MID: Materials Imaging and Dynamics Instrument

Size: px
Start display at page:

Download "MID: Materials Imaging and Dynamics Instrument"

Transcription

1 MID: Materials Imaging and Dynamics Instrument A. Madsen 1,*, J. Hallmann 1, T. Roth 1, G. Ansaldi 1, W. Lu 1,2 1 European XFEL 2 Technische Universität Berlin * anders.madsen@xfel.eu XFEL User Meeting 2014

2 MID Keywords 2 Scattering and imaging with hard X-rays Micro- and nano focused beams Windowless operation Use of a maximum number of pulses Versatile experimental chamber and sample environment Optical pump laser Ultrafast science & X-ray split-delay techniques Coherence & speckle

3 Facility Outline 3 SASE-2

4 MID beamline overview 4 common SASE-2 beamline (MID/HED) MID photon beamline MID optics hutch MID experimental hutch undulator high-energy mono 306 m imager m horizontal 301 m offset mirror 290 m shutter m 2D-imager 244 m CRL m attenuator m time-of-flight PES 220 m XBPM & intensity m K-mono 200 m spont. rad. aperture 198 m transmissive imager 171 m λ imager-2 HR-SSS λ 400 m m imager-4 slit-2 attenuator imager-3 slit-1 XBPM & intensity m m m 880 m 729 m 727 m mono-1: Si(111) 929 m shutter-2 imager-5 high energy CRL CRL m m 933 m 931 m mono-2 Si(220) m attenuator imager-6 slit m m 948 m X-ray splitdelay line 950 m shutter-3 mirror(s) 955 m 952 m timing diagnostic diff. pumping t 957 m 956 m sample nanofocusing CRL 959 m m detector 967 m diagnostic endstand 969 m 0 m Not shown: MCP at 303m (fine tuning of SASE) Distribution mirror(s) at 390m and 395m (MID on central branch) Beam loss monitors

5 m A. Madsen, XFEL.EU Beryllium Optics for the MID Station Compound Refractive Lenses (CRL) in Beryllium - Be is an excellent material to avoid ablation - Beam collimation or focusing in the range from ~5 25 kev - CRL efficiency below ~5 kev not good - Chromatic focusing Sweet spots in energy - Allows 7s (~3*FWHM) to be transported effective lens diameter and beam size D eff 3 x beamsize (FWHM) f = R/(2Nd) Large radii lenses, up to R > 5mm Energy [kev] B. Lengeler, RXOPTICS, Aachen

6 Beryllium Optics for the MID Station 6 CRL-1 transfocator CRL-2 transfocator ~700 m Allows beam sizes on sample from m and % efficiency Range from ~5 to 25 kev (sweet spots every ~500 ev)

7 Beryllium Optics for the MID Station CRL-2 7 Allows beam sizes 1 3 m with 20-40% efficiency Nano focus option: CRL-3 placed mm upstream of sample inside the sample chamber. BMBF project, C. Schroer - TU Dresden Calculation for f=300 mm CRL-3 Efficiency ~50% with prefocusing ~10 nm focus for f=50 mm at 12 kev Setup for MEC, LCLS C. Schroer, D. Samberg, TU Dresden

8 y (mm) y (mm) y (mm) A. Madsen, XFEL.EU Wave field Simulations: Impact of Be imperfections and impurities 8 Laminography data, ID19, ESRF (L. Helfen) Be lens model CRL-1 CRL-2 sample at 959 m A B C D Reconstructed planes Void volume fraction 10-4 A B C before CRL-1 after CRL-1 after CRL-2 D in focus, at sample pos x (mm) x (mm) x (mm) x (mm) Poster #213 (Friday poster session) Acknowledgement: L Samoylova, XFEL.EU Optics group

9 Windowless Operation 9 Differential pumping section HV side (mirrors and crystals): 1e-7-1e-8 mbar 1e-2 mbar sample chamber Differential pumping apertures inside made from B 4 C Must allow two beams to pass with a vertical separation of ~25 mm (from Split-Delay Line) XFEL.EU - ESRF collaboration

10 Experimental Setup 10 Differential pumping Diagnostics chamber Sample chamber AGIPD detector Transfer pipe to end diagnostics Close configuration: AGIPD 0.5 m from sample chamber center Beam transmitted to end diagnostics via central hole and transfer pipe XFEL.EU - ESRF collaboration

11 Experimental Setup 11 Sample Differential pumping Diagnostics chamber chamber Telescope pipe to AGIPD Hi-Res setup: AGIPD up to 8 m from sample chamber. Telescope pipe between chamber and AGIPD. Motion concept under study XFEL.EU - ESRF collaboration

12 Experimental Setup 12 optical laser X-rays 2q m 2q up to ~60 deg in Hi-Res mode. Diagnostics end-station (spectrum, intensity, position) and beam stop

