Objectives. Saving Interrupt Vectors. Writing a Custom Interrupt Handler. Examples of use of System functions for Input-Output and Interrupts

Size: px
Start display at page:

Download "Objectives. Saving Interrupt Vectors. Writing a Custom Interrupt Handler. Examples of use of System functions for Input-Output and Interrupts"

Transcription

1 ICT106 Fundamentals of Computer Systems Week 11 Practical Examples of use of System functions for Input-Output and Interrupts Objectives To illustrate how to write interrupt service routine (ISR) for Intel microprocessors through examples: Ctrl-Break Handler Example (Ch 16.4) Use of User Timer Interrupt (INT 1Ch) Writing a Custom Interrupt Handler Interrupt vectors stored in an interrupt vector table are replaceable; E.g. one can manipulate an input keystroke before displaying on the monitor, by replacing the address of INT 9 It is IMPORTANT to save the original interrupt vector prior to any vector replacement Saving Interrupt Vectors.data int9save LABEL WORD DWORD? ; store old INT 9 address here.code mov ah, 35h ; get interrupt vector mov al, 9h ; for INT 9 ; call MS-DOS mov int9save,bx ; store the offset mov int9save+2, ES ; store the segment 1

2 Restoring Interrupt Vectors mov ax, int23save+2 ; get old segment and ; store in ds mov dx, int23save ; get old offset mov ah, 25h ; set interrupt vector mov al, 23h ; restore old interrupt address Example: Ctrl-Break Handler The program consists of two parts: The main function is to echo every input key till a ESC key is pressed; The handler displays a string BREAK when Ctrl-Break (Ctrl- C) is pressed. INTERRUPT DISPLAY BREAK END NO START DISPLAY GREETING INSTALL HANDLER WAIT FOR A KEY ESC KEY? YES END Ctrl-Break Handler Code TITLE Control-Break Handler ; This program installs its own Ctrl-Break hander and ; prevents the user from using Ctrl-Break (or Ctrl-C) ; to halt the program. The program inputs and echoes ; keystrokes until the Esc key is pressed..model SMALL ; each of data and code segment <= 64K.STACK 100h ; reserve 256 bytes of stack space.data breakmsg BYTE "BREAK", 0dh, 0ah, '$' msg BYTE "Ctrl-Break demonstration." BYTE 0dh, 0ah BYTE "This program disables Ctrl-Break (Ctrl-C). Press any" BYTE 0dh, 0ah BYTE "keys to continue, or press ESC to end the program." BYTE 0dh, 0ah, '$' int23save LABEL WORD DWORD?.code main PROC mov ; store old INT 23 address here mov dx,offset msg ; display greeting message call WriteString 2

3 mov ax,3523h ; get INT 23 vector ; AH=35, AL=23 mov word ptr int23save,bx mov word ptr int23save+2,es ; save INT 23 vector install_handler: push ds ; save DS mov ax,@code ; initialise DS to code segment mov ds,ax mov ah,25h ; set interrupt vector mov al,23h ; for interrupt 23h L1: mov ah, 1 ; wait for a key, echo it cmp al,1bh ; ESC pressed? jnz L1 mov ax, word ptr int23save+2 ; get old segment and ; store in ds mov dx, word ptr int23save ; get old offset mov ax, 2523h ; restore old interrupt address mov dx,offset break_handler pop ds ; restore DS mov ax, 4c00h main ENDP ; terminate program WriteString Procedure ; The following procedure displays message string ; to the console using INT 21 Function 9. ; Receives: DS:DX = address of string WriteString PROC push ax ; save ax push dx ; save dx mov ah, 9 ; call INT 21 Function 9 ; call MS-DOS pop dx ; restore dx pop ax ; restore ax ret ; return from a procedure WriteString ENDP Interrupt Service Routine ; The following procedure executes when Ctrl-Break is ; pressed. All registers must be preserved. break_handler PROC push ax ; save ax push dx ; save dx mov dx,offset breakmsg ; get offset of breakmsg call WriteString ; variable then call WriteString ; procedure pop dx ; restore dx pop ax ; restore ax iret ; return from interrupt break_handler ENDP END main 3

