The A ssembly Assembly Language Level Chapter 7 1

Size: px
Start display at page:

Download "The A ssembly Assembly Language Level Chapter 7 1"

Transcription

1 The Assembly Language Level Chapter 7 1

2 Contemporary Multilevel Machines A six-level l computer. The support method for each level is indicated below it.2

3 Assembly Language Level a) It is implemented by translation rather than interpretation. b) Programs that convert a user s program written in some language to anther language are called translator. c) The language in which h the original i program is written is called the source language and the language to which it is converted is called the target language. d) Translation is used when a processor is available for the target t language but not for the source language. 3

4 Assembly Language Level a) In translation, the original program is converted to an equivalent program called an object program whose execution is carried out only after the translation has been completed. b) In interpretation, there is only one step: executing the original source program. No equivalent program needs to be generated first. 4

5 Translator a) Translator can be roughly divided into two groups. b) When the source language is essentially a symbolic representation for a numerical machine language, the translator is called an assembler and the source language is called an assembly language. c) When the source language is a high-level language and the target t language is either a numerical machine language or a symbolic one, the translator is called a compiler. 5

6 Assembly Language a) A pure assembly language is a language in which each statement produces exactly one machine instruction. b) It is much easy to program in symbolic forms. c) The assembly programmer has access to all the features and instructions available on the target machine. d) An assembly language program can run only on one family of machines, whereas a program written in a high-level language can potentially run on many machines. 6

7 Why Use Assembly Language? a) Performance b) Access to the machine 7

8 Why Use Assembly Language? Comparison of assembly language and high level language Comparison of assembly language and high-level language programming, with and without tuning. 8

9 Format of an Assembly Language Statement (1) Computation ti of N = I + J. (a) Pentium 4. 9

10 Format of an Assembly Language Statement (2) Computation ti of N = I + J. (b) Motorola 680x

11 Format of an Assembly Language Statement (3) Computation ti of N = I + J. (c) SPARC. 11

12 Pseudoinstructions a) In addition to specifying which machine instructions to execute, an assembly language g program can also contain commands to the assembler itself. b) Commends to the assembler itself are called pseudoinstructions or sometimes assembler directives. 12

13 Pseudoinstructions (1) Some of the pseudoinstructions available in the Some of the pseudoinstructions available in the Pentium 4 assembler (MASM). 13

14 Pseudoinstructions (2) Some of the pseudoinstructions available in the Some of the pseudoinstructions available in the Pentium 4 assembler (MASM). 14

15 Macros a) Assembly language programmers frequently need to repeat sequences of instructions several times within a program. b) A way is to make the sequence into a procedure and call it wherever it is needed. But it requires a procedure call instruction and a return instruction. c) A macro definition is a way to give a name to a piece of text. After a macro has been defined, the programmer can write the macro name instead of the piece of program. d) A macro is an abbreviation for a piece of text. 15

16 Macro Definition, Call, Expansion (1) Assembly language code for interchanging P and Q twice Assembly language code for interchanging P and Q twice. (a) Without a macro. (b) With a macro. 16

17 Macros a) A macro header gives the name of the macro. b) The text comprises the body of the macro. c) A pseudoinstruction marks the end of the definition. d) When the assembler encounters a macro definition, it saves it in a macro definition table for subsequent use. e) The use of a macro name as an opcode is known as a macro call and its replacement by the macro body is called macro expansion. 17

18 Macro Definition, Call, Expansion (2) Comparison of macro calls with procedure calls. 18

19 Macros with Parameters Formal parameters At Actual parameters Nearly identical sequences of statements. (a) Without a macro. (b) With a macro. 19

20 Advanced Features a) Avoid label duplication to allow a label to be declared local, with the assembler automatically generating a different label on each expansion of the macro. 20

21 The Assembly Process a) It might seen natural to have an assembler that reads one statement, then translates it to machine language, and finally outputs the generated machine language onto a file. Unfortunately, this strategy does not work. b) A branch to L, can not be assembled until the address of statement L is known. Forward reference problem a reference has been made to a symbol whose definition will only occur later. 21

22 The Assembly Process a) The assembler may in fact read the source program twice. Two pass. The translator that reads the input program twice is called a two-pass translator. t b) On pass one, the definitions of symbols, including statement labels, are collected and stored in a table. By the time the second pass begins, the values of all symbols are known; thus no forward reference remains and each statement can be read, assembled, and output. c) Another approach consists of reading the assembly program once, converting it to an intermediate form, and storing this form in a table in memory. Then a second pass is made over the table instead of over the source program. (need enough memory) 22

