COMP3441 Lecture 7: Software Vulnerabilities

Size: px
Start display at page:

Download "COMP3441 Lecture 7: Software Vulnerabilities"

Transcription

1 COMP3441 Lecture 7: Software Vulnerabilities Ron van der Meyden (University of New South Wales Sydney, Australia) April 22, 2013 Overview Buffer overflow attacks SQL injection attacks Defensive measures Exploit economics

2 Buffer Overflow Attacks C/C++ does not enforce array boundaries attacker can control the value of more than program input locations von Neumann Architectures: data and programs stored in the same type of memory attacker can cause execution of a program they have written to memory Example: attacker changes program behaviour A C library function: char *gets ( char *str ); Get string from stdin Reads characters from stdin and stores them as a string into str until a newline character ( \n ) or the End-of-File is reached. The ending newline character ( \n ) is not included in the string. A null character ( \0 ) is automatically appended after the last character copied to str to signal the end of the C string.

3 char buffer[100]; int security-critical-variable = 0 (some code) gets(buffer); (more code) if (security-critical-variable) {security-critical-code}; How this looks in memory: buffer[100] sec-critvar If the attacker gives as input a string of 101 non-zero values, the last of these is written to security-critical-variable, ensuring that security-critical-code is executed.

4 A more serious version char buffer[100]; int (*function-pointer-variable) (); int v; (some code) gets(buffer); (more code) v=function-pointer-variable(); Here the attacker can first write a malicious program into the buffer, and use the overflow into function-pointer-variable to make that point at the malicious program! The assignment to v now makes that malicious program run. This is an example of a code-injection attack.

5 An example attack The Morris worm (1988): used gets based buffer overflow in fingerd (network finger deamon) to overwrite filename of a command executed by in.fingerd used a debugging option in sendmail, which allows commands to the sendmail process to be run (many installations left this on) mounted a password guessing attack against the (then openly available) encrypted password file hid itself by removing its files from disk, and frequently forking a copy of itself and killing the parent to prevent its detection as a cycle-intensive process The Internet Worm Program: An Analysis Purdue Technical Report CSD-TR-823, Eugene H. Spafford Stack Smashing Nested function calls are handled using the stack. In memory: SP= stack pointer: a register pointing to the top of the stack IP = instruction pointer: a register pointing to the next executed instruction stack frame = a region of the stack storing data relevant to a function call instance saved SP = stack pointer before this invocation return address = program location to return to when this invocation is done

6 CPU IP: Instruction pointer Stack Pointer Program Stack Frame Memory Heap Stack A call to a function void functionname() { char a[100]; int b; char c[100] (function code) } is compiled so that at run-time, we have functionname entry code functioname code functionname exit code... Program saved stack a[100] b c[100] return address pointer caller stack frame Stack frame

7 Entry code: sets up the new stack frame, saves the current stack frame there, saves program location after function call as return address sets up offsets so that frame instances of variables are used in function code Exit Code: restores stack pointer to saved stack pointer in current frame sets instruction pointer to return address in current frame The stack-smashing attack If function code contains a buffer overflow vulnerability (e.g. gets), the attacker can write a malicious program into the buffer (or somewhere else in memory) overflow the buffer so as to write the location of the malicious program into return address Now, when the function exits, it jumps to executing the malicious code!

8 A Typical malicious program Often, the attacker will not know the exact location of the malicious program in memory, but has an estimate. To ensure the malicious program runs, attacker stores NoOP, NoOp..., NoOp, (Malicious machine code) so a jump to an earlier point eventually runs into Malicious code. Often the malicious program calls the Operating System Shell, then does bad stuff Format String Vulnerability printf("%s", buffer) = print buffer as a string common programming error: printf(buffer) interpret buffer as a format string, and parse any formatting instructions it contains. The formatting instructions are quite powerful...

9 Example: Format instructions can write to designated memory locations: When the %n format is encountered in the format string, the number of characters output before the %n field was encountered is stored at the address passed in the next argument. int pos, x = 235, y = 93; printf("%d %n%d\n", x, &pos, y); printf("the offset was %d\n", pos); Using the power of the formatting instructions, the attacker can inject code into the stack change the value of (almost) arbitrary memory locations (e.g. return addresses), so run code of the attackers choice. Details: see Format String Attacks, Tim Newsham, Sep

10 Defensive Measures Defensive programming Safe Libraries Type-Safe Languages Runtime-checks Static Analysis Testing Program Verification Canary Variables Executable space protection Deep Packet Inspection Address Space Layout Randomization Defense: Canary variables (after use of canaries to detect oxygen depletion in coal mines) canary saved stack a[100] b c[100] return address variable pointer caller stack frame Stack frame Function entry code saves a (random) value to the canary variable. Function exit code checks if the canary variable still has the expected value, if not, abort/raise error. (Assumes the attacker cannot work out the expected value.)

