Accuracy versus precision

Size: px
Start display at page:

Download "Accuracy versus precision"

Transcription

1 Accuracy versus precision Accuracy is a consistent error from the true value, but not necessarily a good or precise error Precision is a consistent result within a small error, but not necessarily anywhere near a true value

2 Representing Error All science and engineering has error associated with it and this error must be reported when reporting results Error due Normally seen in cutting off a Taylor Series expansion Some definitions of error (in modeling): = ' real world ' relative error: a True error : T =true value approximation true error Relative true error : t = true value current approximation previous approximation current approximation If we iterate until some value we can say a s If s = 0.5 x 10 2 n is met then correct to n significant figures

3 Types of Error in Numerical Methods Truncation Error ( Discretization Error ) Generically this is a quantization error in the model (function) Normally seen in cutting off a Taylor Series expansion Representation Error ( round-off error ) Generically this is a quantization error numerically Round-off or chopping a number due to the representation of a number (doesn't necessarily have to be a computer) Subtraction Error (Cancellation Error) Error due to significant figures (example further in lecture) Normalization Error Error due to significant figures (example further in lecture)

4 Types of Error in Numerical Methods Estimation Error (sampling error) Error due to viewing a sample instead of a whole population Small sample can lead to statistical biasing Systematic Error Error due to a problem with a measurement in a systematic way Types of systematic error Drift Random errors not due to sampling

5 Types of Error due to computers Binary representation of numbers Not all floating point numbers can be represented in binary Because we use base-10 if we used base-2 this would not be a problem (re: Ancient Egypt) Solution is to use a computer that uses base-10 (see later in lecture)

6 Binary Coded Decimal (BCD) A couple of calculators use floating point BCD. This will reduce the small error associated with some binary represented numbers. Error already exists in data from the nature of measurement so this advantage cannot be considered to large an advantage There is considerable waste in this design. Especially costly is the extra adder circuitry, etc. Slower especially on processors not designed with native BCD support Example:

7 Binary Coded Decimal (BCD) Are there any other advantages? Rounding, scaling are easier in the BCD format then the binary code usually used Clearly for display character conversion is easier. For binary it requires expensive circuitry. However due to the expensive of the addition hardware all computers are binary-based (including smart phones which will eventual replace the calculator)

8 Representing Number using Binary To represent number in binary we place represents a power of two This means it is possible to represent ANY integer as long as you have enough digits HOWEVER it is not possible to representing all decimal numbers exactly in a binary-base Only a base with the same factors can express all numbers exactly Binary, octal, and hexidecimal can all represent each other exactly A base-20 system could represent base-10 exactly (however I'm not sure why we would want to do that)

9 Floating Point Representation Decimal numbers are called floating point numbers in computers (these representations are standard but are not guaranteed) Single precision usually uses 32-bits to represent a decimal number 1 sign bit 8 exponent bits 23 significand bits (plus the one not explicitly stored) = 24 Double precision usually uses 64-bits to represent a decimal number 1 sign bit 11 exponent bits 52 significant bits (plus the one not explicity stored) = 53 Quadruple precision usually uses 128-bits to represent a decimal number (real*16 in Fortran) 1 sign bit 15 exponent bits 112 significand bits (plus the one not explicitly stored) = 113

10 Floating Point Numbers Many different floating point representations Most common is 32 bit (single precision) Mantissa is the same word for decimal portion of the fraction, so should avoid Exponent does not have a sign but uses excess-127 Equation is fp= 1 sb 1.f 2 excess 127 Where sb is the sign bit; f is the significand ; excess is what the 8 bit exponent is (0 would mean -127) When we make it the same exponent that is called normalization Apparently IEEE has a rule to sacrifice normalization for precision...there has to be a cost for this.