23 Two Pass Assemblers (1) The instruction location counter (ILC) keeps track of the address where the instructions will be loaded in memory. In this example, the statements prior to MARIA occupy 100 bytes. 23

24 Two Pass Assemblers (2) A symbol table for the program of Fig

25 Two Pass Assemblers (3) A few excerpts from the opcode table for a Pentium 4 assembler. 25

26 Pass One (1)... Pass one of a simple assembler. 26

27 ... Pass One (2)... Pass one of a simple assembler. 27

28 Pass One (3)... Pass one of a simple assembler. 28

29 Pass Two a) The function of pass two is to generate the object program and possibly print the assembly listing. b) In addition, pass two must output certain information needed by the linker for linking up procedures assembled at different times into a single executable file. 29

30 Pass Two (1)... Pass two of a simple assembler. 30

31 ... Pass Two (2) Pass two of a simple assembler. 31

32 The Symbol Table a) During pass one, the assembler accumulates information about symbols and their values that must be stored in the symbol table for lookup during pass two. b) All the organizing methods attempt to simulate an associative memory, which conceptually is a set of pairs (symbol, value). c) The simplest implementation is to implement the symbol table as an array of pairs. On average, half of the table will have to be searched on each lookup. d) Binary search A table of size n entries can be searched in d) Binary search A table of size n entries can be searched in about log 2 n attempts. 32

33 The Symbol Table (1) Hash coding. (a) Symbols, values, and the hash codes derived from the symbols. 33

34 The Symbol Table (2) Hash coding. (b) Eight-entry hash table with linked lists of symbols and values. 34

35 a) With n symbols and k slots in the hash table, the average list will have length n/k. b) By choosing k approximately equal to n, symbols can be located with only about one lookup on the average. c) By adjusting k we can reduce table size at the expense of slower lookups. 35

36 Linking and Loading a) Most program consists of more than on e procedure. b) Compilers and assemblers generally translate one procedure at a time and put the translated output on disk. c) Before the program can be run, all the translated procedures must tbe found and dlinked dtogether th properly. d) Programs that perform these functions are called linkers. 36

37 Linking and Loading Generation of an executable binary program from a collection of Generation of an executable binary program from a collection of independently translated source procedures requires using a linker. 37

38 Linker a) The linker s function is to collect procedures translated separately and link them together to be run as an executable binary program. b) The translation from source procedure to object module represents a change of level. The linking process, however, does not represent a change of level, since both the linker s input and the linker s output are programs for the same virtual machine. c) The two-step process of translating and linking can save a great deal of time during the development of a program. 38

39 Tasks Performed by the Linker (1) Each module has its own address space, starting ti at 0. 39

40 Tasks Performed by the Linker (2) Each module has its own address space, starting ti at 0. 40

41 Tasks Performed by the Linker (3) Each module has its own address space, starting ti at 0. 41

42 Tasks Performed by the Linker (4) Each module has its own address space, starting ti at 0. 42

43 Tasks Performed by the Linker (5) The object modules of Fig after being positioned in the binary image but before being relocated and linked. 43

44 Tasks Performed by the Linker (6) The same object modules after linking and after relocation has been performed. Together they form an executable binary program, ready to run 44

45 Linking Steps a) It constructs a table of all the object modules and their lengths. b) Based on this table, it assigns a starting address to each object module. c) It finds all the instructions that reference memory and adds to each a relocation constant equal to the starting address of its module. d) It finds all the instructions that reference other procedures d) ds a e s uc o s a e e e ce o e p ocedu es and inserts the address of these procedures in place. 45

46 Structure of an Object Module The internal structure of an object module produced by a translator. 46

47 Dynamic Linking a) A more flexible way to link separately compiled procedures is to link each procedure at the time it is first called. b) This process is known as dynamic linking. 47

48 Binding Time and Dynamic Relocation The relocated binary program of Fig 7 15(b) moved up 300 addresses The relocated binary program of Fig. 7-15(b) moved up 300 addresses. Many instructions now refer to an incorrect memory address. 48

49 Dynamic Linking in MULTICS (1) Before EARTH is called. 49

50 Dynamic Linking in MULTICS (2) After EARTH has been called and linked. 50

51 Dynamic Linking in Windows Use of a DLL file by two processes. 51

The Assembly Language Level. Chapter 7

The Assembly Language Level. Chapter 7 The Assembly Language Level Chapter 7 Definitions Translator Converts user program to another language Source language Language of original program Target language Language into which source code is converted

More information

Computer Organization & Assembly Language Programming

Computer Organization & Assembly Language Programming Computer Organization & Assembly Language Programming CSE 2312 Lecture 11 Introduction of Assembly Language 1 Assembly Language Translation The Assembly Language layer is implemented by translation rather