11 Defense: Address Space Layout Randomization Main idea: to jump to a program the attacker has saved, the attacker needs to know its location. Standard compilers place data structures at predictable locations. Compilation using Address Space Layout Randomization places the data structures used by attacker randomly in memory. Introduced in PaX (linux patch implementing least-privilege on memory pages), 2001 Used in OpenBSD, Linux (weakly), Windows (since 2008), Mac OS X (since 2007), ios, Android Hardware Defenses Stack smashing relies on the von Neumann architecture treating program and data as the same type. The Harvard architecture kept these as separate types. Some modern CPU s support this idea via a No Execute (NX) or Execute disabled (XD) bit on memory locations. If set, the hardware will not execute the memory location.

12 Network Defense: Deep packet Inspection Attacks typically come via the network. So we can have the firewall inspect user data to find known attacks long NoOp sequences in input data code to start a shell in input data But attackers are starting to cover their tracks and avoid detection: Shellcode that looks like English: Defense: Secure Programming Practice The best defense is not to have vulnerabilities: Use a type-safe language (e.g. Java) that does run-time array bounds checking use secure versions of C libraries (e.g. gets s) Secure_C_Library Better String Library Vstr library Libsafe Follow coding guidelines such as Cert Secure Coding Initiative: e.g. check code carefully for potential for array overflows

13 Static Analysis A Static Analysis system processes code based on its syntactic structure, to find a variety of common programming errors (e.g. use of gets, array bounds checking errors) (Cf. Dynamic analysis, done at runtime.) SA Vendors targetting security Fortify Coverity (Dept of Homeland Security project on Linux 2006) Downside: False negatives (does not catch all errors) False positive rate (reported errors that are not errors) may be high SQL Injection Attacks Another common software vulnerability, particularly in web code, which receives input fields entered by a user constructs a database query from the input fields executes the query against the database (SQL is a database query language)

14 Example Server code for a web page used for forgotten password retrieval: query := "SELECT password, from passwordtable WHERE username = " + user_input + " ";... run query in database.. if result ok then { send password to , return ("Password has been sent to"+ ) } else return ("No such username") If we enter user_input = "anything OR x = x" the query constructed is SELECT password, from passwordtable WHERE username = anything OR x = x which is guaranteed to retrieve the whole password table, and our code probably returns just the first (say bob@cse.unsw.edu)!

15 If we enter user_input = "bob AND password= hello123" the query constructed is SELECT password, from passwordtable WHERE username = bob AND password= hello123 and we get back ( Password has been sent to + ) just in case bob s password is hello123. Now we are running a password guessing attack! If we enter user_input = "anything ; DROP TABLE passwordtable the query constructed is SELECT password, from passwordtable WHERE username = anything ; DROP TABLE passwordtable which deletes the password table! (Denial of service)

16 Some examples of SQL injection attacks 2008 Sexual and Violent Offender Registry of Oklahoma loses 10,000+ Social Security numbers of sex offenders 2009: Albert Gonzalez + 2 Russians steal 130 Million credit card numbers from a credit card processor (Heartland), 7-Eleven, & a supermarket chain (Hannaford) 7-Safe UK security breach report 2010: 40% of attacks are SQL injection, another 20% SQL injection + malware Defensive Measures escape user input, i.e. wrap in top level quotes that override any internal quotes Filter user input, e.g., truncate at first, or deny data containing Instruction set randomization: Randomize keywords such as WHERE, derandomise before processing Construct query trees directly, using an API, rather than as strings to be parsed

17 Market in Vulnerabilties 2005: Microsoft Excel vulnerability offered on E-bay (auction stopped by E-Bay) Organizations that pay for vulnerability information: White Market: software vendors, Zero Day Initiative Grey Market: Governments Black Market: Organised Crime Tipping Point Zero-Day Initiative A researcher discovers a vulnerability, submits it to ZDI ZDI verifies the vulnerability, if real, makes an offer of $ to researcher. The researcher accepts the offer, assigns exclusivity of the information to ZDI Researcher is paid, TippingPoint notifies the affected vendor; Intrusion Prevention System protection filters are distributed to ZDI customers. Later, ZDI shares advance notice of the vulnerability to other security vendors prior to public disclosure. TippingPoint and the affected vendor coordinate public disclosure once a patch is ready.

CMPSC 497 Buffer Overflow Vulnerabilities

CMPSC 497 Buffer Overflow Vulnerabilities Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA CMPSC 497 Buffer Overflow

More information

Program Security and Vulnerabilities Class 2

Program Security and Vulnerabilities Class 2 Program Security and Vulnerabilities Class 2 CEN-5079: 28.August.2017 1 Secure Programs Programs Operating System Device Drivers Network Software (TCP stack, web servers ) Database Management Systems Integrity

More information

Buffer Overflow Defenses

Buffer Overflow Defenses Buffer Overflow Defenses Some examples, pros, and cons of various defenses against buffer overflows. Caveats: 1. Not intended to be a complete list of products that defend against buffer overflows. 2.