4 Creating a Timer A timer can be created by using polling or interrupt. Polling approach is based on a simple assumption that it takes roughly the same time to execute the same instruction, e.g. Provide that it takes 5 nsec to execute the instruction inc ax, then one can generate 5msec by looping the same instruction 1000 times Disadvantages of Polling Approach However, such approach has a serious accuracy problem because its accuracy is easily influent by other factors, e.g. interrupts Other issues include Waste of CPU resource Lack of multitasking support User Timer Interrupt The BIOS provides a regular 18.2Hz heartbeat for OS and applications by executing the User Timer Interrupt (INT 1Ch) every 55 milliseconds (roughly) Thus, 91 heartbeats are required in order to generate 5 seconds, i.e Hz * 5 sec = 91 cycles We increment a timer by one on every interrupt. If the timer reaches 91, it indicates 5 seconds have already passed. TITLE Timer Handler ; This program displays one "Tick" strings every 5 ; seconds, up to 10 strings..model SMALL ; each of data and code segment <= 64K.STACK 100h ; reserve 256 bytes of stack space.data timemsg BYTE "Tick", 0dh, 0ah, '$' waitmsg BYTE "Waiting", 0dh, 0ah, '$' msg BYTE "This program displays 'Tick'" BYTE 0dh, 0ah BYTE "every 5 seconds for 10 times" BYTE 0dh, 0ah, '$' timer dw 0 ; time counter tickcount dw 0 ; run for 50 seconds intsave LABEL WORD DWORD? ; store old INT 1C address here 4

5 .code main PROC mov mov dx,offset msg ; display greeting message call WriteString mov ax,351ch ; get INT 1C vector mov word ptr intsave,bx mov word ptr intsave+2,es ; save INT 1C vector mov cx,0 ; use cx as 5-second flag L1: L2: cmp cx,1 ; Has lasted for 5 seconds? jnz L2 mov cx,0 ; reset flag mov dx,offset timemsg ; displays "tick" string call WriteString inc tickcount ; increment tick counter cmp tickcount,10 ; Has ticked for 10 times? jnz L1 install_handler: push ds ; save DS mov ax,@code ; initialise DS to code segment mov ds,ax mov ah,25h ; set interrupt vector mov al,1ch ; for interrupt 1C mov dx,offset timer_handler pop ds ; restore DS mov ax, word ptr intsave+2 mov dx, word ptr intsave mov ax, 251Ch mov ax, 4c00h main ENDP ; get old segment and ; store in ds ; get old offset ; restore old interrupt address ; The following procedure is executed 18.2 times per sec. ; It sets the flag when 5 seconds is passed. timer_handler PROC pushf ; save flags cmp timer,91 ; check if 5 seconds has passed jnz skip ; no: skip mov timer,0 ; yes: reset timer mov cx,1 ; set flag skip: inc timer ; increment timer popf ; restore flags iret ; interrupt return timer_handler ENDP ; The following procedure displays message string ; to the console using INT 21 Function 9. ; Receives: DS:DX = address of string WriteString PROC push ax push dx mov ah, 9 ; call INT 21 Function 9 pop dx pop ax ret WriteString ENDP END main 5

6 Can we create a 4-second timer? Solution!!! To measure 4 second, one needs to cycle: 18.2 Hz * 4 sec = 72.8 (Not a whole number!) If we choose 72, we will lost 0.04 sec (= 72 / 18.2) in every 4 second, or 36 second slower each day; OR We will be 0.01 second faster in every 4 second if we choose 73, or 9 second faster every day We re-adjust the timer on every 16 th second Thus, 1 st 4 sec: 73 2 nd 4 sec: 73 3 rd 4 sec: 73 4 th 4 sec: 73 5 th 4 sec: 72 Is it correct? We can check the number of counted cycles after 20 seconds 72.8 * 5 = 364 AND = 364!! Problem solved! 6

Midterm Exam #2 Answer Key

Midterm Exam #2 Answer Key Midterm Exam #2 Answer Key Name: Student ID #: I have read and understand Washington State University s policy on academic dishonesty and cheating YOU Signed: Problem 1) Consider the following fragment

More information

Computer Systems. Assembly Language for x86 Processors 6th Edition, Kip Irvine. Chapter 17: Expert MS-DOS Programming

Computer Systems. Assembly Language for x86 Processors 6th Edition, Kip Irvine. Chapter 17: Expert MS-DOS Programming Computer Systems Assembly Language for x86 Processors 6th Edition, Kip Irvine Chapter 17: Expert MS-DOS Programming Yonsei University Department of Computer Science Jaekyung Kim(kimjk@cs.yonsei.ac.kr)

More information

16-bit MS-DOS and BIOS Programming

16-bit MS-DOS and BIOS Programming CS2422 Assem bly Language and System Programming 16-bit MS-DOS and BIOS Programming Department of Computer Science National Tsing Hua University Overview Chapter 13: 16-bit MS-DOS Programming MS-DOS and

More information

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 13: 16-Bit MS-DOS Programming

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 13: 16-Bit MS-DOS Programming Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 13: 16-Bit MS-DOS Programming (c) Pearson Education, 2002. All rights reserved. Chapter Overview MS-DOS and the IBM-PC MS-DOS

More information

db "Please enter up to 256 characters (press Enter Key to finish): ",0dh,0ah,'$'

db Please enter up to 256 characters (press Enter Key to finish): ,0dh,0ah,'$' PA4 Sample Solution.model large.stack 100h.data msg1 db "This programs scans a string of up to 256 bytes and counts the repetitions of the number 4206 and sums them.",0dh,0ah,'$' msg2 db "Please enter

More information

SHEET-2 ANSWERS. [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte.