More information

Compiler, Assembler, and Linker

Compiler, Assembler, and Linker Compiler, Assembler, and Linker Minsoo Ryu Department of Computer Science and Engineering Hanyang University msryu@hanyang.ac.kr What is a Compilation? Preprocessor Compiler Assembler Linker Loader Contents

More information

Intermediate Programming & Design (C++) Notation

Intermediate Programming & Design (C++) Notation Notation Byte = 8 bits (a sequence of 0 s and 1 s) To indicate larger amounts of storage, some prefixes taken from the metric system are used One kilobyte (KB) = 2 10 bytes = 1024 bytes 10 3 bytes One

More information

UNIT I - INTRODUCTION

UNIT I - INTRODUCTION UNIT I - INTRODUCTION 1. Define system software. It consists of variety of programs that supports the operation of the computer. This software makes it possible for the user to focus on the other problems

More information

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language The x86 Microprocessors Introduction 1.1 Assembly Language Numbering and Coding Systems Human beings use the decimal system (base 10) Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Computer systems use the

More information

Language Translation. Compilation vs. interpretation. Compilation diagram. Step 1: compile. Step 2: run. compiler. Compiled program. program.

Language Translation. Compilation vs. interpretation. Compilation diagram. Step 1: compile. Step 2: run. compiler. Compiled program. program. Language Translation Compilation vs. interpretation Compilation diagram Step 1: compile program compiler Compiled program Step 2: run input Compiled program output Language Translation compilation is translation

More information

Memory and multiprogramming

Memory and multiprogramming Memory and multiprogramming COMP342 27 Week 5 Dr Len Hamey Reading TW: Tanenbaum and Woodhull, Operating Systems, Third Edition, chapter 4. References (computer architecture): HP: Hennessy and Patterson

More information

AS-2883 B.Sc.(Hon s)(fifth Semester) Examination,2013 Computer Science (PCSC-503) (System Software) [Time Allowed: Three Hours] [Maximum Marks : 30]

AS-2883 B.Sc.(Hon s)(fifth Semester) Examination,2013 Computer Science (PCSC-503) (System Software) [Time Allowed: Three Hours] [Maximum Marks : 30] AS-2883 B.Sc.(Hon s)(fifth Semester) Examination,2013 Computer Science (PCSC-503) (System Software) [Time Allowed: Three Hours] [Maximum Marks : 30] Note: Question Number 1 is compulsory. Marks : 10X1

More information

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1 Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1 Chapter 9: Memory Management Background Swapping Contiguous Memory Allocation Segmentation

More information

UNIT II ASSEMBLERS. Figure Assembler

UNIT II ASSEMBLERS. Figure Assembler 2.1 Basic assembler functions UNIT II ASSEMBLERS Assembler Assembler which converts assembly language programs into object files. Object files contain a combination of machine instructions, data, and information

More information

Homework #6 Problems 1, 5, 9, 11, 13, 23 from textbook.

Homework #6 Problems 1, 5, 9, 11, 13, 23 from textbook. Homework #6 Problems 1, 5, 9, 11, 13, 23 from textbook. 1. A certain program, 1% of the code accounts for 50% of the execution time. Compare the following three strategies with respect to programming time

More information

ST. XAVIER S COLLEGE

ST. XAVIER S COLLEGE ST. XAVIER S COLLEGE MAITIGHAR, KATHMANDU Compiler Design and Construction Lab Assignment #1 Submitted by: Aashish Raj Shrestha 013BSCCSIT002 Submitted to: Mr. Ramesh Shahi Lecturer, Department of Computer

More information

Chapter 3 Loaders and Linkers

Chapter 3 Loaders and Linkers Chapter 3 Loaders and Linkers Outline 3.1 Basic Loader Functions 3.2 Machine-Dependent Loader Features 3.3 Machine-Independent Loader Features 3.4 Loader Design Options 3.5 Implementation Examples Introduction

More information

We briefly explain an instruction cycle now, before proceeding with the details of addressing modes.

We briefly explain an instruction cycle now, before proceeding with the details of addressing modes. Addressing Modes This is an important feature of computers. We start with the known fact that many instructions have to include addresses; the instructions should be short, but addresses tend to be long.

More information

Lecture #2 January 30, 2004 The 6502 Architecture

Lecture #2 January 30, 2004 The 6502 Architecture Lecture #2 January 30, 2004 The 6502 Architecture In order to understand the more modern computer architectures, it is helpful to examine an older but quite successful processor architecture, the MOS-6502.