More information

Lecture 4 September Required reading materials for this class

Lecture 4 September Required reading materials for this class EECS 261: Computer Security Fall 2007 Lecture 4 September 6 Lecturer: David Wagner Scribe: DK Moon 4.1 Required reading materials for this class Beyond Stack Smashing: Recent Advances in Exploiting Buffer

More information

We will focus on Buffer overflow attacks SQL injections. See book for other examples

We will focus on Buffer overflow attacks SQL injections. See book for other examples We will focus on Buffer overflow attacks SQL injections See book for other examples Buffer overrun is another common term Buffer Overflow A condition at an interface under which more input can be placed

More information

Software Security: Buffer Overflow Defenses

Software Security: Buffer Overflow Defenses CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Defenses Fall 2017 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin,

More information

CS 161 Computer Security

CS 161 Computer Security Paxson Spring 2017 CS 161 Computer Security Discussion 2 Question 1 Software Vulnerabilities (15 min) For the following code, assume an attacker can control the value of basket passed into eval basket.

More information

Software Security: Buffer Overflow Attacks (continued)

Software Security: Buffer Overflow Attacks (continued) CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Attacks (continued) Spring 2015 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann,

More information

CSE 565 Computer Security Fall 2018

CSE 565 Computer Security Fall 2018 CSE 565 Computer Security Fall 2018 Lecture 14: Software Security Department of Computer Science and Engineering University at Buffalo 1 Software Security Exploiting software vulnerabilities is paramount

More information

Buffer overflow background

Buffer overflow background and heap buffer background Comp Sci 3600 Security Heap Outline and heap buffer Heap 1 and heap 2 3 buffer 4 5 Heap Outline and heap buffer Heap 1 and heap 2 3 buffer 4 5 Heap Address Space and heap buffer

More information

Fundamentals of Computer Security

Fundamentals of Computer Security Fundamentals of Computer Security Spring 2015 Radu Sion Software Errors Buffer Overflow TOCTTOU 2005-15 Portions copyright by Bogdan Carbunar and Wikipedia. Used with permission Why Security Vulnerabilities?

More information

Outline. Heap meta-data. Non-control data overwrite

Outline. Heap meta-data. Non-control data overwrite Outline CSci 5271 Introduction to Computer Security Day 5: Low-level defenses and counterattacks Stephen McCamant University of Minnesota, Computer Science & Engineering Non-control data overwrite Heap

More information

ECS 153 Discussion Section. April 6, 2015

ECS 153 Discussion Section. April 6, 2015 ECS 153 Discussion Section April 6, 2015 1 What We ll Cover Goal: To discuss buffer overflows in detail Stack- based buffer overflows Smashing the stack : execution from the stack ARC (or return- to- libc)

More information

Buffer overflow prevention, and other attacks

Buffer overflow prevention, and other attacks Buffer prevention, and other attacks Comp Sci 3600 Security Outline 1 2 Two approaches to buffer defense Aim to harden programs to resist attacks in new programs Run time Aim to detect and abort attacks

More information

Outline. Format string attack layout. Null pointer dereference

Outline. Format string attack layout. Null pointer dereference CSci 5271 Introduction to Computer Security Day 5: Low-level defenses and counterattacks Stephen McCamant University of Minnesota, Computer Science & Engineering Null pointer dereference Format string

More information

Reserve Engineering & Buffer Overflow Attacks. Tom Chothia Computer Security, Lecture 17

Reserve Engineering & Buffer Overflow Attacks. Tom Chothia Computer Security, Lecture 17 Reserve Engineering & Buffer Overflow Attacks Tom Chothia Computer Security, Lecture 17 Introduction A simplified, high-level view of buffer overflow attacks. x86 architecture overflows on the stack Some

More information

CS 361S - Network Security and Privacy Spring Homework #2

CS 361S - Network Security and Privacy Spring Homework #2 CS 361S - Network Security and Privacy Spring 2014 Homework #2 Due: 11am CDT (in class), April 17, 2014 YOUR NAME: Collaboration policy No collaboration is permitted on this assignment. Any cheating (e.g.,

More information

Buffer Overflows. A brief Introduction to the detection and prevention of buffer overflows for intermediate programmers.

Buffer Overflows. A brief Introduction to the detection and prevention of buffer overflows for intermediate programmers. Buffer Overflows A brief Introduction to the detection and prevention of buffer overflows for intermediate programmers. By: Brian Roberts What is a buffer overflow? In languages that deal with data structures

More information

CS 161 Computer Security

CS 161 Computer Security Paxson Spring 2011 CS 161 Computer Security Discussion 1 January 26, 2011 Question 1 Buffer Overflow Mitigations Buffer overflow mitigations generally fall into two categories: (i) eliminating the cause

More information

2 Sadeghi, Davi TU Darmstadt 2012 Secure, Trusted, and Trustworthy Computing Chapter 6: Runtime Attacks

2 Sadeghi, Davi TU Darmstadt 2012 Secure, Trusted, and Trustworthy Computing Chapter 6: Runtime Attacks Runtime attacks are major threats to today's applications Control-flow of an application is compromised at runtime Typically, runtime attacks include injection of malicious code Reasons for runtime attacks

More information

Is stack overflow still a problem?