SHEET-2 ANSWERS. [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte. SHEET-2 ANSWERS [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte. TITLE PROG2-3 PURPOSE: TRANSFER 6 WORDS OF DATA PAGE 60,132.MODEL SMALL.STACK 64.DATA ORG 10H DATA_IN DW 234DH,

More information

Assembly Language for Intel-Based Computers, 4 th Edition

Assembly Language for Intel-Based Computers, 4 th Edition Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 13: 16-Bit MS-DOS Programming Interrupts Slide show prepared by Kip R. Irvine, Revision date: 08/04/02 Modified by Dr. Nikolay

More information

COE 205 Lab Manual Experiment N o 12. Experiment N o Using the Mouse

COE 205 Lab Manual Experiment N o 12. Experiment N o Using the Mouse Experiment N o 12 12 Using the Mouse Introduction The mouse is an I/O device that replaces the arrow keys on the keyboard for graphical and text style programs. This experiment shows how to add the mouse

More information

Week /8086 Microprocessor Programming II

Week /8086 Microprocessor Programming II Week 5 8088/8086 Microprocessor Programming II Quick Review Shift & Rotate C Target register or memory SHL/SAL 0 C SHR 0 SAR C Sign Bit 2 Examples Examples Ex. Ex. Ex. SHL dest, 1; SHL dest,cl; SHL dest,

More information

8086 programming Control Flow Instructions and Program Structures

8086 programming Control Flow Instructions and Program Structures 8086 programming Control Flow Instructions and Program Structures Example: write a procedure named Square that squares the contents of BL and places the result in BX. Square: PUSH AX MOV AL, BL MUL BL

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST 2 Date : 02/04/2018 Max Marks: 40 Subject & Code : Microprocessor (15CS44) Section : IV A and B Name of faculty: Deepti.C Time : 8:30 am-10:00 am Note: Note: Answer any five complete

More information

The Stack. Lecture 15: The Stack. The Stack. Adding Elements. What is it? What is it used for?

The Stack. Lecture 15: The Stack. The Stack. Adding Elements. What is it? What is it used for? Lecture 15: The Stack The Stack What is it? What is it used for? A special memory buffer (outside the CPU) used as a temporary holding area for addresses and data The stack is in the stack segment. The

More information

Marking Scheme. Examination Paper. Module: Microprocessors (630313)

Marking Scheme. Examination Paper. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 12/06/2017 Section 1 Weighting 40% of

More information

UMBC. contain new IP while 4th and 5th bytes contain CS. CALL BX and CALL [BX] versions also exist. contain displacement added to IP.

UMBC. contain new IP while 4th and 5th bytes contain CS. CALL BX and CALL [BX] versions also exist. contain displacement added to IP. Procedures: CALL: Pushes the address of the instruction following the CALL instruction onto the stack. RET: Pops the address. SUM PROC NEAR USES BX CX DX ADD AX, BX ADD AX, CX MOV AX, DX RET SUM ENDP NEAR

More information

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313)

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 02/06/2018 Section 1 Weighting 40% of

More information

Assembly Language for Intel-Based Computers, 4 th Edition

Assembly Language for Intel-Based Computers, 4 th Edition Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 3: Assembly Language Fundamentals Assembling, Linking and Running Programs Example Programs Slides prepared by Kip R. Irvine

More information

Assignment no:4 on chapter no :3 : Instruction set of 8086

Assignment no:4 on chapter no :3 : Instruction set of 8086 Assignment no:4 on chapter no :3 : Instruction set of 8086 1) Describe any two string operation instruction of 8086 with syntax & one example of each. 1] REP: REP is a prefix which is written before one

More information

CSCI516: Program 1 - October 11, 2010 The Program is due: October 25, 2010 in the beginning of the class

CSCI516: Program 1 - October 11, 2010 The Program is due: October 25, 2010 in the beginning of the class CSCI516: Program 1 - October 11, 2010 The Program is due: October 25, 2010 in the beginning of the class For Late Submissions 10 out of 100 points will be taken off. For your first program, you are to

More information

Chapter 3. Assembly Language Programming with 8086

Chapter 3. Assembly Language Programming with 8086 Chapter 3 Assembly Language Programming with 8086 UNIT - III Assembly Language Programming with 8086- Machine level programs, Machine coding the programs, Programming with an assembler, Assembly Language

More information

Parameter Passing. Procedure line. Calling procedure line. Most subroutines require parameters Can sometimes pass parameters via registers

Parameter Passing. Procedure line. Calling procedure line. Most subroutines require parameters Can sometimes pass parameters via registers Parameter Passing Most subroutines require parameters Can sometimes pass parameters via registers Assume subroutine line will compute the value: y = m*x + b where m,x,b are signed byte values, and y is