11 Floating Point Numbers (32 bit) Many different floating point representations In the 32 bit example the excess of the exponent is 255 therefore the maximum exponent that is possible is or Best significant we can have is Sign Exponent Significant sb excess f 0,

12 Floating Point Numbers Many different floating point representations For 8 bit example we would have 4-bits significant, 3-bit exponent and one sign bit In the 8 bit example the excess of the exponent is therefore the maximum exponent that is possible is or 2 4 or 16 Best significant we can have is ,0.8750,0.8125,0.7500,0.6875,0.6250,0.5625,0.5000, ,0.3750,0.3125,0.2500,0.1875,0.1250, How do we represent 1/3?, 2.7?, or ? Sign Exponent Significant sb excess f 0,

13 Floating Point Numbers The machine error is referred to as the machine epsilon and it is the difference between 1 and the next representable number greater than 1 In MATLAB and octave you can figure out this value by use the eps command octave:1> eps eps = e-16 machine =b 1 p If b is the base of the machine and p is the number of significant digits then the machine epsilon is

14 Two's Complement Method for representing negative by inverting the positive binary representation for integers; not for floating point (however given the standard representation of exponent that might be viewed as two's complement) This amounts to flipping the bits and adding a binary 1 Example

15 Normalization error Exponents are matched or normalized for addition and subtraction Leads to subtraction or normalization error Can be significant x x 10-3 = x x 10 1 Only a certain amount of significant digits are saved in any computational system (you should save more if doing by hand)...since the maximum significant digits in the above example is 4 we have x 10 1 as the answer. This leads to an error which is small, but if repeated millions of times will propagate

16 Normalization error Exponents are matched or normalized for addition and subtraction Leads to subtraction or normalization error Can be significant x x 10 3 = x 10 3 However we would need to convert back to x 10 0 which would loss us 3 significant figures... Multiplication and division don't have a problem here...but...

17 Normalization error Fixing the quadratic equation In certain instances you can change the way you do an operation to remove lessen this error An example is the quadratic equation There are two solutions, but one will be effected by subtraction error Produce a new equation to get fix the problem Will need to use both equations one for each of the two solutions x= b± b 2 4ac 2a If b 2 4ac then there will be a subtraction error for the plus portion of the equation Solution : Multiply by b b 2 4ac 2c Therefore: x= b b 2 4ac

18 Round-off error The interval between two numbers increases as the number grows in magnitude Chopping (easier to implement on computers) and rounding leads to different errors Chopping is when the digits after are chopped-off when representing the significant figures available Rounding is when the last digit in the significant figure moved up or left alone depending on the digits to be removed If is to be approximated by only two significant figures then it is 0.33 if rounded or chopped but for the number it is 0.34 if rounded and 0.33 if chopped Bounding of the relative error is as follows: =b 1 t where t is the number of significant digits x for chopping x x x for rounding 2

19 Fundamental Theorems of Calculus If f(x) is continuous on the closed interval [a,b] and if F is the anti-derivative we have b a f t dt=f b F a If f(x) is continuous on the open interval (a,b) then at any point θ, F is x F x = f t dt F ' x = f x

20 Mean-Value Theorem If f(x) is differentiable on the open interval (a,b) and continuous on the closed interval [a,b], then there must exist at least one point, say θ in (a,b) such that Then we can say f ' = f b f a b a F b F a =F ' b a b a b a f t dt= f b a where is anaveragevalue of f t on[a,b] f (t) g (t)dt= f (θ) a b g (t)dt where f (θ)is a g (t ) weighted average of f (t )on[a,b]

21 Taylor Series Any real function f(x) can be expanded at a point x=a by the Taylor series f x = f a f ' a x a f ' ' a 2! x a 2 f ' ' ' a 3! x a 3 f n a n! R n is a remainder known as the Lagrange Remainder (another form exists called the Cauchy Remainder) x a n R n x R n = a f n 1 t x t n n! dt Using mean value theorem previously stated we have R n = f n 1 x a n 1 n 1!

22 Taylor Series We could assume that the a is our present position and x is the future position to re-write the Taylor Series as f t i 1 = f t i f ' t i s f ' ' t i 2! s 2 f ' ' ' t i 3! s 3 f n t i n! s n R n where the step, s= t i 1 t i R n is now R n = f n 1 s n 1 n 1!