Is stack overflow still a problem? Morris Worm (1998) Code Red (2001) Secure Programming Lecture 4: Memory Corruption II (Stack Overflows) David Aspinall, Informatics @ Edinburgh 31st January 2017 Memory corruption Buffer overflow remains

More information

20: Exploits and Containment

20: Exploits and Containment 20: Exploits and Containment Mark Handley Andrea Bittau What is an exploit? Programs contain bugs. These bugs could have security implications (vulnerabilities) An exploit is a tool which exploits a vulnerability

More information

Secure Programming I. Steven M. Bellovin September 28,

Secure Programming I. Steven M. Bellovin September 28, Secure Programming I Steven M. Bellovin September 28, 2014 1 If our software is buggy, what does that say about its security? Robert H. Morris Steven M. Bellovin September 28, 2014 2 The Heart of the Problem

More information

Buffer overflow is still one of the most common vulnerabilities being discovered and exploited in commodity software.

Buffer overflow is still one of the most common vulnerabilities being discovered and exploited in commodity software. Outline Morris Worm (1998) Infamous attacks Secure Programming Lecture 4: Memory Corruption II (Stack Overflows) David Aspinall, Informatics @ Edinburgh 23rd January 2014 Recap Simple overflow exploit

More information

Code with red border means vulnerable code. Code with green border means corrected code. This program asks the user for a password with the function

Code with red border means vulnerable code. Code with green border means corrected code. This program asks the user for a password with the function 1 Code with red border means vulnerable code. Code with green border means corrected code. This program asks the user for a password with the function IsPasswordOK(), and compares it with the correct password.

More information

BUFFER OVERFLOW. Jo, Heeseung

BUFFER OVERFLOW. Jo, Heeseung BUFFER OVERFLOW Jo, Heeseung IA-32/LINUX MEMORY LAYOUT Heap Runtime stack (8MB limit) Dynamically allocated storage When call malloc(), calloc(), new() DLLs (shared libraries) Data Text Dynamically linked

More information

Buffer Overflow. Jo, Heeseung

Buffer Overflow. Jo, Heeseung Buffer Overflow Jo, Heeseung IA-32/Linux Memory Layout Heap Runtime stack (8MB limit) Dynamically allocated storage When call malloc(), calloc(), new() DLLs (shared libraries) Data Text Dynamically linked

More information

CSCE 548 Building Secure Software Buffer Overflow. Professor Lisa Luo Spring 2018

CSCE 548 Building Secure Software Buffer Overflow. Professor Lisa Luo Spring 2018 CSCE 548 Building Secure Software Buffer Overflow Professor Lisa Luo Spring 2018 Previous Class Virus vs. Worm vs. Trojan & Drive-by download Botnet & Rootkit Malware detection Scanner Polymorphic malware

More information

Lecture 1: Buffer Overflows

Lecture 1: Buffer Overflows CS5431 Computer Security Practicum Spring 2017 January 27, 2017 1 Conficker Lecture 1: Buffer Overflows Instructor: Eleanor Birrell In November 2008, a new piece of malware was observed in the wild. This

More information

Betriebssysteme und Sicherheit Sicherheit. Buffer Overflows

Betriebssysteme und Sicherheit Sicherheit. Buffer Overflows Betriebssysteme und Sicherheit Sicherheit Buffer Overflows Software Vulnerabilities Implementation error Input validation Attacker-supplied input can lead to Corruption Code execution... Even remote exploitation

More information

Secure Software Development: Theory and Practice

Secure Software Development: Theory and Practice Secure Software Development: Theory and Practice Suman Jana MW 2:40-3:55pm 415 Schapiro [SCEP] *Some slides are borrowed from Dan Boneh and John Mitchell Software Security is a major problem! Why writing

More information

Memory corruption countermeasures

Memory corruption countermeasures Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) David Aspinall, Informatics @ Edinburgh 30th January 2014 Outline Announcement Recap Containment and curtailment Stack tamper detection

More information

How to Sandbox IIS Automatically without 0 False Positive and Negative

How to Sandbox IIS Automatically without 0 False Positive and Negative How to Sandbox IIS Automatically without 0 False Positive and Negative Professor Tzi-cker Chiueh Computer Science Department Stony Brook University chiueh@cs.sunysb.edu 1/10/06 Blackhat Federal 2006 1

More information

Homework 3 CS161 Computer Security, Fall 2008 Assigned 10/07/08 Due 10/13/08

Homework 3 CS161 Computer Security, Fall 2008 Assigned 10/07/08 Due 10/13/08 Homework 3 CS161 Computer Security, Fall 2008 Assigned 10/07/08 Due 10/13/08 For your solutions you should submit a hard copy; either hand written pages stapled together or a print out of a typeset document

More information

Beyond Stack Smashing: Recent Advances in Exploiting. Jonathan Pincus(MSR) and Brandon Baker (MS)

Beyond Stack Smashing: Recent Advances in Exploiting. Jonathan Pincus(MSR) and Brandon Baker (MS) Beyond Stack Smashing: Recent Advances in Exploiting Buffer Overruns Jonathan Pincus(MSR) and Brandon Baker (MS) Buffer Overflows and How they Occur Buffer is a contiguous segment of memory of a fixed