More information

Assembly Language Lab # 12 Part A: Strings and Arrays Part B: Drawing Graphics Using INT 10h

Assembly Language Lab # 12 Part A: Strings and Arrays Part B: Drawing Graphics Using INT 10h Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2011 Assembly Language Lab # 12 Part A: Strings and Arrays Part B: Drawing Graphics Using INT 10h Eng. Doaa Abu Jabal Objective:

More information

16.317: Microprocessor Systems Design I Fall 2013

16.317: Microprocessor Systems Design I Fall 2013 16.317: Microprocessor Systems Design I Fall 2013 Exam 2 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

COMPUTER ENGINEERING DEPARTMENT

COMPUTER ENGINEERING DEPARTMENT Page 1 of 11 COMPUTER ENGINEERING DEPARTMENT December 31, 2007 COE 205 COMPUTER ORGANIZATION & ASSEMBLY PROGRAMMING Major Exam II First Semester (071) Time: 7:00 PM-9:30 PM Student Name : KEY Student ID.

More information

Video processing The INT instruction enables program to interrupt its own processing. Use INT instruction to handle inputs and outputs

Video processing The INT instruction enables program to interrupt its own processing. Use INT instruction to handle inputs and outputs Video processing The INT instruction enables program to interrupt its own processing. Use INT instruction to handle inputs and outputs INT 10H: screen handling INT 21H: for displaying screen output and

More information

PC Interrupt Structure and 8259 DMA Controllers

PC Interrupt Structure and 8259 DMA Controllers ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS 1998/99 WINTER SESSION, TERM 2 PC Interrupt Structure and 8259 DMA Controllers This lecture covers the use of interrupts and the vectored interrupt

More information

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE Final Page 1 of 7 UNIVERSITY OF CALIFORNIA, RIVERSIDE Computer Science Department CS61 Machine Organization & Assembly Language Final September 1, 2000 53 Name: Solution Key Student ID#: Please print legibly

More information

Lecture 13: I/O I/O. Interrupts. How?

Lecture 13: I/O I/O. Interrupts. How? Lecture 13: I/O I/O Interrupts MS-DOS Function Calls Input,Output, File I/O Video Keyboard Getting data into your program: define it in the data area use immediate operands Very limiting Most programs

More information

Experiment 3 3 Basic Input Output

Experiment 3 3 Basic Input Output Experiment 3 3 Basic Input Output Introduction The aim of this experiment is to introduce the use of input/output through the DOS interrupt. Objectives: INT Instruction Keyboard access using DOS function

More information

BLDEA S V.P. DR. P.G. HALAKATTI COLLEGE OF ENGINEERING & TECHNOLOGY, VIJAYAPURA

BLDEA S V.P. DR. P.G. HALAKATTI COLLEGE OF ENGINEERING & TECHNOLOGY, VIJAYAPURA EXPERIMENT NO.:- 1. BINARY SEARCH Work Space: Register Used Memory Address Data DI 10000H 11H 10001H 11H 10002H 22H 10003H 22H BX 10004H 33H 10005H 33H 10006H 44H 10007H 44H CX 10008H 55H 10009H 55H 24

More information

ELEC VIDEO BIOS ROUTINES

ELEC VIDEO BIOS ROUTINES It is less confusing to the user if we remove unnecessary messages from the display before giving information or instructions. At the command prompt, we do this with the DOS command CLS. However, this

More information

Come and join us at WebLyceum

Come and join us at WebLyceum Come and join us at WebLyceum For Past Papers, Quiz, Assignments, GDBs, Video Lectures etc Go to http://www.weblyceum.com and click Register In Case of any Problem Contact Administrators Rana Muhammad

More information

Copyright 2000 by Barry B. Brey The CPU Scheduling Processes

Copyright 2000 by Barry B. Brey The CPU Scheduling Processes Copyright 2000 by Barry B. Brey The CPU Scheduling Processes One method used to schedule processes in a small real-time operating system (RTOS) is via a time slice to switch between various processes.

More information

Experiment 8 8 Subroutine Handling Instructions and Macros

Experiment 8 8 Subroutine Handling Instructions and Macros Introduction Experiment 8 8 Subroutine Handling Instructions and Macros In this experiment you will be introduced to subroutines and how to call them. You will verify the exchange of data between a main

More information

Intel 8086: Instruction Set

Intel 8086: Instruction Set IUST-EE (Chapter 6) Intel 8086: Instruction Set 1 Outline Instruction Set Data Transfer Instructions Arithmetic Instructions Bit Manipulation Instructions String Instructions Unconditional Transfer Instruction

More information

Summer 2003 Lecture 15 07/03/03

Summer 2003 Lecture 15 07/03/03 Summer 2003 Lecture 15 07/03/03 Initialization of Variables In the C (or C++) programming language any variable definition can have an optional initializer for the variable. How and when the initialization