13 Experimental chamber 13 Min. dist. sample-detector: ~225 mm Q max ~5Å -1 (l=1å) AGIPD nano-crl stage sample stage

14 Experimental chamber 14 Min. dist. CRL-sample: 50 mm Min. focal spot: ~10 nm (ideal case) Ports for sample delivery sample stage AGIPD

15 Sample delivery 15 Microfluidic sample delivery 10 Hz sample changer/scanner for solid samples Flexible mount (hexapod) for Pulsed high B magnet user s sample environments Aerosol injector, liquid jet Furnace, cryostat Possibility to work in air (window inserted upstream) liquid jet installed in test chamber (XFEL sample env. group) Full-field microscope: S. Köster & T. Salditt Univ. Göttingen (BMBF project) X-Rays

16 Hard X-Ray Split-Delay Line 16 Goal: To modify the time-structure of XFEL (fs-ps delays). Spatial offset (inclination) between split beams can be introduced. New possibilities for time-resolved experiments (PP, wave mixing, holography, speckle, dynamics,..). Inspiration: Hard X-ray Split Delay line at LCLS (Roseker & Grübel, DESY) Device under construction at SACLA (Tono, Yabashi, SACLA) Soft X-ray delay lines operating at FLASH (mirror based) 1 m 3.3 fs Co-linear beams Inclined beams

17 Hard X-Ray Split-Delay Line 17 Beams from split-delay line 1 st beam Optical laser X-ray XX Dt X-ray 2 nd beam 2a i sample X-ray XOX Optical X-ray a i Upwards deflecting mirror OXX Optical X-ray X-ray Two images on detector: 2 nd pattern 1 st pattern

18 Hard X-Ray Split-Delay Line 18 Delay given by upper branch (0 800 ps) Energy tunable (5-10 kev) X-Rays In-vacuum setup High position precision and stability Laser interferometry to control delay Beam diagnostics Collaboration: S. Eisebitt, T. Noll, TU Berlin (BMBF project)

19 SASE-2: Hutches and Infrastructure 19

20 SASE-2: Hutches and Infrastructure 20 Work in progress

21 MID Technical Design Report (TDR) 21 or Poster #108, Friday poster session

22 Main specs of MID (from TDR) 22 Commissioning and first user experiments in 2017!

Parameters for early user experiments

Parameters for early user experiments Parameters for early user experiments Zuzana Konôpková High Energy Density (HED) science group Instrument Scientist Schenefeld, 23.01.2018 2 European XFEL: HED at SASE2 Accelerator and SASE1 X-ray commissioning

More information

Synchronization and pump-probe experiments

Synchronization and pump-probe experiments Synchronization and pump-probe experiments by Stefan Düsterer Outline o Pump-probe probe infrastructure VUV + VUV VUV + optical o o Temporal overlap and jitter As example: the pump-probe probe chamber

More information

Detectors for Future Light Sources. Gerhard Grübel Deutsches Elektronen Synchrotron (DESY) Notke-Str. 85, Hamburg

Detectors for Future Light Sources. Gerhard Grübel Deutsches Elektronen Synchrotron (DESY) Notke-Str. 85, Hamburg Detectors for Future Light Sources Gerhard Grübel Deutsches Elektronen Synchrotron (DESY) Notke-Str. 85, 22607 Hamburg Overview Radiation from X-Ray Free Electron lasers (XFEL, LCLS) Ultrafast detectors

More information

FEL diagnostics and control system

FEL diagnostics and control system FEL diagnostics and control system Thomas M. Baumann WP-85, Scientific Instrument SQS Instrument Scientist Satellite meeting Soft X-ray instruments SQS and SCS Hamburg, 24.01.2017 2 Outline FEL diagnostics

More information

Novel Magnetic Field Mapping Technology for Small and Closed Aperture Undulators

Novel Magnetic Field Mapping Technology for Small and Closed Aperture Undulators Novel Magnetic Field Mapping Technology for Small and Closed Aperture Undulators Erik Wallen and Hyun-Wook Kim 06.06.2017 Outline Introduction - Measurement systems at LBNL - Activities at LBNL - Need

More information

Laser readiness for all optical EUV FEL

Laser readiness for all optical EUV FEL Laser readiness for all optical EUV FEL Akira Endo EUVA (Extreme Ultraviolet Lithography System Development Association) EUVL Source Workshop 19 October, 2006 Barcelona, Spain Acknowledgments This work

More information

Radiation Protection in Experimental Hutches at European XFEL. Safety and Radiation Protection Group

Radiation Protection in Experimental Hutches at European XFEL. Safety and Radiation Protection Group Radiation Protection in Experimental Hutches at European XFEL Safety and Radiation Protection Group Topics 2 Typical Hutch Layout at XFEL Shielding Calculations for Radiation Hutches Design of Optical