More information

UNIT III - LOADERS AND LINKERS

UNIT III - LOADERS AND LINKERS 3.1 Introduction to Loaders UNIT III - LOADERS AND LINKERS A loader is the part of an operating system that is responsible for loading programs into memory and prepares them for execution. Loading a program

More information

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction

More information

Computer Organization & Assembly Language Programming. CSE 2312 Lecture 15 Addressing and Subroutine

Computer Organization & Assembly Language Programming. CSE 2312 Lecture 15 Addressing and Subroutine Computer Organization & Assembly Language Programming CSE 2312 Lecture 15 Addressing and Subroutine 1 Sections in 8088 Code TEXT section, for the processor instructions. DATA section for the initialization

More information

Chapter 3 Loaders and Linkers

Chapter 3 Loaders and Linkers Chapter 3 Loaders and Linkers Outline 3.1 Basic Loader Functions 3.2 Machine-Dependent Loader Features 3.3 Machine-Independent Loader Features 3.4 Loader Design Options 3.5 Implementation Examples Introduction

More information

Monday, February 16, 2015

Monday, February 16, 2015 Monday, February 16, 2015 Topics for today How assemblers work Symbol tables ILC Pass 1 algorithm, Error checking Pass 2 Immediate mode and equate Assembler variants: Disassembler, Cross assembler Macros

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com CHAPTER -2 2.1 Basic Assembler Functions: The basic assembler functions are: ASSEMBLERS-1 Translating mnemonic language code to its equivalent object code. Assigning machine addresses to symbolic labels.

More information

A Set Of Machine Language Instructions For A Program Is Called Source Code >>>CLICK HERE<<<

A Set Of Machine Language Instructions For A Program Is Called Source Code >>>CLICK HERE<<< A Set Of Machine Language Instructions For A Program Is Called Source Code In computing, an executable file or executable program, or sometimes simply an These instructions are traditionally machine code

More information

CSCI341. Lecture 22, MIPS Programming: Directives, Linkers, Loaders, Memory

CSCI341. Lecture 22, MIPS Programming: Directives, Linkers, Loaders, Memory CSCI341 Lecture 22, MIPS Programming: Directives, Linkers, Loaders, Memory REVIEW Assemblers understand special commands called directives Assemblers understand macro commands Assembly programs become

More information

Chapter 2. Assembler Design

Chapter 2. Assembler Design Chapter 2 Assembler Design Assembler is system software which is used to convert an assembly language program to its equivalent object code. The input to the assembler is a source code written in assembly

More information

Chapter 7 Subroutines. Richard P. Paul, SPARC Architecture, Assembly Language Programming, and C

Chapter 7 Subroutines. Richard P. Paul, SPARC Architecture, Assembly Language Programming, and C Chapter 7 Subroutines Richard P. Paul, SPARC Architecture, Assembly Language Programming, and C 2 Subroutines Subroutines allow us to either to repeat a computation or to repeat the computation with different

More information

CS2304-SYSTEM SOFTWARE 2 MARK QUESTION & ANSWERS. UNIT I INTRODUCTION

CS2304-SYSTEM SOFTWARE 2 MARK QUESTION & ANSWERS. UNIT I INTRODUCTION CS2304-SYSTEM SOFTWARE 2 MARK QUESTION & ANSWERS. UNIT I INTRODUCTION 1. Define System Software. System software consists of a variety of programs that supports the operations of a computer. Eg. Compiler,

More information

Cache Memory Mapping Techniques. Continue to read pp

Cache Memory Mapping Techniques. Continue to read pp Cache Memory Mapping Techniques Continue to read pp. 289-305 Cache Memory Mapping Again cache memory is a small and fast memory between CPU and main memory A block of words have to be brought in and out

More information

Chapter 5 Hashing. Introduction. Hashing. Hashing Functions. hashing performs basic operations, such as insertion,

Chapter 5 Hashing. Introduction. Hashing. Hashing Functions. hashing performs basic operations, such as insertion, Introduction Chapter 5 Hashing hashing performs basic operations, such as insertion, deletion, and finds in average time 2 Hashing a hash table is merely an of some fixed size hashing converts into locations

More information

SPOS MODEL ANSWER MAY 2018

SPOS MODEL ANSWER MAY 2018 SPOS MODEL ANSWER MAY 2018 Q 1. a ) Write Algorithm of pass I of two pass assembler. [5] Ans :- begin if starting address is given LOCCTR = starting address; else LOCCTR = 0; while OPCODE!= END do ;; or

More information

PSD1C SYSTEM SOFTWAE UNIT: I - V PSD1C SYSTEM SOFTWARE

PSD1C SYSTEM SOFTWAE UNIT: I - V PSD1C SYSTEM SOFTWARE PSD1C SYSTEM SOFTWAE UNIT: I - V 1 Syllabus Unit-I Language Processors Types of Language Processors Language Processing Activities Fundamentals of Language Processing Language Specification Data Structures