More information

Objectives. ICT106 Fundamentals of Computer Systems Topic 8. Procedures, Calling and Exit conventions, Run-time Stack Ref: Irvine, Ch 5 & 8

Objectives. ICT106 Fundamentals of Computer Systems Topic 8. Procedures, Calling and Exit conventions, Run-time Stack Ref: Irvine, Ch 5 & 8 Objectives ICT106 Fundamentals of Computer Systems Topic 8 Procedures, Calling and Exit conventions, Run-time Stack Ref: Irvine, Ch 5 & 8 To understand how HLL procedures/functions are actually implemented

More information

Intel x86 instruction set architecture

Intel x86 instruction set architecture Intel x86 instruction set architecture Graded assignment: hand-written resolution of exercise II 2) The exercises on this tutorial are targeted for the as86 assembler. This program is available in the

More information

EC 333 Microprocessor and Interfacing Techniques (3+1)

EC 333 Microprocessor and Interfacing Techniques (3+1) EC 333 Microprocessor and Interfacing Techniques (3+1) Lecture 6 8086/88 Microprocessor Programming (Arithmetic Instructions) Dr Hashim Ali Fall 2018 Department of Computer Science and Engineering HITEC

More information

EE 314 Spring 2003 Microprocessor Systems

EE 314 Spring 2003 Microprocessor Systems EE 314 Spring 2003 Microprocessor Systems Laboratory Project #3 Arithmetic and Subroutines Overview and Introduction Review the information in your textbook (pp. 115-118) on ASCII and BCD arithmetic. This

More information

Northern India Engineering College, Delhi (GGSIP University) PAPER I

Northern India Engineering College, Delhi (GGSIP University) PAPER I PAPER I Q1.Explain IVT? ANS. interrupt vector table is a memory space for storing starting addresses of all the interrupt service routine. It stores CS:IP PAIR corresponding to each ISR. An interrupt vector

More information

Experiment N o 8. String Handling Instructions

Experiment N o 8. String Handling Instructions Experiment N o 8 String Handling Instructions Introduction: In this experiment you will deal with string handling instructions, such as reading a string, moving a string from one memory location to another,

More information

For more notes of DAE

For more notes of DAE Created by ARSLAN AHMED SHAAD ( 1163135 ) AND MUHMMAD BILAL ( 1163122 ) VISIT : www.vbforstudent.com Also visit : www.techo786.wordpress.com For more notes of DAE CHAPTER # 8 INTERRUPTS COURSE OUTLINE

More information

Experiment #5. Using BIOS Services and DOS functions Part 1: Text-based Graphics

Experiment #5. Using BIOS Services and DOS functions Part 1: Text-based Graphics Experiment #5 Using BIOS Services and DOS functions Part 1: Text-based Graphics 5.0 Objectives: The objective of this experiment is to introduce BIOS and DOS interrupt service routines to be utilized in

More information

16.317: Microprocessor Systems Design I Spring 2015

16.317: Microprocessor Systems Design I Spring 2015 16.317: Microprocessor Systems Design I Spring 2015 Exam 2 Solution 1. (16 points, 4 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by

More information

Programming in Module. Near Call

Programming in Module. Near Call Programming in Module Main: sub1: call sub1 sub ax,ax sub1 sub1 proc near sub ax,ax endp sub1 sub1 proc Far sub ax,ax endp Near Call sub1 sub1 Main: call sub1 sub1: sub ax,ax proc near sub ax,ax endp SP

More information

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313)

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 08/06/2014 Section 1 Weighting 40% of

More information

Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB. Lab # 10. Advanced Procedures

Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB. Lab # 10. Advanced Procedures Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB Lab # 10 Advanced Procedures May, 2014 1 Assembly Language LAB Stack Parameters There are

More information

Week /8086 Microprocessor Programming

Week /8086 Microprocessor Programming Week 5 8088/8086 Microprocessor Programming Multiplication and Division Multiplication Multiplicant Operand Result (MUL or IMUL) (Multiplier) Byte * Byte AL Register or memory Word * Word AX Register or

More information

EEM336 Microprocessors I. Data Movement Instructions

EEM336 Microprocessors I. Data Movement Instructions EEM336 Microprocessors I Data Movement Instructions Introduction This chapter concentrates on common data movement instructions. 2 Chapter Objectives Upon completion of this chapter, you will be able to:

More information

EXPERIMENT NINE DEVELOPING MACRO SEQUENCES

EXPERIMENT NINE DEVELOPING MACRO SEQUENCES EXPERIMENT NINE DEVELOPING MACRO SEQUENCES INTRODUCTION Although not essential to programming, macro sequences relieve the programmer of retyping the same instructions and also allow additional instructions

More information

Computer Architecture and System Software Lecture 06: Assembly Language Programming

Computer Architecture and System Software Lecture 06: Assembly Language Programming Computer Architecture and System Software Lecture 06: Assembly Language Programming Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Assignment 3 due thursday Midterm

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013)

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) UNIT I THE 8086 MICROPROCESSOR PART A (2 MARKS) 1. What are the functional

More information

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil Microprocessor By Mrs. R.P.Chaudhari Mrs.P.S.Patil Chapter 1 Basics of Microprocessor CO-Draw Architecture Of 8085 Salient Features of 8085 It is a 8 bit microprocessor. It is manufactured with N-MOS technology.