More information

Security and Privacy in Computer Systems. Lecture 5: Application Program Security

Security and Privacy in Computer Systems. Lecture 5: Application Program Security CS 645 Security and Privacy in Computer Systems Lecture 5: Application Program Security Buffer overflow exploits More effective buffer overflow attacks Preventing buffer overflow attacks Announcement Project

More information

Software Security: Buffer Overflow Attacks

Software Security: Buffer Overflow Attacks CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Attacks (continued) Autumn 2018 Tadayoshi (Yoshi) Kohno yoshi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann,

More information

Buffer overflows (a security interlude) Address space layout the stack discipline + C's lack of bounds-checking HUGE PROBLEM

Buffer overflows (a security interlude) Address space layout the stack discipline + C's lack of bounds-checking HUGE PROBLEM Buffer overflows (a security interlude) Address space layout the stack discipline + C's lack of bounds-checking HUGE PROBLEM x86-64 Linux Memory Layout 0x00007fffffffffff not drawn to scale Stack... Caller

More information

Buffer Overflow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Buffer Overflow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Buffer Overflow Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu IA-32/Linux Memory Layout Runtime stack (8MB limit) Heap Dynamically allocated storage

More information

Fundamentals of Linux Platform Security

Fundamentals of Linux Platform Security Fundamentals of Linux Platform Security Security Training Course Dr. Charles J. Antonelli The University of Michigan 2012 Linux Platform Security Module 8 Arbitrary Code Execution: Threats & Countermeasures

More information

Stack Overflow. Faculty Workshop on Cyber Security May 23, 2012

Stack Overflow. Faculty Workshop on Cyber Security May 23, 2012 Stack Overflow Faculty Workshop on Cyber Security May 23, 2012 Goals Learn to hack into computer systems using buffer overflow Steal sensitive data Crash computer programs Lay waste to systems throughout

More information

Secure Programming Lecture 3: Memory Corruption I (Stack Overflows)

Secure Programming Lecture 3: Memory Corruption I (Stack Overflows) Secure Programming Lecture 3: Memory Corruption I (Stack Overflows) David Aspinall, Informatics @ Edinburgh 24th January 2017 Outline Roadmap Memory corruption vulnerabilities Instant Languages and Runtimes

More information

CMSC 414 Computer and Network Security

CMSC 414 Computer and Network Security CMSC 414 Computer and Network Security Buffer Overflows Dr. Michael Marsh August 30, 2017 Trust and Trustworthiness You read: Reflections on Trusting Trust (Ken Thompson), 1984 Smashing the Stack for Fun

More information

Applications. Cloud. See voting example (DC Internet voting pilot) Select * from userinfo WHERE id = %%% (variable)

Applications. Cloud. See voting example (DC Internet voting pilot) Select * from userinfo WHERE id = %%% (variable) Software Security Requirements General Methodologies Hardware Firmware Software Protocols Procedure s Applications OS Cloud Attack Trees is one of the inside requirement 1. Attacks 2. Evaluation 3. Mitigation

More information

Software Security II: Memory Errors - Attacks & Defenses

Software Security II: Memory Errors - Attacks & Defenses 1 Software Security II: Memory Errors - Attacks & Defenses Chengyu Song Slides modified from Dawn Song 2 Administrivia Lab1 Writeup 3 Buffer overflow Out-of-bound memory writes (mostly sequential) Allow

More information

Buffer overflows. Specific topics:

Buffer overflows. Specific topics: Buffer overflows Buffer overflows are possible because C does not check array boundaries Buffer overflows are dangerous because buffers for user input are often stored on the stack Specific topics: Address

More information

ENEE 457: Computer Systems Security. Lecture 16 Buffer Overflow Attacks

ENEE 457: Computer Systems Security. Lecture 16 Buffer Overflow Attacks ENEE 457: Computer Systems Security Lecture 16 Buffer Overflow Attacks Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland, College Park Buffer overflow

More information

Other array problems. Integer overflow. Outline. Integer overflow example. Signed and unsigned

Other array problems. Integer overflow. Outline. Integer overflow example. Signed and unsigned Other array problems CSci 5271 Introduction to Computer Security Day 4: Low-level attacks Stephen McCamant University of Minnesota, Computer Science & Engineering Missing/wrong bounds check One unsigned

More information

CSE 565 Computer Security Fall 2018

CSE 565 Computer Security Fall 2018 CSE 565 Computer Security Fall 2018 Lecture 15: Software Security II Department of Computer Science and Engineering University at Buffalo 1 Software Vulnerabilities Buffer overflow vulnerabilities account

More information

I run a Linux server, so we re secure

I run a Linux server, so we re secure Silent Signal vsza@silentsignal.hu 18 September 2010 Linux from a security viewpoint we re talking about the kernel, not GNU/Linux distributions Linux from a security viewpoint we re talking about the

More information

Buffer Overflow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Buffer Overflow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Buffer Overflow Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu x86-64/linux Memory Layout Stack Runtime stack (8MB limit) Heap Dynamically allocated

More information

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Program Vulnerabilities Professor Trent Jaeger 1 Programming Why do we write programs? Function What functions do we enable via our programs?