More information

Chapter 3 Loaders and Linkers

Chapter 3 Loaders and Linkers Chapter 3 Loaders and Linkers Three fundamental processes: Loading brings the object program into memory for execution. Relocation modifies the object program so that it can be loaded at an address different

More information

Chapter 9 Memory Management

Chapter 9 Memory Management Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual

More information

Chapter 4 The Components of the System Unit

Chapter 4 The Components of the System Unit Chapter 4 The Components of the System Unit The System Unit What is the system unit? Case that contains electronic components of the computer used to process data Sometimes called the chassis p. 184 Fig.

More information

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358 Memory Management Reading: Silberschatz chapter 9 Reading: Stallings chapter 7 1 Outline Background Issues in Memory Management Logical Vs Physical address, MMU Dynamic Loading Memory Partitioning Placement

More information

COPYRIGHTED MATERIAL. What Is Assembly Language? Processor Instructions

COPYRIGHTED MATERIAL. What Is Assembly Language? Processor Instructions What Is Assembly Language? One of the first hurdles to learning assembly language programming is understanding just what assembly language is. Unlike other programming languages, there is no one standard

More information

The Operating System. Chapter 6

The Operating System. Chapter 6 The Operating System Machine Level Chapter 6 1 Contemporary Multilevel Machines A six-level l computer. The support method for each level is indicated below it.2 Operating System Machine a) Operating System

More information

UNIT III LOADERS AND LINKERS

UNIT III LOADERS AND LINKERS UNIT III LOADERS AND LINKERS INTRODUCTION Loader is a system program that performs the loading function. Many loaders also support relocation and linking. Some systems have a linker (linkage editor) to

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION Lecture 16 Executing Programs: Compiling, Assembling, Linking and Loading I Dr. Rahul Singh Project #2 Due May 29 at 5 PM Submit via email Project #3 Due June 5, 5pm Submit

More information

The Little Man Computer - Interface

The Little Man Computer - Interface The Little Man Computer - Interface 1. Assembly Language goes here 2. Click ʻCompileʼ 3. Instructions appear as 3-digit opcodes here 4. You can RUN the program, watch it run SLOWly or STEP through the

More information

Introduction. hashing performs basic operations, such as insertion, better than other ADTs we ve seen so far

Introduction. hashing performs basic operations, such as insertion, better than other ADTs we ve seen so far Chapter 5 Hashing 2 Introduction hashing performs basic operations, such as insertion, deletion, and finds in average time better than other ADTs we ve seen so far 3 Hashing a hash table is merely an hashing

More information

Today: Segmentation. Last Class: Paging. Costs of Using The TLB. The Translation Look-aside Buffer (TLB)

Today: Segmentation. Last Class: Paging. Costs of Using The TLB. The Translation Look-aside Buffer (TLB) Last Class: Paging Process generates virtual addresses from 0 to Max. OS divides the process onto pages; manages a page table for every process; and manages the pages in memory Hardware maps from virtual

More information

1 Little Man Computer

1 Little Man Computer 1 Little Man Computer Session 5 Reference Notes CPU Architecture and Assembly 1.1 Versions Little Man Computer is a widely used simulator of a (very simple) computer. There are a number of implementations.

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Short Notes of CS201

Short Notes of CS201 #includes: Short Notes of CS201 The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with < and > if the file is a system

More information

Model Answer of System Software B. Tech. (4 th Semester Examination) Paper Code: AR Branch: Information Technology

Model Answer of System Software B. Tech. (4 th Semester Examination) Paper Code: AR Branch: Information Technology Model Answer of System Software B. Tech. (4 th Semester Examination) Paper Code: AR-9083 Branch: Information Technology Time Allowed: 3hours Maximum Marks: 100 Part-A (All questions are compulsory) Objective

More information

COMPILER DESIGN. For COMPUTER SCIENCE

COMPILER DESIGN. For COMPUTER SCIENCE COMPILER DESIGN For COMPUTER SCIENCE . COMPILER DESIGN SYLLABUS Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation. ANALYSIS OF GATE PAPERS Exam

More information

CS201 - Introduction to Programming Glossary By

CS201 - Introduction to Programming Glossary By CS201 - Introduction to Programming Glossary By #include : The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with

More information

Computer Hardware and System Software Concepts

Computer Hardware and System Software Concepts Computer Hardware and System Software Concepts Introduction to concepts of System Software/Operating System Welcome to this course on Computer Hardware and System Software Concepts 1 RoadMap Introduction