23 Taylor Series Truncation Error Using the Taylor Series to estimate our function we can also derive an estimate of our error (truncation error) f t i 1 = f t i f ' t i s R where s= t i 1 t i Therefore we have our well known estimate WITH an error f ' t i = f t i 1 f t i t i 1 t i R t i 1 t i So from the Taylor Series we have an estimate of error, which states that in this case our error is proportional to our step size R s = f ' ' 2! s= s

24 Taylor Series Truncation Error For an n th order polynomial an exact n th order Taylor series can be used so an approximation is not necessary But for sine, cosine, exponential, etc. only an infinite series can represent the function exactly...need to have an approximation Drawbacks to the error estimate Our theta (or zeta) lies somewhere between two points We need the n th derivative of the function in question, but since we don't know the function exactly how can we know the any derivatives...and if we did know the function what would be the point!

25 Error Analysis If we use the above estimates, each variable in a system could have a number of sources of error which would add An assumption of the error being uncorrelated is assumed Technically the total error is more like an upper bound total = T N R E b misc For one variable this is likely to be quite low, but due to successive operations in any calculation errors can increase rapidly f x, y, z = x y z f x, y, z = x total x y total y z total z f x, y, z =x yz ERROR f = total x y z z y y z That is the errors propagate (which we will discuss soon) This error gives a rather conservative error bound to any calculation

26 Forward Error Analysis Our previous error analysis with trunction or approximation of a function is a form of forward error analysis Forward error analysis usually is a conservative error that will be much larger than the true error Each error needs to be estimate which can be inaccurate Trying to determine each of the errors that might effect the result can be complex for very intricate calculations We can use Backward Error Analysis to try and get a better estimate Take the result and work backward to figure out the error of the initial data Works only for certain errors like round-off error Will need to combine different error techniques

27 Backward Error Analysis Requires backward stability which can be determined by sending a perturbation through the function to see if the result is stable If the system is stable that this analysis can be done The condition number can give a clue on how sensitive a system is and hence how stable it might be in a given region

28 Backward Error Analysis Example Round-off error for a d digit number will be ϵ round = d However this is worse case scenario with the error likely being less In a calculation differing directions are likely to lessen error as well

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part I: Elementary Concepts of Numerical Analysis Spring 2015 Outline Computer arithmetic Error analysis: Sources of error Error propagation Controlling the error Rates

More information

Scientific Computing. Error Analysis

Scientific Computing. Error Analysis ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations Round-Off Errors Introduction Error is the difference between the exact solution

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation Floating Point Arithmetic fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation for example, fixed point number

More information

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming Structured Programming & an Introduction to Error Lecture Objectives Review the basic good habits of programming To understand basic concepts of error and error estimation as it applies to Numerical Methods

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part I: Elementary Concepts of Numerical Analysis Spring 2016 Outline Computer arithmetic Error analysis: Sources of error Error propagation Controlling the error Rates

More information

CHAPTER 2 SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS

CHAPTER 2 SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS CHAPTER SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS The two main concepts involved here are the condition (of a problem) and the stability (of an algorithm). Both of these concepts deal with

More information

Introduction to Computers and Programming. Numeric Values

Introduction to Computers and Programming. Numeric Values Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 5 Reading: B pp. 47-71 Sept 1 003 Numeric Values Storing the value of 5 10 using ASCII: 00110010 00110101 Binary notation: 00000000

More information

10.1. Unit 10. Signed Representation Systems Binary Arithmetic

10.1. Unit 10. Signed Representation Systems Binary Arithmetic 0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 4 Notes These notes correspond to Sections 1.1 1.2 in the text. Review of Calculus, cont d Taylor s Theorem, cont d We conclude our discussion of Taylor

More information

Computational Methods. Sources of Errors

Computational Methods. Sources of Errors Computational Methods Sources of Errors Manfred Huber 2011 1 Numerical Analysis / Scientific Computing Many problems in Science and Engineering can not be solved analytically on a computer Numeric solutions

More information

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4.