More information

Software security, secure programming

Software security, secure programming Software security, secure programming Lecture 4: Protecting your code against software vulnerabilities? (overview) Master on Cybersecurity Master MoSiG Academic Year 2017-2018 Preamble Bad news several

More information

Buffer Overflow Attacks

Buffer Overflow Attacks Buffer Overflow Attacks 1. Smashing the Stack 2. Other Buffer Overflow Attacks 3. Work on Preventing Buffer Overflow Attacks Smashing the Stack An Evil Function void func(char* inp){ } char buffer[16];

More information

The Geometry of Innocent Flesh on the Bone

The Geometry of Innocent Flesh on the Bone The Geometry of Innocent Flesh on the Bone Return-into-libc without Function Calls (on the x86) Hovav Shacham hovav@cs.ucsd.edu CCS 07 Technical Background Gadget: a short instructions sequence (e.x. pop

More information

Buffer Overflow. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Buffer Overflow. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Buffer Overflow Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

Bypassing Browser Memory Protections

Bypassing Browser Memory Protections Bypassing Browser Memory Protections Network Security Instructor: Dr. Shishir Nagaraja September 10, 2011. 1 Introduction to the topic A number of memory protection mechanisms like GS, SafeSEH, DEP and

More information

C and C++ Secure Coding 4-day course. Syllabus

C and C++ Secure Coding 4-day course. Syllabus C and C++ Secure Coding 4-day course Syllabus C and C++ Secure Coding 4-Day Course Course description Secure Programming is the last line of defense against attacks targeted toward our systems. This course

More information

CS 161 Computer Security

CS 161 Computer Security Wagner Spring 2014 CS 161 Computer Security Midterm 1 Print your name:, (last) (first) I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be reported

More information

Roadmap: Security in the software lifecycle. Memory corruption vulnerabilities

Roadmap: Security in the software lifecycle. Memory corruption vulnerabilities Secure Programming Lecture 3: Memory Corruption I (introduction) David Aspinall, Informatics @ Edinburgh 24th January 2019 Roadmap: Security in the software lifecycle Security is considered at different

More information

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 3 Protecting Systems

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 3 Protecting Systems Security+ Guide to Network Security Fundamentals, Third Edition Chapter 3 Protecting Systems Objectives Explain how to harden operating systems List ways to prevent attacks through a Web browser Define

More information

CSE Computer Security (Fall 2006)

CSE Computer Security (Fall 2006) CSE 543 - Computer Security (Fall 2006) Lecture 22 - Language-based security November 16, 2006 URL: http://www.cse.psu.edu/~tjaeger/cse543-f06/ 1 The Morris Worm Robert Morris, a 23 doctoral student from

More information

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Program Vulnerabilities Professor Trent Jaeger 1 Programming Why do we write programs? Function What functions do we enable via our programs?

More information

ECE 471 Embedded Systems Lecture 22

ECE 471 Embedded Systems Lecture 22 ECE 471 Embedded Systems Lecture 22 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 31 October 2018 Don t forget HW#7 Announcements 1 Computer Security and why it matters for embedded

More information

Memory Safety (cont d) Software Security

Memory Safety (cont d) Software Security Memory Safety (cont d) Software Security CS 161: Computer Security Prof. Raluca Ada Popa January 17, 2016 Some slides credit to David Wagner and Nick Weaver Announcements Discussion sections and office

More information

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Week 08 Lecture 38 Preventing Buffer Overflow Attacks Hello.

More information

Smashing the Buffer. Miroslav Štampar

Smashing the Buffer. Miroslav Štampar Smashing the Buffer Miroslav Štampar (mstampar@zsis.hr) Summary BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 2 Buffer overflow (a.k.a.) Buffer overrun An anomaly where a program, while writing

More information

Stack Vulnerabilities. CS4379/5375 System Security Assurance Dr. Jaime C. Acosta

Stack Vulnerabilities. CS4379/5375 System Security Assurance Dr. Jaime C. Acosta 1 Stack Vulnerabilities CS4379/5375 System Security Assurance Dr. Jaime C. Acosta Part 1 2 3 An Old, yet Still Valid Vulnerability Buffer/Stack Overflow ESP Unknown Data (unused) Unknown Data (unused)

More information

This time. Defenses and other memory safety vulnerabilities. Everything you ve always wanted to know about gdb but were too afraid to ask

This time. Defenses and other memory safety vulnerabilities. Everything you ve always wanted to know about gdb but were too afraid to ask This time We will continue Buffer overflows By looking at Overflow Defenses and other memory safety vulnerabilities Everything you ve always wanted to know about gdb but were too afraid to ask Overflow

More information

Intrusion Detection and Malware Analysis

Intrusion Detection and Malware Analysis Intrusion Detection and Malware Analysis Host Based Attacks Pavel Laskov Wilhelm Schickard Institute for Computer Science Software security threats Modification of program code viruses and self-replicating