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

MIPS (SPIM) Assembler Syntax

MIPS (SPIM) Assembler Syntax MIPS (SPIM) Assembler Syntax Comments begin with # Everything from # to the end of the line is ignored Identifiers are a sequence of alphanumeric characters, underbars (_), and dots () that do not begin

More information

For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to

For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to access them. Contents at a Glance About the Author...xi

More information

EECE416 :Microcomputer Fundamentals and Design. X86 Assembly Programming Part 1. Dr. Charles Kim

EECE416 :Microcomputer Fundamentals and Design. X86 Assembly Programming Part 1. Dr. Charles Kim EECE416 :Microcomputer Fundamentals and Design X86 Assembly Programming Part 1 Dr. Charles Kim Department of Electrical and Computer Engineering Howard University www.mwftr.com 1 Multiple Address Access

More information

CPU ARCHITECTURE. QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system.

CPU ARCHITECTURE. QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system. CPU ARCHITECTURE QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system. ANSWER 1 Data Bus Width the width of the data bus determines the number

More information

The Procedure Abstraction Part I: Basics

The Procedure Abstraction Part I: Basics The Procedure Abstraction Part I: Basics Procedure Abstraction Begins Chapter 6 in EAC The compiler must deal with interface between compile time and run time Most of the tricky issues arise in implementing

More information

Executing Legacy Applications on a Java Operating System

Executing Legacy Applications on a Java Operating System Executing Legacy Applications on a Java Operating System Andreas Gal, Michael Yang, Christian Probst, and Michael Franz University of California, Irvine {gal,mlyang,probst,franz}@uci.edu May 30, 2004 Abstract

More information

Computer Software: Introduction

Computer Software: Introduction Software: A collection of programs Computer Software: Introduction Program: Sequence of instructions for the computer to carry out Programs written using a programming language Types of languages: Machine

More information

Compile: compiler. Load: loader. compiler linker loader memory. source object load code module module 2

Compile: compiler. Load: loader. compiler linker loader memory. source object load code module module 2 Part III Storage Management Chapter 8: Memory Management Fall 2010 1 Address Generation Address generation has three stages: Compile: compiler Link: linker or linkage editor Load: loader compiler linker

More information

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit Slides prepared by Kip R. Irvine Revision date: 09/25/2002

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 5: Processors Our goal: understand basics of processors and CPU understand the architecture of MARIE, a model computer a close look at the instruction

More information

Page Table Structure. Hierarchical Paging. Hashed Page Tables. Inverted Page Tables

Page Table Structure. Hierarchical Paging. Hashed Page Tables. Inverted Page Tables Page Table Structure Hierarchical Paging Hashed Page Tables Inverted Page Tables 1 Hierarchical Page Tables Problem: for very large logical address spaces (2 32 and 2 64 ) the page table itself becomes

More information

[07] SEGMENTATION 1. 1

[07] SEGMENTATION 1. 1 [07] SEGMENTATION 1. 1 OUTLINE Segmentation An Alternative to Paging Implementing Segments Segment Table Lookup Algorithm Protection and Sharing Sharing Subtleties External Fragmentation Segmentation vs

More information

FILE SYSTEMS. CS124 Operating Systems Winter , Lecture 23

FILE SYSTEMS. CS124 Operating Systems Winter , Lecture 23 FILE SYSTEMS CS124 Operating Systems Winter 2015-2016, Lecture 23 2 Persistent Storage All programs require some form of persistent storage that lasts beyond the lifetime of an individual process Most

More information

390 Chapter 8 Main Memory

390 Chapter 8 Main Memory 390 Chapter 8 Main Memory information (pages or segments) that can be shared. Sharing is a means of running many processes with a limited amount of memory, but shared programs and data must be designed

More information

Chapter 11. Instruction Sets: Addressing Modes and Formats. Yonsei University

Chapter 11. Instruction Sets: Addressing Modes and Formats. Yonsei University Chapter 11 Instruction Sets: Addressing Modes and Formats Contents Addressing Pentium and PowerPC Addressing Modes Instruction Formats Pentium and PowerPC Instruction Formats 11-2 Common Addressing Techniques

More information

Chapter 18. Indexing Structures for Files. Chapter Outline. Indexes as Access Paths. Primary Indexes Clustering Indexes Secondary Indexes

Chapter 18. Indexing Structures for Files. Chapter Outline. Indexes as Access Paths. Primary Indexes Clustering Indexes Secondary Indexes Chapter 18 Indexing Structures for Files Chapter Outline Types of Single-level Ordered Indexes Primary Indexes Clustering Indexes Secondary Indexes Multilevel Indexes Dynamic Multilevel Indexes Using B-Trees