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. Chapter 4: Roundoff and Truncation Errors Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. 1 Outline Errors Accuracy and Precision

More information

Divide: Paper & Pencil

Divide: Paper & Pencil Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

More information

Mathematical preliminaries and error analysis

Mathematical preliminaries and error analysis Mathematical preliminaries and error analysis Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan August 28, 2011 Outline 1 Round-off errors and computer arithmetic IEEE

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 1 Scientific Computing Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Floating-point representation

Floating-point representation Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

More information

COMP Overview of Tutorial #2

COMP Overview of Tutorial #2 COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

More information

Roundoff Errors and Computer Arithmetic

Roundoff Errors and Computer Arithmetic Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

More information

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy.

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy. Math 340 Fall 2014, Victor Matveev Binary system, round-off errors, loss of significance, and double precision accuracy. 1. Bits and the binary number system A bit is one digit in a binary representation

More information

Chapter 3. Errors and numerical stability

Chapter 3. Errors and numerical stability Chapter 3 Errors and numerical stability 1 Representation of numbers Binary system : micro-transistor in state off 0 on 1 Smallest amount of stored data bit Object in memory chain of 1 and 0 10011000110101001111010010100010

More information

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

More information

Numerical computing. How computers store real numbers and the problems that result

Numerical computing. How computers store real numbers and the problems that result Numerical computing How computers store real numbers and the problems that result The scientific method Theory: Mathematical equations provide a description or model Experiment Inference from data Test

More information

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr Number Systems and Binary Arithmetic Quantitative Analysis II Professor Bob Orr Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems

More information

ME 261: Numerical Analysis. ME 261: Numerical Analysis

ME 261: Numerical Analysis. ME 261: Numerical Analysis ME 261: Numerical Analysis 3. credit hours Prereq.: ME 163/ME 171 Course content Approximations and error types Roots of polynomials and transcendental equations Determinants and matrices Solution of linear

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Numerical Solutions of Differential Equations (1)

Numerical Solutions of Differential Equations (1) Numerical Solutions of Differential Equations (1) Euler method Sources of error Truncation Round-off error Error balance in numerical integration Euler Method Many differential equations don't have an

More information

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

More information

MACHINE LEVEL REPRESENTATION OF DATA

MACHINE LEVEL REPRESENTATION OF DATA MACHINE LEVEL REPRESENTATION OF DATA CHAPTER 2 1 Objectives Understand how integers and fractional numbers are represented in binary Explore the relationship between decimal number system and number systems

More information

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Key terms Floating point arithmetic IEE Standard Mantissa Exponent Roundoff error Pitfalls of floating point arithmetic Structuring computations

More information

unused unused unused unused unused unused

unused unused unused unused unused unused BCD numbers. In some applications, such as in the financial industry, the errors that can creep in due to converting numbers back and forth between decimal and binary is unacceptable. For these applications

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

More information

(Refer Slide Time: 02:59)

(Refer Slide Time: 02:59) Numerical Methods and Programming P. B. Sunil Kumar Department of Physics Indian Institute of Technology, Madras Lecture - 7 Error propagation and stability Last class we discussed about the representation

More information

Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as:

Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: N Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: a n a a a The value of this number is given by: = a n Ka a a a a a

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 11: Floating Point & Floating Point Addition Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Last time: Single Precision Format

More information

±M R ±E, S M CHARACTERISTIC MANTISSA 1 k j

±M R ±E, S M CHARACTERISTIC MANTISSA 1 k j ENEE 350 c C. B. Silio, Jan., 2010 FLOATING POINT REPRESENTATIONS It is assumed that the student is familiar with the discussion in Appendix B of the text by A. Tanenbaum, Structured Computer Organization,

More information

Computing Basics. 1 Sources of Error LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY

Computing Basics. 1 Sources of Error LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY Computing Basics 1 Sources of Error Numerical solutions to problems differ from their analytical counterparts. Why? The reason for the difference is

More information

Classes of Real Numbers 1/2. The Real Line

Classes of Real Numbers 1/2. The Real Line Classes of Real Numbers All real numbers can be represented by a line: 1/2 π 1 0 1 2 3 4 real numbers The Real Line { integers rational numbers non-integral fractions irrational numbers Rational numbers