More information

Text for the class, Pump-Probe Technique for Picosecond Time-resolved X-ray Diffraction at Cheiron School

Text for the class, Pump-Probe Technique for Picosecond Time-resolved X-ray Diffraction at Cheiron School BL19LXU Yoshihito Tanaka, Oct. 2013 Text for the class, Pump-Probe Technique for Picosecond Time-resolved X-ray Diffraction at Cheiron School Abstract The pulsed time structure of synchrotron radiation

More information

Comissioning of the IR beamline at FLASH. DESY.DE

Comissioning of the IR beamline at FLASH. DESY.DE Comissioning of the IR beamline at FLASH Michael.Gensch @ DESY.DE IR Undulator Beamline at FLASH First light 2 FLASH experimental hall before installation of IR beamline BL1 PG2 BL2 BL3 fs Laser 3 FLASH

More information

The High Resolution Diffraction Beamline P08 at PETRA III

The High Resolution Diffraction Beamline P08 at PETRA III The High Resolution Diffraction Beamline P08 at PETRA III Oliver. H Seeck, Carsten Deiter Hasylab @ DESY, Hamburg 08.Sep. 2009 Introduction Frequently, the use of highly brilliant synchrotron x-ray radiation

More information

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes 2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes Answer all four questions. All questions count equally. 3(a) A linearly polarized

More information

X-rays are electro-magnetic radiation

X-rays are electro-magnetic radiation X-rays are electro-magnetic radiation Just like visible light, X-rays are waves - cos[ 2π ( x / λ ft)] X-rays travel at the speed of light (c) Quantum Mechanics gives the energy of an X-ray photon c =

More information

WAVELENGTH MANAGEMENT

WAVELENGTH MANAGEMENT BEAM DIAGNOS TICS SPECIAL PRODUCTS OEM DETECTORS THZ DETECTORS PHOTO DETECTORS HIGH POWER SOLUTIONS POWER DETECTORS ENERGY DETECTORS MONITORS Camera Accessories WAVELENGTH MANAGEMENT UV CONVERTERS UV Converters

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

XUV pulse FLASH

XUV pulse FLASH W (GW) XUV pulse duration @ FLASH 50 85µm with bandpass filter 55 60 Kinetic Energy [ev] 65 70 75 80 85 90 95 100 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Delay [ps] 80 60 40 20 0 0 50 100 150 200 250 300 t (fs)

More information

Development of EUV-Scatterometry for CD Characterization of Masks. Frank Scholze, Gerhard Ulm Physikalisch-Technische Bundesanstalt, Berlin, Germany

Development of EUV-Scatterometry for CD Characterization of Masks. Frank Scholze, Gerhard Ulm Physikalisch-Technische Bundesanstalt, Berlin, Germany Development of EUV-Scatterometry for CD Characterization of Masks PB Frank Scholze, Gerhard Ulm Physikalisch-Technische Bundesanstalt, Berlin, Germany Jan Perlich, Frank-Michael Kamm, Jenspeter Rau nfineon

More information

Sample Introduction Systems SOLID LASER ABLATION

Sample Introduction Systems SOLID LASER ABLATION Sample Introduction Systems SOLID LASER ABLATION Laser ablation Benefits: spatial resolution of < 10 um little to no sample preparation required Drawbacks: transient signal reduced precision/accuracy relative

More information

Pump-probe. probe optical laser systems at FLASH. S. Düsterer

Pump-probe. probe optical laser systems at FLASH. S. Düsterer Pump-probe probe optical laser systems at FLASH S. Düsterer Outline Current status of the laser systems ( what is working) Planned upgrades till spring 2010 ( what will be working) The future. Lasers from

More information

STRAIGHT LINE REFERENCE SYSTEM STATUS REPORT ON POISSON SYSTEM CALIBRATION

STRAIGHT LINE REFERENCE SYSTEM STATUS REPORT ON POISSON SYSTEM CALIBRATION STRAIGHT LINE REFERENCE SYSTEM STATUS REPORT ON POISSON SYSTEM CALIBRATION C. Schwalm, DESY, Hamburg, Germany Abstract For the Alignment of the European XFEL, a Straight Line Reference System will be used

More information

A raytracing code for zone plates

A raytracing code for zone plates A raytracing code for zone plates Alexei Erko *, Franz Schaefers, Nikolay Artemiev a BESSY GmbH, Albert-Einstein-Str.15, 12489 Berlin, Germany a Laboratoire d'optique Appliquee ENSTA Ecole Polytechnique

More information

Text for the class, Pump and probe technique for picosecond time-resolved x-ray diffraction at the Cheiron School