More information

Protection. Thierry Sans

Protection. Thierry Sans Protection Thierry Sans Protecting Programs How to lower the risk of a program security flaw resulting from a bug? 1. Build better programs 2. Build better operating systems Build Better Programs Why are

More information

Heap Off by 1 Overflow Illustrated. Eric Conrad October 2007

Heap Off by 1 Overflow Illustrated. Eric Conrad October 2007 Heap Off by 1 Overflow Illustrated Eric Conrad October 2007 1 The Attack Older CVS versions are vulnerable to an Off by 1 attack, where an attacker may insert one additional character into the heap CVS

More information

Runtime Defenses against Memory Corruption

Runtime Defenses against Memory Corruption CS 380S Runtime Defenses against Memory Corruption Vitaly Shmatikov slide 1 Reading Assignment Cowan et al. Buffer overflows: Attacks and defenses for the vulnerability of the decade (DISCEX 2000). Avijit,

More information

The first Secure Programming Laboratory will be today! 3pm-6pm in Forrest Hill labs 1.B31, 1.B32.

The first Secure Programming Laboratory will be today! 3pm-6pm in Forrest Hill labs 1.B31, 1.B32. Lab session this afternoon Memory corruption attacks Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) David Aspinall, Informatics @ Edinburgh 2nd February 2016 The first Secure Programming

More information

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Program Vulnerabilities Professor Trent Jaeger 1 1 Programming Why do we write programs? Function What functions do we enable via our programs?

More information

Topics in Software Security Vulnerability

Topics in Software Security Vulnerability Topics in Software Security Vulnerability Software vulnerability What are software vulnerabilities? Types of vulnerabilities E.g., Buffer Overflows How to find these vulnerabilities and prevent them? Classes

More information

Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions?

Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions? Jeroen van Beek 1 Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions? 2 Inadequate OS and application security: Data abuse Stolen information Bandwidth

More information

SECURE CODING PART 1 MAGDA LILIA CHELLY ENTREPRENEUR CISO ADVISOR CYBERFEMINIST PEERLYST BRAND AMBASSADOR TOP 50 CYBER CYBER

SECURE CODING PART 1 MAGDA LILIA CHELLY ENTREPRENEUR CISO ADVISOR CYBERFEMINIST PEERLYST BRAND AMBASSADOR TOP 50 CYBER CYBER SECURE CODING PART 1 MAGDA LILIA CHELLY ENTREPRENEUR CISO ADVISOR CYBERFEMINIST PEERLYST BRAND AMBASSADOR TOP 50 CYBER INFLUENCER @RESPONSIBLE CYBER 1 AGENDA 1. Introduction: What is security? How much

More information

Threat Modeling. Bart De Win Secure Application Development Course, Credits to

Threat Modeling. Bart De Win Secure Application Development Course, Credits to Threat Modeling Bart De Win bart.dewin@ascure.com Secure Application Development Course, 2009 Credits to Frank Piessens (KUL) for the slides 2 1 Overview Introduction Key Concepts Threats, Vulnerabilities,

More information

Lecture 10. Pointless Tainting? Evaluating the Practicality of Pointer Tainting. Asia Slowinska, Herbert Bos. Advanced Operating Systems

Lecture 10. Pointless Tainting? Evaluating the Practicality of Pointer Tainting. Asia Slowinska, Herbert Bos. Advanced Operating Systems Lecture 10 Pointless Tainting? Evaluating the Practicality of Pointer Tainting Asia Slowinska, Herbert Bos Advanced Operating Systems December 15, 2010 SOA/OS Lecture 10, Pointer Tainting 1/40 Introduction

More information

Secure Programming Lecture 6: Memory Corruption IV (Countermeasures)

Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) David Aspinall, Informatics @ Edinburgh 2nd February 2016 Outline Announcement Recap Containment and curtailment Tamper detection Memory

More information

Changelog. Corrections made in this version not in first posting: 1 April 2017: slide 13: a few more %c s would be needed to skip format string part

Changelog. Corrections made in this version not in first posting: 1 April 2017: slide 13: a few more %c s would be needed to skip format string part 1 Changelog 1 Corrections made in this version not in first posting: 1 April 2017: slide 13: a few more %c s would be needed to skip format string part OVER questions? 2 last time 3 memory management problems

More information

CSC 591 Systems Attacks and Defenses Stack Canaries & ASLR

CSC 591 Systems Attacks and Defenses Stack Canaries & ASLR CSC 591 Systems Attacks and Defenses Stack Canaries & ASLR Alexandros Kapravelos akaprav@ncsu.edu How can we prevent a buffer overflow? Check bounds Programmer Language Stack canaries [...more ] Buffer

More information

One-Slide Summary. Lecture Outline. Language Security

One-Slide Summary. Lecture Outline. Language Security Language Security Or: bringing a knife to a gun fight #1 One-Slide Summary A language s design principles and features have a strong influence on the security of programs written in that language. C s