More information

Computer Architecture and Organization. Instruction Sets: Addressing Modes and Formats

Computer Architecture and Organization. Instruction Sets: Addressing Modes and Formats Computer Architecture and Organization Instruction Sets: Addressing Modes and Formats Addressing Modes Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack Immediate Addressing

More information

by Pearson Education, Inc. All Rights Reserved.

by Pearson Education, Inc. All Rights Reserved. Programmers write instructions in various programming languages, some directly understandable by computers and others requiring intermediate translation steps. Computer languages may be divided into three

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 Running a Program I 2004-03-03 Wannabe Lecturer Alexandre Joly inst.eecs.berkeley.edu/~cs61c-te Overview Interpretation vs Translation

More information

Indexing and Hashing

Indexing and Hashing C H A P T E R 1 Indexing and Hashing This chapter covers indexing techniques ranging from the most basic one to highly specialized ones. Due to the extensive use of indices in database systems, this chapter

More information

CSE 504: Compiler Design. Intermediate Representations Symbol Table

CSE 504: Compiler Design. Intermediate Representations Symbol Table Intermediate Representations Symbol Table Pradipta De pradipta.de@sunykorea.ac.kr Current Topic Intermediate Representations Graphical IRs Linear IRs Symbol Table Information in a Program Compiler manages

More information

Review. Disassembly is simple and starts by decoding opcode field. Lecture #13 Compiling, Assembly, Linking, Loader I

Review. Disassembly is simple and starts by decoding opcode field. Lecture #13 Compiling, Assembly, Linking, Loader I CS61C L13 CALL I (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #13 Compiling, Assembly, Linking, Loader I 2008-7-14 Albert Chae, Instructor Review Disassembly is simple and starts

More information

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium Main Memory Outlook Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium 2 Backgound Background So far we considered how to share

More information

The statement above assumes that the PCMAC.INC file is in the current directory. The full path of the file can also be given:

The statement above assumes that the PCMAC.INC file is in the current directory. The full path of the file can also be given: MACROS for I/O As you have probably noticed, writing DOS calls can become tedious. Much of the code is repetitive, and each call has its own function code and register usage. You are probably used to dealing

More information

The Instruction Set. Chapter 5

The Instruction Set. Chapter 5 The Instruction Set Architecture Level(ISA) Chapter 5 1 ISA Level The ISA level l is the interface between the compilers and the hardware. (ISA level code is what a compiler outputs) 2 Memory Models An

More information

The Design of Very Fast Portable Compilers

The Design of Very Fast Portable Compilers The Design of Very Fast Portable Compilers Andrew S. Tanenbaum M. Frans Kaashoek Koen G. Langendoen* Ceriel J.H. Jacobs** Department of Mathematics and Computer Science Vfije Universiteit Amsterdam, The

More information

Chapter Overview. Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts. Printing this Slide Show

Chapter Overview. Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts. Printing this Slide Show Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 1: Basic Concepts Chapter Overview Welcome to Assembly Language Virtual Machine Concept Data Representation Boolean Operations

More information

A Cache Hierarchy in a Computer System

A Cache Hierarchy in a Computer System A Cache Hierarchy in a Computer System Ideally one would desire an indefinitely large memory capacity such that any particular... word would be immediately available... We are... forced to recognize the

More information

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE DECEMBER 2012

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE DECEMBER 2012 Q2a. What are the various actions an operating system performs when a new process is created? Explain four fundamental states for a process using a state transition diagram. Ans 2a. As a process executes,

More information

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram:

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: The CPU and Memory How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: 1 Registers A register is a permanent storage location within

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

Introduction to Java Programming

Introduction to Java Programming Introduction to Java Programming Lecture 1 CGS 3416 Spring 2017 1/9/2017 Main Components of a computer CPU - Central Processing Unit: The brain of the computer ISA - Instruction Set Architecture: the specific

More information

RAID SEMINAR REPORT /09/2004 Asha.P.M NO: 612 S7 ECE

RAID SEMINAR REPORT /09/2004 Asha.P.M NO: 612 S7 ECE RAID SEMINAR REPORT 2004 Submitted on: Submitted by: 24/09/2004 Asha.P.M NO: 612 S7 ECE CONTENTS 1. Introduction 1 2. The array and RAID controller concept 2 2.1. Mirroring 3 2.2. Parity 5 2.3. Error correcting

More information

Q. P. Code : b. Draw and explain the block dig of a computer with microprocessor as CPU.

Q. P. Code : b. Draw and explain the block dig of a computer with microprocessor as CPU. Q. P. Code : 08235 (2½ Hours) [Total Marks: 75] N. B.: (1) All questions are compulsory. (2) Make suitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering ECE260: Fundamentals of Computer Engineering Translation of High-Level Languages James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania ECE260: Fundamentals of Computer Engineering

More information

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley s companion website (including textbook images, when not explicitly

More information

Topic Notes: MIPS Instruction Set Architecture

Topic Notes: MIPS Instruction Set Architecture Computer Science 220 Assembly Language & Comp. Architecture Siena College Fall 2011 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture.