More information

EE 109 Unit 19. IEEE 754 Floating Point Representation Floating Point Arithmetic

EE 109 Unit 19. IEEE 754 Floating Point Representation Floating Point Arithmetic 1 EE 109 Unit 19 IEEE 754 Floating Point Representation Floating Point Arithmetic 2 Floating Point Used to represent very small numbers (fractions) and very large numbers Avogadro s Number: +6.0247 * 10

More information

Chapter 2. Data Representation in Computer Systems

Chapter 2. Data Representation in Computer Systems Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

More information

Floating Point Representation in Computers

Floating Point Representation in Computers Floating Point Representation in Computers Floating Point Numbers - What are they? Floating Point Representation Floating Point Operations Where Things can go wrong What are Floating Point Numbers? Any

More information

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING 26 CHAPTER 1. SCIENTIFIC COMPUTING amples. The IEEE floating-point standard can be found in [131]. A useful tutorial on floating-point arithmetic and the IEEE standard is [97]. Although it is no substitute

More information

COS 323: Computing for the Physical and Social Sciences

COS 323: Computing for the Physical and Social Sciences COS 323: Computing for the Physical and Social Sciences COS 323 People: Szymon Rusinkiewicz Sandra Batista Victoria Yao Course webpage: http://www.cs.princeton.edu/cos323 What s This Course About? Numerical

More information

Number Representation

Number Representation ECE 645: Lecture 5 Number Representation Part 2 Floating Point Representations Rounding Representation of the Galois Field elements Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and

More information

Error in Numerical Methods

Error in Numerical Methods Error in Numerical Methods By Brian D. Storey This section will describe two types of error that are common in numerical calculations: roundoff and truncation error. Roundoff error is due to the fact that

More information

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

More information

Finite arithmetic and error analysis

Finite arithmetic and error analysis Finite arithmetic and error analysis Escuela de Ingeniería Informática de Oviedo (Dpto de Matemáticas-UniOvi) Numerical Computation Finite arithmetic and error analysis 1 / 45 Outline 1 Number representation:

More information

IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1

IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1 IT 1204 Section 2.0 Data Representation and Arithmetic 2009, University of Colombo School of Computing 1 What is Analog and Digital The interpretation of an analog signal would correspond to a signal whose

More information

Introduction to Computer Programming with MATLAB Calculation and Programming Errors. Selis Önel, PhD

Introduction to Computer Programming with MATLAB Calculation and Programming Errors. Selis Önel, PhD Introduction to Computer Programming with MATLAB Calculation and Programming Errors Selis Önel, PhD Today you will learn Numbers, Significant figures Error analysis Absolute error Relative error Chopping

More information

Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1

Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1 Floating-Point Arithmetic Numerical Analysis uses floating-point arithmetic, but it is just one tool in numerical computation. There is an impression that floating point arithmetic is unpredictable and

More information

Chapter 1. Numeric Artifacts. 1.1 Introduction

Chapter 1. Numeric Artifacts. 1.1 Introduction Chapter 1 Numeric Artifacts 1.1 Introduction Virtually all solutions to problems in electromagnetics require the use of a computer. Even when an analytic or closed form solution is available which is nominally

More information

2.1.1 Fixed-Point (or Integer) Arithmetic

2.1.1 Fixed-Point (or Integer) Arithmetic x = approximation to true value x error = x x, relative error = x x. x 2.1.1 Fixed-Point (or Integer) Arithmetic A base 2 (base 10) fixed-point number has a fixed number of binary (decimal) places. 1.

