretation-based Static Analysis Tools Christian Ferdinand, Daniel Kästner AbsInt GmbH 2013 2 Functional Safety Demonstration of functional correctness Well-defined

More information

Automated Requirements-Based Testing

Automated Requirements-Based Testing Automated Requirements-Based Testing Tuesday, October 7 th 2008 2008 The MathWorks, Inc. Dr. Marc Segelken Senior Application Engineer Overview Purposes of Testing Test Case Generation Structural Testing

More information

How Real-Time Testing Improves the Design of a PMSM Controller

How Real-Time Testing Improves the Design of a PMSM Controller How Real-Time Testing Improves the Design of a PMSM Controller Prasanna Deshpande Control Design & Automation Application Engineer MathWorks 2015 The MathWorks, Inc. 1 Problem Statement: Design speed control

More information

[Sub Track 1-3] FPGA/ASIC 을타겟으로한알고리즘의효율적인생성방법및신기능소개

[Sub Track 1-3] FPGA/ASIC 을타겟으로한알고리즘의효율적인생성방법및신기능소개 [Sub Track 1-3] FPGA/ASIC 을타겟으로한알고리즘의효율적인생성방법및신기능소개 정승혁과장 Senior Application Engineer MathWorks Korea 2015 The MathWorks, Inc. 1 Outline When FPGA, ASIC, or System-on-Chip (SoC) hardware is needed Hardware

More information

System Requirements & Platform Availability by Product for R2016b

System Requirements & Platform Availability by Product for R2016b & Platform Availability by Product for R2016b View general system requirements. Product Aerospace Blockset Requires Aerospace Control recommended Aerospace Antenna RF recommended Phased Array recommended

More information

Accelerating FPGA/ASIC Design and Verification

Accelerating FPGA/ASIC Design and Verification Accelerating FPGA/ASIC Design and Verification Tabrez Khan Senior Application Engineer Vidya Viswanathan Application Engineer 2015 The MathWorks, Inc. 1 Agenda Challeges with Traditional Implementation

More information

Design and Verify Embedded Signal Processing Systems Using MATLAB and Simulink

Design and Verify Embedded Signal Processing Systems Using MATLAB and Simulink Design and Verify Embedded Signal Processing Systems Using MATLAB and Simulink Giorgia Zucchelli, Application Engineer, MathWorks 10 January 2013, Technical University Eindhoven 2013 The MathWorks, Inc.

More information

Coding Standards in FACE Conformance. John Thomas, Chris Edwards, and Shan Bhattacharya

Coding Standards in FACE Conformance. John Thomas, Chris Edwards, and Shan Bhattacharya Coding Standards in FACE Conformance John Thomas, Chris Edwards, and Shan Bhattacharya LDRA Overview Provider of Software Quality, Compliance Management & Testing Solutions Established 1975 ISO 9001 certified

More information

Addressing Fixed Point Design Challenges

Addressing Fixed Point Design Challenges Addressing Fixed Point Design Challenges Manohar Reddy M Application Engineer MathWorks India Manohar.Reddy@mathworks.in 2015 The MathWorks, Inc. 1 Fixed Point Design Challenges Consideration Floating

More information

Software Verification and Validation

Software Verification and Validation Software Verification and Validation VIMIMA11 Design and integration of embedded systems Balázs Scherer BME-MIT 2017 1. Software failures Error: Human operation that leads to an undersigned behavior. Fault:

More information

Coding Standards in FACE Conformance. John Thomas, Chris Edwards, and Shan Bhattacharya

Coding Standards in FACE Conformance. John Thomas, Chris Edwards, and Shan Bhattacharya Coding Standards in FACE Conformance John Thomas, Chris Edwards, and Shan Bhattacharya LDRA Overview Provider of Software Quality, Compliance Management & Testing Solutions Established 1975 ISO 9001 certified

More information

Reducing the cost of FPGA/ASIC Verification with MATLAB and Simulink

Reducing the cost of FPGA/ASIC Verification with MATLAB and Simulink Reducing the cost of FPGA/ASIC Verification with MATLAB and Simulink Graham Reith Industry Manager Communications, Electronics and Semiconductors MathWorks Graham.Reith@mathworks.co.uk 2015 The MathWorks,

More information

IDE for medical device software development. Hyun-Do Lee, Field Application Engineer

IDE for medical device software development. Hyun-Do Lee, Field Application Engineer IDE for medical device software development Hyun-Do Lee, Field Application Engineer Agenda SW Validation Functional safety certified tool IAR Embedded Workbench Code Analysis tools SW Validation Certifications

More information

Verification and Validation. Assuring that a software system meets a user s needs. Verification vs Validation. The V & V Process

Verification and Validation. Assuring that a software system meets a user s needs. Verification vs Validation. The V & V Process Verification and Validation Assuring that a software system meets a user s needs Ian Sommerville 1995/2000 (Modified by Spiros Mancoridis 1999) Software Engineering, 6th edition. Chapters 19,20 Slide 1

More information

Don t Be the Developer Whose Rocket Crashes on Lift off LDRA Ltd

Don t Be the Developer Whose Rocket Crashes on Lift off LDRA Ltd Don t Be the Developer Whose Rocket Crashes on Lift off 2015 LDRA Ltd Cost of Software Defects Consider the European Space Agency s Ariane 5 flight 501 on Tuesday, June 4 1996 Due to an error in the software

More information

Using HDL Coder for Complex Algorithm Deployment Steve Hamilton, James Hui & Ian Brown

Using HDL Coder for Complex Algorithm Deployment Steve Hamilton, James Hui & Ian Brown Using HDL Coder for Complex Algorithm Deployment Steve Hamilton, James Hui & Ian Brown sensor interfaces external memory controller 2 / Context Image and signal processing in firmware Is complex! Requires

More information