More information

Language-Based Protection

Language-Based Protection Language-Based Protection Specification of protection in a programming language allows the high-level description of policies for the allocation and use of resources. Language implementation can provide

More information

CSE Computer Security

CSE Computer Security CSE 543 - Computer Security Lecture 17 - Language-based security October 25, 2007 URL: http://www.cse.psu.edu/~tjaeger/cse543-f07/ 1 Engineering Disaster? Millions of Bots Compromised applications Programming

More information

CSE 509: Computer Security

CSE 509: Computer Security CSE 509: Computer Security Date: 2.16.2009 BUFFER OVERFLOWS: input data Server running a daemon Attacker Code The attacker sends data to the daemon process running at the server side and could thus trigger

More information

Memory Corruption Vulnerabilities, Part I

Memory Corruption Vulnerabilities, Part I Memory Corruption Vulnerabilities, Part I Gang Tan Penn State University Spring 2019 CMPSC 447, Software Security Some Terminology Software error A programming mistake that make the software not meet its

More information

The Kernel Abstraction. Chapter 2 OSPP Part I

The Kernel Abstraction. Chapter 2 OSPP Part I The Kernel Abstraction Chapter 2 OSPP Part I Kernel The software component that controls the hardware directly, and implements the core privileged OS functions. Modern hardware has features that allow

More information

Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions?

Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions? Jeroen van Beek 1 Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions? 2 Inadequate OS and application security: Data abuse Stolen information Bandwidth

More information

Lab 2: Buffer Overflows

Lab 2: Buffer Overflows Department of Computer Science: Cyber Security Practice Lab 2: Buffer Overflows Introduction In this lab, you will learn how buffer overflows and other memory vulnerabilities are used to takeover vulnerable

More information

CSc 466/566. Computer Security. 20 : Operating Systems Application Security

CSc 466/566. Computer Security. 20 : Operating Systems Application Security 1/68 CSc 466/566 Computer Security 20 : Operating Systems Application Security Version: 2014/11/20 13:07:28 Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2014 Christian

More information

Computer Security. 04r. Pre-exam 1 Concept Review. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 04r. Pre-exam 1 Concept Review. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 04r. Pre-exam 1 Concept Review Paul Krzyzanowski Rutgers University Spring 2018 February 15, 2018 CS 419 2018 Paul Krzyzanowski 1 Key ideas from the past four lectures February 15, 2018

More information

Lecture 08 Control-flow Hijacking Defenses

Lecture 08 Control-flow Hijacking Defenses Lecture 08 Control-flow Hijacking Defenses Stephen Checkoway University of Illinois at Chicago CS 487 Fall 2017 Slides adapted from Miller, Bailey, and Brumley Control Flow Hijack: Always control + computation

More information

SoK: Eternal War in Memory

SoK: Eternal War in Memory SoK: Eternal War in Memory László Szekeres, Mathias Payer, Tao Wei, Dawn Song Presenter: Wajih 11/7/2017 Some slides are taken from original S&P presentation 1 What is SoK paper? Systematization of Knowledge

More information

Outline. Classic races: files in /tmp. Race conditions. TOCTTOU example. TOCTTOU gaps. Vulnerabilities in OS interaction

Outline. Classic races: files in /tmp. Race conditions. TOCTTOU example. TOCTTOU gaps. Vulnerabilities in OS interaction Outline CSci 5271 Introduction to Computer Security Day 3: Low-level vulnerabilities Stephen McCamant University of Minnesota, Computer Science & Engineering Race conditions Classic races: files in /tmp

More information

EURECOM 6/2/2012 SYSTEM SECURITY Σ

EURECOM 6/2/2012 SYSTEM SECURITY Σ EURECOM 6/2/2012 Name SYSTEM SECURITY 5 5 5 5 5 5 5 5 5 5 50 1 2 3 4 5 6 7 8 9 10 Σ Course material is not allowed during the exam. Try to keep your answers precise and short. You will not get extra points

More information

Hacking Blind BROP. Presented by: Brooke Stinnett. Article written by: Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazie`res, Dan Boneh

Hacking Blind BROP. Presented by: Brooke Stinnett. Article written by: Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazie`res, Dan Boneh Hacking Blind BROP Presented by: Brooke Stinnett Article written by: Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazie`res, Dan Boneh Overview Objectives Introduction to BROP ROP recap BROP key phases

More information

Secure Coding in C and C++

Secure Coding in C and C++ Secure Coding in C and C++ Robert C. Seacord AAddison-Wesley Upper Saddle River, NJ Boston Indianapolis San Francisco New York Toronto Montreal London Munich Paris Madrid Capetown Sydney Tokyo Singapore

More information

CSC 591 Systems Attacks and Defenses Return-into-libc & ROP

CSC 591 Systems Attacks and Defenses Return-into-libc & ROP CSC 591 Systems Attacks and Defenses Return-into-libc & ROP Alexandros Kapravelos akaprav@ncsu.edu NOEXEC (W^X) 0xFFFFFF Stack Heap BSS Data 0x000000 Code RW RX Deployment Linux (via PaX patches) OpenBSD

More information