Text for the class, Pump and probe technique for picosecond time-resolved x-ray diffraction at the Cheiron School Yoshihito Tanaka, Kiminori Ito Oct. 3-4, 2011 Text for the class, Pump and probe technique for picosecond time-resolved x-ray diffraction at the Cheiron School 1. Introduction 1-1. Purpose The pulsed nature

More information

Lecture 4. Physics 1502: Lecture 35 Today s Agenda. Homework 09: Wednesday December 9

Lecture 4. Physics 1502: Lecture 35 Today s Agenda. Homework 09: Wednesday December 9 Physics 1502: Lecture 35 Today s Agenda Announcements: Midterm 2: graded soon» solutions Homework 09: Wednesday December 9 Optics Diffraction» Introduction to diffraction» Diffraction from narrow slits»

More information

2- Discussion of the XCS plans to move the large offset monochromator

2- Discussion of the XCS plans to move the large offset monochromator SLAC National Accelerator Laboratory MEETING REPORT Report No. TR-391-003-12 MEETING DESCRIPTION: CXI Instrument Team Leader Meeting WBS: 1.3 Coherent X-ray Imaging Organized By: Sébastien Boutet Report

More information

PROPAGATING PARTIAL COHERENCE HYBRID AND MORE

PROPAGATING PARTIAL COHERENCE HYBRID AND MORE rhgfdjhngngfmhgmghmghjmghfmf PROPAGATING PARTIAL COHERENCE HYBRID AND MORE XIANBO SHI X-ray Science Division Advanced Photon Source Argonne National Laboratory The Advanced Photon Source is a U.S. Department

More information

Industrial Fiber Beam Delivery for Ultrafast Lasers

Industrial Fiber Beam Delivery for Ultrafast Lasers Photonic Tools GmbH, 2017 Industrial Fiber Beam Delivery for Ultrafast Lasers System Technology and Industrial Application Bastian Kruschke 15.11.2017 Swissphotonics Workshop Specialty Optical Fibers Motivation

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Data Challenges in Photon Science. Manuela Kuhn GridKa School 2016 Karlsruhe, 29th August 2016

Data Challenges in Photon Science. Manuela Kuhn GridKa School 2016 Karlsruhe, 29th August 2016 Data Challenges in Photon Science Manuela Kuhn GridKa School 2016 Karlsruhe, 29th August 2016 Photon Science > Exploration of tiny samples of nanomaterials > Synchrotrons and free electron lasers generate

More information

SHADOW (and related software) Manuel Sánchez del Río. ESRF, BP 220, F Grenoble Cedex

SHADOW (and related software) Manuel Sánchez del Río. ESRF, BP 220, F Grenoble Cedex SHADOW (and related software) Manuel Sánchez del Río ESRF, BP 220, F-38043 Grenoble Cedex Outline Historical introduction What can SHADOW do? functionality Examples Classic ESRF Upgrade New Future Historical

More information

Physics 625 Femtosecond laser Project

Physics 625 Femtosecond laser Project Physics 625 Femtosecond laser Project The purpose of this project is for each person to gain experience in designing part of a femtosecond laser system for pump-probe experiments. The system diagram is

More information

LUSI SUB-SYSTEM XCS Physics Requirements for the LUSI Large Offset Monochromator. Doc. No. SP R0

LUSI SUB-SYSTEM XCS Physics Requirements for the LUSI Large Offset Monochromator. Doc. No. SP R0 PHYSICS REQUIREMENT DOCUMENT (PRD) Doc. No. SP-391-00-16 R0 LUSI SUB-SYSTEM XCS Physics Requirements for the Aymeric Robert Author, LUSI Scientist Signature Date David Fritz LUSI Scientist Signature Date

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Obtainment of Prototypical images and Detector performance simulations. Guillaume Potdevin for the XFEL-HPAD-Consortium

Obtainment of Prototypical images and Detector performance simulations. Guillaume Potdevin for the XFEL-HPAD-Consortium Obtainment of Prototypical images and Detector performance simulations Overview of the analysis Outlook Prototypical images: Single object imaging & XPCS short presentation (reminder ) Presentation of

More information

Downloaded from UNIT 06 Optics

Downloaded from   UNIT 06 Optics 1 Mark UNIT 06 Optics Q1: A partially plane polarised beam of light is passed through a polaroid. Show graphically the variation of the transmitted light intensity with angle of rotation of the Polaroid.

More information

Diagnostic Tools for the Transverse Coherence of an X-FEL

Diagnostic Tools for the Transverse Coherence of an X-FEL Diagnostic Tools for the Transverse Coherence of an X-FEL Rasmus Ischebeck Diagnostic Tools for the Transverse Coherence of an X-FEL Importance of Coherence in an FEL Definition of coherence properties

More information

Time-Resolved measurements by FEL spontaneous emission: A proposal for sub-picosecond pumps & probe structural and spectrometric investigations

Time-Resolved measurements by FEL spontaneous emission: A proposal for sub-picosecond pumps & probe structural and spectrometric investigations Time-Resolved measurements by FEL spontaneous emission: A proposal for sub-picosecond pumps & probe structural and spectrometric investigations V. Rossi Albertini, B. Paci & P. Perfetti Istituto di Struttura

More information

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed.