More information

Main Memory CHAPTER. Exercises. 7.9 Explain the difference between internal and external fragmentation. Answer:

Main Memory CHAPTER. Exercises. 7.9 Explain the difference between internal and external fragmentation. Answer: 7 CHAPTER Main Memory Exercises 7.9 Explain the difference between internal and external fragmentation. a. Internal fragmentation is the area in a region or a page that is not used by the job occupying

More information

Chapter 18 Indexing Structures for Files. Indexes as Access Paths

Chapter 18 Indexing Structures for Files. Indexes as Access Paths Chapter 18 Indexing Structures for Files Indexes as Access Paths A single-level index is an auxiliary file that makes it more efficient to search for a record in the data file. The index is usually specified

More information

Assembly Language. Lecture 2 - x86 Processor Architecture. Ahmed Sallam

Assembly Language. Lecture 2 - x86 Processor Architecture. Ahmed Sallam Assembly Language Lecture 2 - x86 Processor Architecture Ahmed Sallam Introduction to the course Outcomes of Lecture 1 Always check the course website Don t forget the deadline rule!! Motivations for studying

More information

The basic operations defined on a symbol table include: free to remove all entries and free the storage of a symbol table

The basic operations defined on a symbol table include: free to remove all entries and free the storage of a symbol table SYMBOL TABLE: A symbol table is a data structure used by a language translator such as a compiler or interpreter, where each identifier in a program's source code is associated with information relating

More information

Why Study Assembly Language?

Why Study Assembly Language? Why Study Assembly Language? This depends on the decade in which you studied assembly language. 1940 s You cannot study assembly language. It does not exist yet. 1950 s You study assembly language because,

More information

UNIT 4. Modular Programming

UNIT 4. Modular Programming 1 UNIT 4. Modular Programming Program is composed from several smaller modules. Modules could be developed by separate teams concurrently. The modules are only assembled producing.obj modules (Object modules).

More information

Review (1/2) IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with. CS61C - Machine Structures

Review (1/2) IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with. CS61C - Machine Structures Review (1/2) CS61C - Machine Structures Lecture 11 - Starting a Program October 4, 2000 David Patterson http://www-inst.eecs.berkeley.edu/~cs61c/ IEEE 754 Floating Point Standard: Kahan pack as much in

More information

Memory management. Requirements. Relocation: program loading. Terms. Relocation. Protection. Sharing. Logical organization. Physical organization

Memory management. Requirements. Relocation: program loading. Terms. Relocation. Protection. Sharing. Logical organization. Physical organization Requirements Relocation Memory management ability to change process image position Protection ability to avoid unwanted memory accesses Sharing ability to share memory portions among processes Logical

More information

File System Interface and Implementation

File System Interface and Implementation Unit 8 Structure 8.1 Introduction Objectives 8.2 Concept of a File Attributes of a File Operations on Files Types of Files Structure of File 8.3 File Access Methods Sequential Access Direct Access Indexed

More information

Addressing Modes. Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack

Addressing Modes. Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack Addressing Modes Addressing Modes and Formats Nizamettin AYDIN naydin@yildiz.edu.tr http://www.yildiz.edu.tr/~naydin http://akademik.bahcesehir.edu.tr/~naydin Immediate Direct Indirect Register Register

More information

A software view. Computer Systems. The Compilation system. How it works. 1. Preprocesser. 1. Preprocessor (cpp)

A software view. Computer Systems. The Compilation system. How it works. 1. Preprocesser. 1. Preprocessor (cpp) A software view User Interface Computer Systems MTSU CSCI 3240 Spring 2016 Dr. Hyrum D. Carroll Materials from CMU and Dr. Butler How it works hello.c #include int main() { printf( hello, world\n

More information

Introduction SIC, RISC & CISC 0. Introduction to Systems Programming This course aims at: Understanding what is going on behind the scenes The design and implementation of system software, such as Assemblers

More information

Chapter 2. Prepared By: Humeyra Saracoglu

Chapter 2. Prepared By: Humeyra Saracoglu Chapter 2 The Components of the System Unit Prepared By: Humeyra Saracoglu The System Unit What is the system unit? Case that contains electronic components of the computer used to process data Sometimes

More information