More information

EXPERIMENT TWELVE: USING DISK FILES

EXPERIMENT TWELVE: USING DISK FILES EXPERIMENT TWELVE: USING DISK FILES INTRODUCTION Because just about any program ever written requires the use of a disk file to store or retrieve data, this experiment shows how to create, read, write,

More information

Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB

Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB Lab # 9 Integer Arithmetic and Bit Manipulation April, 2014 1 Assembly Language LAB Bitwise

More information

Understanding the Interrupt Control Unit of the 80C186EC/80C188EC Processor

Understanding the Interrupt Control Unit of the 80C186EC/80C188EC Processor A AP-731 APPLICATION NOTE Understanding the Interrupt Control Unit of the 80C186EC/80C188EC Processor Sean Kohler Application Engineer Intel Corporation 5000 West Chandler Boulevard Chandler, AZ 85226

More information

ECOM Computer Organization and Assembly Language. Computer Engineering Department CHAPTER 7. Integer Arithmetic

ECOM Computer Organization and Assembly Language. Computer Engineering Department CHAPTER 7. Integer Arithmetic ECOM 2325 Computer Organization and Assembly Language Computer Engineering Department CHAPTER 7 Integer Arithmetic Presentation Outline Shift and Rotate Instructions Shift and Rotate Applications Multiplication

More information

ELEC 242 Using Library Procedures

ELEC 242 Using Library Procedures ELEC 242 Using Library Procedures There are a number of existing procedures that are already written for you that you will use in your programs. In order to use the library procedures that come with the

More information

LABORATORY WORK NO. 7 FLOW CONTROL INSTRUCTIONS

LABORATORY WORK NO. 7 FLOW CONTROL INSTRUCTIONS LABORATORY WORK NO. 7 FLOW CONTROL INSTRUCTIONS 1. Object of laboratory The x86 microprocessor family has a large variety of instructions that allow instruction flow control. We have 4 categories: jump,

More information

A4 Sample Solution Ch3

A4 Sample Solution Ch3 A4 Sample Solution Ch3 2. AL, AH, BL, BH,CL,CH,DLl, DH 3. AX, BX, CX, DX, SP, BP, SI, DI, CS, DS, ES, SS, FS, GS 4. EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI 5. RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI and

More information

INSTRUCTOR: ABDULMUTTALIB A. H. ALDOURI

INSTRUCTOR: ABDULMUTTALIB A. H. ALDOURI Note: PUSHF / POPF have no operands The figure below shows that if (SS) = 3000H, (SP) = 0042H, so the execution of POP CX loads CX by the word 4050H form the stack segment. The SP is incremented by 2.

More information

CS-202 Microprocessor and Assembly Language

CS-202 Microprocessor and Assembly Language CS-202 Microprocessor and Assembly Language Lecture 2 Introduction to 8086 Assembly Language Dr Hashim Ali Spring - 2019 Department of Computer Science and Engineering HITEC University Taxila!1 Lecture

More information

The Boot: Getting ready for the OS

The Boot: Getting ready for the OS The Boot: Getting ready for the OS LISHA/UFSC Prof. Dr. Antônio Augusto Fröhlich guto@lisha.ufsc.br http://www.lisha.ufsc.br/guto March 2011 March 2011 (http://www.lisha.ufsc.br) 1 Where are we now? BIOS

More information

.code. lea dx,msg2. Page 1/8. Problem 1: Programming in Assembly [25 Points]

.code. lea dx,msg2. Page 1/8. Problem 1: Programming in Assembly [25 Points] Problem : Programming in Assembly [ Points] The following assembly program is supposed to: receive three integer numbers from the console, call a function, name sort, function sort arranges the three input

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 3: Polling and Interrupts Programmed I/O and DMA Interrupts Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering and Computer Science

More information

Module 3 Instruction Set Architecture (ISA)

Module 3 Instruction Set Architecture (ISA) Module 3 Instruction Set Architecture (ISA) I S A L E V E L E L E M E N T S O F I N S T R U C T I O N S I N S T R U C T I O N S T Y P E S N U M B E R O F A D D R E S S E S R E G I S T E R S T Y P E S O

More information

RMV ELECTRONICS INC. Application Note:

RMV ELECTRONICS INC. Application Note: RMV ELECTRONICS INC. Application Note: Application #: 00002 Date: September 1994 Description: High Speed Serial Communications Between the PC and the Status: Draft Version ITC232-A. The ITC232-A is capable

More information

Program Control Instructions

Program Control Instructions Program Control Instructions Introduction This chapter explains the program control instructions, including the jumps, calls, returns, interrupts, and machine control instructions. This chapter also presents

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND Segment The "SEGMENT" and "ENDS" directives indicate to the assembler the beginning and ending of a segment and have the following format label SEGMENT [options] ;place the statements belonging

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013 TOPICS TODAY I/O Architectures Interrupts Exceptions FETCH EXECUTE CYCLE 1.7 The von Neumann Model This is a general

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics and Communication

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics and Communication USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics and Communication INTERNAL ASSESSMENT TEST 1 Date : 26/02/2018 Marks: 40 Subject

More information

Homework / Exam. Return and Review Exam #1 Reading. Machine Projects. Labs. S&S Extracts , PIC Data Sheet. Start on mp3 (Due Class 19)

Homework / Exam. Return and Review Exam #1 Reading. Machine Projects. Labs. S&S Extracts , PIC Data Sheet. Start on mp3 (Due Class 19) Homework / Exam Return and Review Exam #1 Reading S&S Extracts 385-393, PIC Data Sheet Machine Projects Start on mp3 (Due Class 19) Labs Continue in labs with your assigned section 1 Interrupts An interrupt

More information

16-Bit Intel Processor Architecture

16-Bit Intel Processor Architecture IBM-PC Organization 16-Bit Intel Processor Architecture A-16 bit microprocessor can operate on 16 bits of data at a time. 8086/8088 have the simplest structure 8086/8088 have the same instruction set,

More information

Lecture (08) x86 programming 7

Lecture (08) x86 programming 7 Lecture (08) x86 programming 7 By: Dr. Ahmed ElShafee 1 Conditional jump: Conditional jumps are executed only if the specified conditions are true. Usually the condition specified by a conditional jump

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 4 Solution

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 4 Solution 1. (40 points) Write the following subroutine in x86 assembly: Recall that: int f(int v1, int v2, int v3) { int x = v1 + v2; urn (x + v3) * (x v3); Subroutine arguments are passed on the stack, and can

More information

Topics Introduction to Microprocessors. Chapter 5 Macros and modules. What is macro? How to use macro? (I) How to use macro?

Topics Introduction to Microprocessors. Chapter 5 Macros and modules. What is macro? How to use macro? (I) How to use macro? Topics 2102440 Introduction to Microprocessors Macros Subroutines Modules Chapter 5 Macros and modules Suree Pumrin,, Ph.D. 1 2102440 Introduction to Microprocessors 2 What is macro? It is used to automate

More information

8051 Interrupt Organization

8051 Interrupt Organization Interrupt Interrupts of 8051 Introduction 8051 Interrupt organization Processing Interrupts Program Design Using Interrupts Timer Interrupts Serial Port Interrupts External Interrupts Interrupt Timings

More information

16.317: Microprocessor Systems Design I Fall 2014

16.317: Microprocessor Systems Design I Fall 2014 16.317: Microprocessor Systems Design I Fall 2014 Exam 2 Solution 1. (16 points, 4 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

Lecture 16: Passing Parameters on the Stack. Push Examples. Pop Examples. CALL and RET

Lecture 16: Passing Parameters on the Stack. Push Examples. Pop Examples. CALL and RET Lecture 1: Passing Parameters on the Stack Push Examples Quick Stack Review Passing Parameters on the Stack Binary/ASCII conversion ;assume SP = 0202 mov ax, 124h push ax push 0af8h push 0eeeh EE 0E F8

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND 8086 CPU has 8 general purpose registers listed below: AX - the accumulator register (divided into AH / AL): 1. Generates shortest machine code 2. Arithmetic, logic and data transfer 3. One

More information

Marking Scheme. Examination Paper. Module: Microprocessors (630313)

Marking Scheme. Examination Paper. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam First Semester Date: 30/01/2018 Section 1 Weighting 40% of the

More information

reply db y prompt db Enter your favourite colour:, 0 colour db 80 dup(?) i db 20 k db? num dw 4000 large dd 50000

reply db y prompt db Enter your favourite colour:, 0 colour db 80 dup(?) i db 20 k db? num dw 4000 large dd 50000 Declaring Variables in Assembly Language As in Java, variables must be declared before they can be used Unlike Java, we do not specify a variable type in the declaration in assembly language Instead we

More information

Week /8086 Microprocessor Programming I

Week /8086 Microprocessor Programming I Week 4 8088/8086 Microprocessor Programming I Example. The PC Typewriter Write an 80x86 program to input keystrokes from the PC s keyboard and display the characters on the system monitor. Pressing any