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED.

More information

Diagnostics & Common Optics Design, Baseline, & Risks

Diagnostics & Common Optics Design, Baseline, & Risks Diagnostics & Common Optics Design, Baseline, & Risks Yiping Feng DCO Lead Scientist Eliazar Ortiz DCO Lead Engineer LUSI CD-2 Lehman Review August 20, 2008 Lead Engineer: Eliazar Ortiz Mechanical Engineer:

More information

Installation of Optical Replica Synthesizer

Installation of Optical Replica Synthesizer FLASH Seminar 27 November 2007 Installation of Optical Replica Synthesizer G.Angelova OUTLINE How it works Where What - Undulators - Chicane -OTR - Optical Station I and II - Laser Transfer Line - Seed

More information

ISO INTERNATIONAL STANDARD. Particle size analysis Laser diffraction methods Part 1: General principles

ISO INTERNATIONAL STANDARD. Particle size analysis Laser diffraction methods Part 1: General principles INTERNATIONAL STANDARD ISO 13320-1 First edition 1999-11-01 Particle size analysis Laser diffraction methods Part 1: General principles Analyse granulométrique Méthodes par diffraction laser Partie 1:

More information

Progress of the Thomson Scattering Experiment on HSX

Progress of the Thomson Scattering Experiment on HSX Progress of the Thomson Scattering Experiment on HSX K. Zhai, F.S.B. Anderson, D.T. Anderson HSX Plasma Laboratory, UW-Madison Bill Mason PSL, UW-Madison, The Thomson scattering system being constructed

More information

NuSTAR optic calibration

NuSTAR optic calibration NuSTAR optic calibration J. Koglin, H-J An, D. Barret, N. Barriere, K. Blaedel, N. Brejnholt, F.E. Christensen, T. Decker, W.W. Craig, B. Grefenstette, J. Gum, C. Hailey, F. Harrison, A. Jakobsen, K.K.

More information

Spherical Crystal X-ray Imaging for MTW, OMEGA, and OMEGA EP

Spherical Crystal X-ray Imaging for MTW, OMEGA, and OMEGA EP Spherical Crystal X-ray Imaging for MTW, OMEGA, and OMEGA EP C.STOECKL, G. FISKEL, R. K. JUNGQUIST, P. M. NILSON, AND W. THEOBALD University of Rochester, Laboratory for Laser Energetics Spherical Crystal

More information

MEASUREMENT OF WIGNER DISTRIBUTION FUNCTION FOR BEAM CHARACTERIZATION OF FELs*

MEASUREMENT OF WIGNER DISTRIBUTION FUNCTION FOR BEAM CHARACTERIZATION OF FELs* MEASUREMENT OF WIGNER DISTRIBUTION FUNCTION FOR BEAM CHARACTERIZATION OF FELs* T. Mey #, B. Schäfer and K. Mann, Laser-Laboratorium e.v., Göttingen, Germany B. Keitel, S. Kreis, M. Kuhlmann, E. Plönjes

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

Speckle Spectroscopy - X-ray Photon Correlation Spectroscopy

Speckle Spectroscopy - X-ray Photon Correlation Spectroscopy Speckle Spectroscopy - X-ray Photon Correlation Spectroscopy Olaf Leupold Deutsches Elektronen Synchrotron DESY / Hamburg Grenoble, September 2, 2005 Layout Introduction to coherent scattering Dynamics

More information

Event-Synchronized Data Acquisition System of 5 Giga-bps Data Rate for User Experiment at the XFEL Facility, SACLA

Event-Synchronized Data Acquisition System of 5 Giga-bps Data Rate for User Experiment at the XFEL Facility, SACLA Event-Synchronized Data Acquisition System of 5 Giga-bps Data Rate for User Experiment at the XFEL Facility, SACLA Mitsuhiro YAMAGA JASRI Oct.11, 2011 @ICALEPCS2011 Contents: Introduction Data Acquisition

More information

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma,

More information

PGx01 series. High Peak Power. Available models

PGx01 series. High Peak Power. Available models Picosecond Lasers Nanosecond Lasers Nanosecond Tunable Lasers High Energy Lasers Ultrafast Fiber Lasers Other Ekspla Products PGx1 PGx3 PGx11 PT2 Travelling Wave Optical Parametric Generators (TWOPG) are