More information

Number Systems CHAPTER Positional Number Systems

Number Systems CHAPTER Positional Number Systems CHAPTER 2 Number Systems Inside computers, information is encoded as patterns of bits because it is easy to construct electronic circuits that exhibit the two alternative states, 0 and 1. The meaning of

More information

Floating Point. EE 109 Unit 20. Floating Point Representation. Fixed Point

Floating Point. EE 109 Unit 20. Floating Point Representation. Fixed Point 2.1 Floating Point 2.2 EE 19 Unit 2 IEEE 754 Floating Point Representation Floating Point Arithmetic Used to represent very numbers (fractions) and very numbers Avogadro s Number: +6.247 * 1 23 Planck

More information

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude Chapter 2 Positional number systems A positional number system represents numeric values as sequences of one or more digits. Each digit in the representation is weighted according to its position in the

More information

Integers. N = sum (b i * 2 i ) where b i = 0 or 1. This is called unsigned binary representation. i = 31. i = 0

Integers. N = sum (b i * 2 i ) where b i = 0 or 1. This is called unsigned binary representation. i = 31. i = 0 Integers So far, we've seen how to convert numbers between bases. How do we represent particular kinds of data in a certain (32-bit) architecture? We will consider integers floating point characters What

More information

Data Representation 1

Data Representation 1 1 Data Representation Outline Binary Numbers Adding Binary Numbers Negative Integers Other Operations with Binary Numbers Floating Point Numbers Character Representation Image Representation Sound Representation

More information

Chapter 3: Arithmetic for Computers

Chapter 3: Arithmetic for Computers Chapter 3: Arithmetic for Computers Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS 35101-002 2 The Binary Numbering

More information

1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture)

COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture) COSC 243 Data Representation 3 Lecture 3 - Data Representation 3 1 Data Representation Test Material Lectures 1, 2, and 3 Tutorials 1b, 2a, and 2b During Tutorial a Next Week 12 th and 13 th March If you

More information

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic September 28, 2018 Lecture 1 September 28, 2018 1 / 25 Floating point arithmetic Computers use finite strings of binary digits to represent

More information

What we need to know about error: Class Outline. Computational Methods CMSC/AMSC/MAPL 460. Errors in data and computation

What we need to know about error: Class Outline. Computational Methods CMSC/AMSC/MAPL 460. Errors in data and computation Class Outline Computational Methods CMSC/AMSC/MAPL 460 Errors in data and computation Representing numbers in floating point Ramani Duraiswami, Dept. of Computer Science Computations should be as accurate

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 10: Multiplication & Floating Point Representation Adapted from Computer Organization and Design, Patterson & Hennessy, UCB MIPS Division Two 32-bit registers

More information

EE 109 Unit 20. IEEE 754 Floating Point Representation Floating Point Arithmetic

EE 109 Unit 20. IEEE 754 Floating Point Representation Floating Point Arithmetic 1 EE 109 Unit 20 IEEE 754 Floating Point Representation Floating Point Arithmetic 2 Floating Point Used to represent very small numbers (fractions) and very large numbers Avogadro s Number: +6.0247 * 10

More information

Data Representation in Computer Memory

Data Representation in Computer Memory Data Representation in Computer Memory Data Representation in Computer Memory Digital computer stores the data in the form of binary bit sequences. Binary number system has two symbols: 0 and 1, called

More information

Number Systems. Both numbers are positive

Number Systems. Both numbers are positive Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

More information

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Representing numbers in floating point and associated issues Ramani Duraiswami, Dept. of Computer Science Class Outline Computations should be as accurate and as

More information

Number Representations

Number Representations Number Representations times XVII LIX CLXX -XVII D(CCL)LL DCCC LLLL X-X X-VII = DCCC CC III = MIII X-VII = VIIIII-VII = III 1/25/02 Memory Organization Viewed as a large, single-dimension array, with an

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

Computational Mathematics: Models, Methods and Analysis. Zhilin Li

Computational Mathematics: Models, Methods and Analysis. Zhilin Li Computational Mathematics: Models, Methods and Analysis Zhilin Li Chapter 1 Introduction Why is this course important (motivations)? What is the role of this class in the problem solving process using

More information

Number System. Introduction. Decimal Numbers

Number System. Introduction. Decimal Numbers Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

COS 323: Computing for the Physical and Social Sciences

COS 323: Computing for the Physical and Social Sciences COS 323: Computing for the Physical and Social Sciences COS 323 Professor: Szymon Rusinkiewicz TAs: Mark Browning Fisher Yu Victoria Yao Course webpage http://www.cs.princeton.edu/~cos323/ What s This