More information

An Interrupt is either a Hardware generated CALL (externally derived from a hardware signal)

An Interrupt is either a Hardware generated CALL (externally derived from a hardware signal) An Interrupt is either a Hardware generated CALL (externally derived from a hardware signal) OR A Software-generated CALL (internally derived from the execution of an instruction or by some other internal

More information

Philadelphia University Student Name: Student Number:

Philadelphia University Student Name: Student Number: Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, Second Semester: 2016/2017 Dept. of Computer Engineering Course Title: Microprocessors Date: 12/06/2017

More information

6/20/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to:

6/20/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to: Introduction Efficient software development for the microprocessor requires a complete familiarity with the addressing modes employed by each instruction. This chapter explains the operation of the stack

More information

Chapter 3: Addressing Modes

Chapter 3: Addressing Modes Chapter 3: Addressing Modes Chapter 3 Addressing Modes Note: Adapted from (Author Slides) Instructor: Prof. Dr. Khalid A. Darabkh 2 Introduction Efficient software development for the microprocessor requires

More information

PHY4635/5635 Spring Lecture 8: Program Control Instructions

PHY4635/5635 Spring Lecture 8: Program Control Instructions PHY4635/5635 Spring 2009 Lecture 8: Program Control Instructions Short, Near and Far Jumps Short jump: jump is within +127 to -128 bytes from the address following the jump. Relative jumps : moves with

More information

Data Movement Instructions

Data Movement Instructions Segment 3B Data Movement Instructions PUSH/POP Contents Load-Effective address (LEA, LDS, LES) String Data Transfer (LODS, STOS, MOVS) XCHG, XLAT IN and OUT Course Instructor Mohammed Abdul kader Lecturer,

More information

ORG ; TWO. Assembly Language Programming

ORG ; TWO. Assembly Language Programming Dec 2 Hex 2 Bin 00000010 ORG ; TWO Assembly Language Programming OBJECTIVES this chapter enables the student to: Explain the difference between Assembly language instructions and pseudo-instructions. Identify

More information

Week 7. Input/Output Interface Circuits and LSI Peripheral Devices

Week 7. Input/Output Interface Circuits and LSI Peripheral Devices Week 7 Input/Output Interface Circuits and LSI Peripheral Devices Core and Special Purpose I/O Interfaces Special purpose I/O interfaces display parallel printer interface serial communication interface

More information

Interrupt Services. Which Way is Best? Characteristics. Direct in, out. BIOS Average Average DOS Most Least

Interrupt Services. Which Way is Best? Characteristics. Direct in, out. BIOS Average Average DOS Most Least Interrupt Services Application Programs/OS Shell (command.com) int 10h, and others int 21h, and others (IO.SYS) DOS Services (msdos.sys) BIOS (EEPROM) Hardware (x86, Chipset and Peripherals) BIOS - Basic

More information

6/29/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to:

6/29/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to: Chapter 6: Program Control Instructions Introduction This chapter explains the program control instructions, including the jumps, calls, returns, interrupts, and machine control instructions. This chapter

More information

LABORATORY WORK NO. 8 WORKING WITH MACROS AND LIBRARIES

LABORATORY WORK NO. 8 WORKING WITH MACROS AND LIBRARIES LABORATORY WORK NO. 8 WORKING WITH MACROS AND LIBRARIES 1. Object of laboratory Getting used to defining and using macros, procedure defining and using LIB library librarian. 2. Theoretical considerations

More information

BASIC INTERRUPT PROCESSING

BASIC INTERRUPT PROCESSING Interrupts BASIC INTERRUPT PROCESSING This section discusses the function of an interrupt in a microprocessor-based system. Structure and features of interrupts available to Intel microprocessors. The

More information

Interrupt handling and context switching

Interrupt handling and context switching Interrupt handling and context switching slide 1 these two topics are separate and we will examine them in turn Interrupts slide 2 applications Shell daemons utilities Device drivers HW Kernel compiler

More information

Summer 2003 Lecture 12 06/26/03

Summer 2003 Lecture 12 06/26/03 Summer 2003 Lecture 12 06/26/03 Implementing Standard C Control Structures: IF THEN ELSE if (a == b) { mov ax,a blah; cmp ax,b jnz endif blah endif: if (a == b) { true clause else { false clause mov ax,a

More information

Assembly Language. Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology. Overview of Assembly Language

Assembly Language. Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology. Overview of Assembly Language 4345 Assembly Language Assembly Language Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology Assembly Language 3-1 Overview of Assembly Language Advantages: Faster as compared

More information

icroprocessor istory of Microprocessor ntel 8086:

icroprocessor istory of Microprocessor ntel 8086: Microprocessor A microprocessor is an electronic device which computes on the given input similar to CPU of a computer. It is made by fabricating millions (or billions) of transistors on a single chip.

More information