More information

IMPROVEMENT OF SCREEN MONITOR WITH SUPPRESSION OF COHERENT-OTR FOR SACLA

IMPROVEMENT OF SCREEN MONITOR WITH SUPPRESSION OF COHERENT-OTR FOR SACLA IMPROVEMENT OF SCREEN MONITOR WITH SUPPRESSION OF COHERENT-OTR FOR SACLA S. Matsubara 1, H. Maesaka 1,2, S. Inoue 3, Y. Otake 1,2 1: JASRI, 2: RIKEN SPring-8 Center, 3: SPring-8 Service Co. Ltd. Outline

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Confocal Raman Systems SPECTROSCOPY GROUP

Confocal Raman Systems SPECTROSCOPY GROUP Confocal Raman Systems SPECTROSCOPY GROUP MonoVista CRS Configuration Option PIXIS TE-Cooled CCD Camera Acton Spectrograph Micro-Raman Interface Witness Camera Optional Laser Micro/Macro Transfer Optics

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2 Lenses lens equation (for a thin lens) 1 1 1 ---- = (η η ) ------ - ------ f r 1 r 2 Where object o f = focal length η = refractive index of lens material η = refractive index of adjacent material r 1

More information

Magnetic probe holders are fully adjustable for more DUT heights and probe styles

Magnetic probe holders are fully adjustable for more DUT heights and probe styles Data Sheet The W4.0 x L6.5 mini probe station is a manual probe station designed for a versatile and comfortable operation on up to 4.0 wafers or 4.0 x 6.5 printed circuit board assemblies. This mini probe

More information

Physics Requirements for the LUSI X-ray Focusing Lens System

Physics Requirements for the LUSI X-ray Focusing Lens System PHYSICS REQUIREMENT DOCUMENT (PRD) Doc. No. SP-391-000-11 R1 LUSI SUB-SYSTEM CXI, XCS, XPP Physics Requirements for the Aymeric Robert LUSI Scientist, Author Signature Date David Fritz Sébastien Boutet

More information

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS J. KORNIS, P. PACHER Department of Physics Technical University of Budapest H-1111 Budafoki út 8., Hungary e-mail: kornis@phy.bme.hu, pacher@phy.bme.hu

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Name Date Time to Complete h m Partner Course/ Section / Grade Interference and Diffraction of Light Reflection by mirrors and refraction by prisms and lenses can be analyzed using the simple ray model

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers FEATURES 190 fs ps tunable pulse duration Up to 2 mj pulse energy Up to 20 W average power Single pulse 1 MHz tunable repetition rate Includes pulse picker for pulse-on-demand

More information

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle. 1 Class XII: Physics Chapter 9: Ray optics and Optical Instruments Top Concepts 1. Laws of Reflection. The reflection at a plane surface always takes place in accordance with the following two laws: (i)

More information

Two slit interference - Prelab questions

Two slit interference - Prelab questions Two slit interference - Prelab questions 1. Show that the intensity distribution given in equation 3 leads to bright and dark fringes at y = mλd/a and y = (m + 1/2) λd/a respectively, where m is an integer.

More information

Draft SPOTS Standard Part III (7)

Draft SPOTS Standard Part III (7) SPOTS Good Practice Guide to Electronic Speckle Pattern Interferometry for Displacement / Strain Analysis Draft SPOTS Standard Part III (7) CALIBRATION AND ASSESSMENT OF OPTICAL STRAIN MEASUREMENTS Good

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

HOLOEYE Photonics. HOLOEYE Photonics AG. HOLOEYE Corporation

HOLOEYE Photonics. HOLOEYE Photonics AG. HOLOEYE Corporation HOLOEYE Photonics Products and services in the field of diffractive micro-optics Spatial Light Modulator (SLM) for the industrial research R&D in the field of diffractive optics Micro-display technologies

More information

mechanisms for synchrotron compact - dynamic - precise CEDRAT TECHNOLOGIES Innovation in Mechatronics

mechanisms for synchrotron compact - dynamic - precise CEDRAT TECHNOLOGIES Innovation in Mechatronics mechanisms for synchrotron compact - dynamic - precise compact dynamic precise Cedrat Technologies products for synchrotron 3 MECHANISMS FOR SYNCHROTRON Cedrat Technologies (CTEC) specialized in mechatronics

More information

PARTICLE IMAGE VELOCIMETRY (PIV) AND VOLUMETRIC VELOCIMETRY (V3V) SYSTEMS

PARTICLE IMAGE VELOCIMETRY (PIV) AND VOLUMETRIC VELOCIMETRY (V3V) SYSTEMS PARTICLE IMAGE VELOCIMETRY (PIV) AND VOLUMETRIC VELOCIMETRY (V3V) SYSTEMS VERSATILE, UPGRADEABLE FLUID MECHANICS MEASUREMENT SOLUTIONS UNDERSTANDING, ACCELERATED FULL SPECTRUM OF GLOBAL VELOCITY SYSTEMS