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

Real Numbers finite subset real numbers floating point numbers Scientific Notation fixed point numbers

Real Numbers finite subset real numbers floating point numbers Scientific Notation fixed point numbers Real Numbers We have been studying integer arithmetic up to this point. We have discovered that a standard computer can represent a finite subset of the infinite set of integers. The range is determined

More information

Lecture 6: Signed Numbers & Arithmetic Circuits. BCD (Binary Coded Decimal) Points Addressed in this Lecture

Lecture 6: Signed Numbers & Arithmetic Circuits. BCD (Binary Coded Decimal) Points Addressed in this Lecture Points ddressed in this Lecture Lecture 6: Signed Numbers rithmetic Circuits Professor Peter Cheung Department of EEE, Imperial College London (Floyd 2.5-2.7, 6.1-6.7) (Tocci 6.1-6.11, 9.1-9.2, 9.4) Representing

More information

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

More information

What Every Programmer Should Know About Floating-Point Arithmetic

What Every Programmer Should Know About Floating-Point Arithmetic What Every Programmer Should Know About Floating-Point Arithmetic Last updated: October 15, 2015 Contents 1 Why don t my numbers add up? 3 2 Basic Answers 3 2.1 Why don t my numbers, like 0.1 + 0.2 add

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 261: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed14 http://bu.edu.eg/staff/ahmedshalaby14# Slide 1 Slide 2 Slide 3 Digital Fundamentals CHAPTER

More information

The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop.

The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop. CS 320 Ch 10 Computer Arithmetic The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop. Signed integers are typically represented in sign-magnitude

More information

Process model formulation and solution, 3E4 Computer software tutorial - Tutorial 3

Process model formulation and solution, 3E4 Computer software tutorial - Tutorial 3 Process model formulation and solution, 3E4 Computer software tutorial - Tutorial 3 Kevin Dunn, dunnkg@mcmaster.ca October 2 Tutorial solutions: Elliot Cameron. Tutorial objectives Understand computer

More information

Chapter Three. Arithmetic

Chapter Three. Arithmetic Chapter Three 1 Arithmetic Where we've been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

Principles of Computer Architecture. Chapter 3: Arithmetic

Principles of Computer Architecture. Chapter 3: Arithmetic 3-1 Chapter 3 - Arithmetic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Chapter 3: Arithmetic 3-2 Chapter 3 - Arithmetic 3.1 Overview Chapter Contents 3.2 Fixed Point Addition

More information

CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 36 / 76 Spring 208 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 208 Lecture February 25, 208 This is a collection of useful

More information

CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting

More information

Floating-Point Arithmetic

Floating-Point Arithmetic ENEE446---Lectures-4/10-15/08 A. Yavuz Oruç Professor, UMD, College Park Copyright 2007 A. Yavuz Oruç. All rights reserved. Floating-Point Arithmetic Integer or fixed-point arithmetic provides a complete

More information

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK Computer (Literacy Skills Number representations and memory Lubomír Bulej KDSS MFF UK Number representations? What for? Recall: computer works with binary numbers Groups of zeroes and ones 8 bits (byte,

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST III Date : 21/11/2017 Max Marks : 40 Subject & Code : Computer Organization (15CS34) Semester : III (A & B) Name of the faculty: Mrs. Sharmila Banu Time : 11.30 am 1.00 pm Answer

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 2 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Decimal Numbers The position of each digit in a weighted

More information

Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example

Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example Appendix F Number Systems Binary Numbers Decimal notation represents numbers as powers of 10, for example 1729 1 103 7 102 2 101 9 100 decimal = + + + There is no particular reason for the choice of 10,

More information

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right. Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

More information

Definition. A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity.

Definition. A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity. Definition A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity. 120202: ESM4A - Numerical Methods 32 f(x) = e x at point c = 0. Taylor

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-A Floating-Point Arithmetic Israel Koren ECE666/Koren Part.4a.1 Preliminaries - Representation

More information