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

XES PCDS to LUSI XCS Instrument ICD DRAFT

XES PCDS to LUSI XCS Instrument ICD DRAFT INTERFACE CONTROL DOCUMENT (ICD) Doc. No. SP-391-001-25 R0 LUSI SUB-SYSTEM XCS XES PCDS to LUSI XCS Instrument ICD DRAFT Perry Anthony Author Signature Date Gunther Haller PCDS Manager Signature Date Aymeric

More information

Dr. Larry J. Paxton Johns Hopkins University Applied Physics Laboratory Laurel, MD (301) (301) fax

Dr. Larry J. Paxton Johns Hopkins University Applied Physics Laboratory Laurel, MD (301) (301) fax Dr. Larry J. Paxton Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723 (301) 953-6871 (301) 953-6670 fax Understand the instrument. Be able to convert measured counts/pixel on-orbit into

More information

L. Pina, A. Fojtik, R. Havlikova, A. Jancarek, S.Palinek, M. Vrbova

L. Pina, A. Fojtik, R. Havlikova, A. Jancarek, S.Palinek, M. Vrbova L. Pina, A. Fojtik, R. Havlikova, A. Jancarek, S.Palinek, M. Vrbova Faculty of Nuclear Sciences, Czech Technical University, Brehova 7, 115 19 Prague, Czech Republic CD EXPERIMENTAL ARRANGEMENT SPECTRAL

More information

Transverse Coherence of a Vacuum Ultraviolet Free Electron Laser

Transverse Coherence of a Vacuum Ultraviolet Free Electron Laser Transverse Coherence of a Vacuum Ultraviolet Free Electron Laser Rasmus Ischebeck March 16, 2004 Transverse Coherence of a VUV Free Electron Laser Introduction Relevance of Coherence Definition and Measurements

More information

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light Diffraction Goals for lecture To see how a sharp edge or an aperture affect light To analyze single-slit diffraction and calculate the intensity of the light To investigate the effect on light of many

More information

GuideStar II Customer Presentation. February 2012

GuideStar II Customer Presentation. February 2012 GuideStar II Customer Presentation February 2012 Outline Product Overview Description Applications and Features Specifications Technical Details Picomotor Mirror Mounts 8784 Cameras Alignment Layout and

More information

Outline. Nuclear Forensics & Laser-Induced Breakdown Spectroscopy. Interferometry & Shadowgraphy. Conclusion & Future Work. Experimental Setup

Outline. Nuclear Forensics & Laser-Induced Breakdown Spectroscopy. Interferometry & Shadowgraphy. Conclusion & Future Work. Experimental Setup Outline Nuclear Forensics Laser-Induced Breakdown Spectroscopy Interferometry Shadowgraphy Experimental Setup Conclusion Future Work 1 Nuclear forensics The analysis of nuclear materials recovered from

More information

Simple Spectrograph. grating. slit. camera lens. collimator. primary

Simple Spectrograph. grating. slit. camera lens. collimator. primary Simple Spectrograph slit grating camera lens collimator primary Notes: 1) For ease of sketching, this shows a transmissive system (refracting telescope, transmission grating). Most telescopes use a reflecting

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Physical & Electromagnetic Optics: Diffraction Gratings

Physical & Electromagnetic Optics: Diffraction Gratings 31/05/2018 Physical & Electromagnetic Optics: Diffraction Gratings Optical Engineering Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Multiple

More information

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Annexure I Name of the equipment: Field Emission Scanning Electron Microscope (FE-SEM) along with Energy Dispersive Spectroscope (EDS) and accessories. Technical

More information

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry phase difference at a given distance constructive/destructive interference Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

More information

Optical properties and characterization

Optical properties and characterization Optical properties and characterization Name Picture Description Site Responsible 1 Laser Nd:YAG MAPLE (Matrix Assisted Pulsed Laser Evaporation) system for biomaterials and polymeric thin film deposition

More information

Tutorial Solutions. 10 Holographic Applications Holographic Zone-Plate

Tutorial Solutions. 10 Holographic Applications Holographic Zone-Plate 10 Holographic Applications 10.1 Holographic Zone-Plate Tutorial Solutions Show that if the intensity pattern for on on-axis holographic lens is recorded in lithographic film, then a one-plate results.

More information

Phy 133 Section 1: f. Geometric Optics: Assume the rays follow straight lines. (No diffraction). v 1 λ 1. = v 2. λ 2. = c λ 2. c λ 1.

Phy 133 Section 1: f. Geometric Optics: Assume the rays follow straight lines. (No diffraction). v 1 λ 1. = v 2. λ 2. = c λ 2. c λ 1. Phy 133 Section 1: f Geometric Optics: Assume the rays follow straight lines. (No diffraction). Law of Reflection: θ 1 = θ 1 ' (angle of incidence = angle of reflection) Refraction = bending of a wave

More information

Today s Outline - April 17, C. Segre (IIT) PHYS Spring 2018 April 17, / 22

Today s Outline - April 17, C. Segre (IIT) PHYS Spring 2018 April 17, / 22 Today s Outline - April 17, 2018 C. Segre (IIT) PHYS 570 - Spring 2018 April 17, 2018 1 / 22 Today s Outline - April 17, 2018 Diffraction enhanced imaging C. Segre (IIT) PHYS 570 - Spring 2018 April 17,

More information

Mu lt i s p e c t r a l

Mu lt i s p e c t r a l Viewing Angle Analyser Revolutionary system for full spectral and polarization measurement in the entire viewing angle EZContrastMS80 & EZContrastMS88 ADVANCED LIGHT ANALYSIS by Field iris Fourier plane

More information

Review Session 1. Dr. Flera Rizatdinova

Review Session 1. Dr. Flera Rizatdinova Review Session 1 Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the object

More information

Genesis CX SLM-Series

Genesis CX SLM-Series Genesis CX SLM-Series Single Frequency UV and Visible OEM and End-User OPS Laser Systems Applications such as spectroscopy, interferometry, and holography require single-frequency lasers with narrow linewidths

More information

Detailed ray-tracing code for capillary optics

Detailed ray-tracing code for capillary optics Detailed ray-tracing code for capillary optics Laszlo Vincze X-ray Microspectroscopy and Imaging Group Dept. Analytical Chemistry Ghent University, Belgium Outline Introduction: motivation for developing

More information

Sample Analysis Design

Sample Analysis Design Sample Analysis Design PART III Spectroscopic interferences Matrix effects Matrix Effects Physical physical effects from dissolved or undissolved solids present in solution Chemical Ionization suppression

More information

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013 SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : CLASS : INDEX NO : Track 3 Answer ALL questions in the spaces provided on the

More information

Diffraction Gratings

Diffraction Gratings Diffraction Gratings 1. How a Diffraction Grating works? Diffraction gratings are optical components with a period modulation on its surface. Either the transmission (or the phase) changes in a periodic

More information

HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES

HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES Progress In Electromagnetics Research Letters, Vol. 2, 115 123, 2008 HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES Y. Hayasaki Department of Optical Science

More information

Building Your Own 2-Photon Microscope: Challenges, Advantages and Limitations

Building Your Own 2-Photon Microscope: Challenges, Advantages and Limitations Building Your Own 2-Photon : Challenges, Advantages and Limitations Roberto Weigert, Ph.D. Intracellular Membrane Trafficking Unit Oral and Pharyngeal Cancer Branch NIDCR-NIH Building Your Own 2-Photon

More information

WinCamD-LCM 1" CMOS Beam Profiling Camera, SuperSpeed USB 3.0, * nm * model-dependent

WinCamD-LCM 1 CMOS Beam Profiling Camera, SuperSpeed USB 3.0, * nm * model-dependent Datasheet WinCamD-LCM 1" CMOS Beam Profiling Camera, SuperSpeed USB 3.0, 190 1610* nm * model-dependent With an 11.3 x 11.3 mm active area, 4.2 Mpixels, 5.5 x 5.5 μm pixels, optical and electronic triggering

More information

Ideal for a wide range of applications such as wafer test or PCB test for mm-wave, Microwave, RF or Automotive applications

Ideal for a wide range of applications such as wafer test or PCB test for mm-wave, Microwave, RF or Automotive applications Data Sheet The W2.5 x L6.5 mini probe station is a manual probe station designed for a versatile and comfortable operation on up to 2.5 wafers or 2.5 x 6.5 printed circuit board assemblies. This mini probe

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Diffraction Diffraction occurs when light waves pass through an aperture Huygen's Principal: each point on wavefront acts as source of another wave

Diffraction Diffraction occurs when light waves pass through an aperture Huygen's Principal: each point on wavefront acts as source of another wave Diffraction Diffraction occurs when light waves pass through an aperture Huygen's Principal: each point on wavefront acts as source of another wave If light coming from infinity point source at infinity

More information

Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time

Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time By Allen M. Cary, Jeffrey L. Guttman, Razvan Chirita, Derrick W. Peterman, Photon Inc A new instrument design allows the M

More information

This paper presents the design of the flexure stage, the finite element analysis, and the measured results obtained in the laboratory.

This paper presents the design of the flexure stage, the finite element analysis, and the measured results obtained in the laboratory. Nano Radian Angular Resolution Flexure Stage For ID28 Post-monochromator K.Martel, M.Krisch, R.Verbeni, D.Gambetti ESRF, 6 Rue Jules Horowitz, B.P. 220, 38043 Grenoble, France Abstract On ESRF Beamline

More information