Efficient topology control algorithms for ad hoc networks

Size: px
Start display at page:

Download "Efficient topology control algorithms for ad hoc networks"

Transcription

1 University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2006 Efficient topology control algorithms for ad hoc networks G. Srivastava University of Wollongong, Recommended Citation Srivastava, Gaurav, Efficient topology control algorithms for ad hoc networks, PhD thesis, School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:

2

3 Efficient Topology Control Algorithms For Ad Hoc Networks A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy from The University of Wollongong by Gaurav Srivastava Bachelor of Computer Engineering (Hons) School of Electrical, Computer and Telecommunications Engineering 2006

4 Abstract An Ad-hoc network is a collection of devices equipped with computing and wireless communication capabilities, co-operating together to form a network. An ad-hoc node can communicate with other nodes within its transmission range, or use intermediate nodes to establish communication paths to nodes outside its transmission range. Intermediate nodes in a route can collaborate to act as routers and forward their own traffic as well as the traffic generated by other nodes in a network. This strategy of routing is different to wired networks were communication is made possible through specialised networking devices including hubs, switches and routers interconnecting Local Area Networks (LANs) and Wide Area Networks (WANs). The routers used in LANs and WANs are devices with large processing capabilities, and high speed communication links. The topology of a network consists of a set of links and nodes which are used to discover and maintain communication paths and assist in coordinating the flow of packets in a network. The topology information can be used for many purposes including evaluating the connectivity/bi-connectivity of a topology and construction of routing paths for network applications. Nodes generally rely on each other to acquire topology information. Topology information can be disseminated by one centralized node by using a specialised process known as flooding or can also be disseminated in a distributed manner by broadcasting partial link state information and generating local topology views. Such local views can be put together to generate a larger topology view of a network. ii

5 Abstract iii Topology control is defined as a process where the topology of a network can be controlled by selective addition of nodes and links within a network. This process of selective addition can significantly impact the power usage and connectivity of network devices and improve longevity of a wireless network. In this thesis we analyse the impact of topology control and propose new algorithms and strategies that improve the connectivity, fault tolerance and communication reliability of topology graphs. We review, classify, categorise existing literature and discuss problems and issues associated with topology construction and maintenance proposed with and without Global Positioning System (GPS) aided techniques. Distributed topology control algorithms proposed for constructing minimum node degree graphs [Bettstetter, 2002] including K-Neigh [Blough et al., 2003], Location Information No Topology (LINT) [Ramanathan and Rosales-Hain, 2000], Location Information Link State Topology (LILT) [Ramanathan and Rosales-Hain, 2000] and MobileGrid (MG) [Liu and Li, 2002], do not necessarily generate bidirectional connected topology graphs and may result in isolated nodes and disconnected clusters. Such isolated nodes and disconnected clusters affect the overall connectivity of a network. The bidirectional connectivity of a network is an important factor in order to determine its performance. A bidirectional connected network, generally known as a connected network, is able to provide access to all crucial parts of a network and allows delivery of applications through a network. The bidirectional links are critical as they facilitate two way communication between the transmitter and receiver nodes. We proposed two mechanisms, Collaborative Algorithm (CA) [Srivastava et al., 2004a] and Probable Critical Links (PCL) [Srivastava et al., 2004d] to improve the connectivity of minimum node degree graphs and analyse their performance [Srivastava et al., 2006]. Power aware topology graphs use low power communications in order to reduce the overall power consumption of network nodes. A power optimised topology graph reduces the total number of links in the topology graph by eliminating

6 Abstract iv long distance links and replacing them with a number of small links. Removing links in a network topology can impact the fault tolerance of a network. Fault tolerance of a network is the ability of a network to cope with link and node failures. We analyse the fault tolerance issues related to power aware topology graphs including Minimum Spanning Tree (MST) [Prim, 1957] and Relative Neighbourhood graphs (RNG) [Huang et al., 2002]. We propose Link Redundancy (LR) algorithm [Srivastava et al., 2005a] to improve the fault tolerance of topology control algorithms. We analyse the performance of LR through worked examples and simulations [Srivastava et al., 2005a]. The LR algorithms yields a higher fault tolerant topology as opposed to the distance based approaches where link selections are made on the basis of the separation distance and may not necessarily yield a higher degree of connectivity [Srivastava et al., 2005a]. Power control also allows nodes to improve the spatial reuse of a wireless channel by reducing interference on other network communications and allowing nodes to communicate simultaneously. We analyse the spatial reuse issues related to topology graphs which can limit the performance of the algorithms due to the presence of hidden nodes [Poon and Li, 2003]. We propose Distributed Range Assignment (DRA) algorithm [Srivastava et al., 2004b] to reduce the hidden nodes in a network topology. We and apply DRA to MST and RNG topology graphs and analyse their performance through worked examples and simulations [Srivastava et al., 2004b]. The distance based topology graphs including MST, RNG, K-Neigh, and CA- PCL [Srivastava et al., 2006] do not model obstacles in a network. The connectivity of distance based topology graphs can be severely limited due to the presence of obstacles as nodes alter transmission range on the basis of the separation distance of links. Including signal attenuation characteristics can construct an accurate view of a network. We analyse the disconnected nature of distance based topology graphs under Lognormal-shadowing [Cox et al., 1984] [Cox et al., 1987] signal attenuation model. The Lognormal-shadowing model is

7 Abstract v used to analyse the impact of signal strength variations due to shadowing and scattering on the connectivity of power based topology graphs. We propose CA [Srivastava et al., 2006] in conjunction with the with power based topology graphs to improve the connectivity of a network [Srivastava et al., 2005b].

8 Statement of Originality This is to certify that the work described in this thesis is entirely my own, except where due reference is made in the text. No work in this thesis has been submitted for a degree to any other university or institution. Signed Gaurav Srivastava 1 July, 2006 vi

9 Acknowledgments I wish to thank my supervisors Dr. Paul Boustead and Prof. Joe Chicharo for their advice, assistance and support during the course of this thesis. I like to thank my family, Lalit, Neelam and Garima. A special thanks to Melanie Kruppa, for her companionship, patience, persistence and encouragements. Finally, I like to thank Justin Lipman, for his friendship and advice. vii

10 Contents 1 Introduction Background Thesis Overview Accomplishments and Contributions Publications Literature Review Introduction Medium Access Control Protocols Hidden Node Problem Exposed Node Problem IEEE Routing Protocols Proactive Routing Protocols Reactive Routing Protocols Hybrid Routing Protocols Signal Propagation Models Free Space Signal Attenuation Model Two Ray Signal Attenuation Model viii

11 CONTENTS ix Okumura Signal Attenuation Model Hata Signal Attenuation Model Lognormal Shadowing and Scattering Signal Attenuation Model Topology Control in Adhoc Networks Classification of the Topology Control Algorithms Centralised Topology Control Algorithms Minimum Spanning Tree (MST) Relative Neighbourhood Graph (RNG) Delaunay Triangulation (DT) Graph Novel Topology Control Algorithm (NTC) Connect Algorithm Biconn-Augment Algorithm Minimum Radius Graph (minr) Distributed Topology Control Algorithms Local Information No Topology (LINT) Algorithm Local Information Link-State Topology (LILT) Algorithm K-Neigh Algorithm Local Minimum Spanning Tree (LMST) Graph Distributed Relative Neighbourhood Graph (DRNG) Distributed Novel Topology Control Algorithm (DNTC) MobileGrid (MG) Common Power level (COMPOW) CLUSTERPOW Comparison of the Topology Control algorithms Research Issues

12 CONTENTS x Power Conservation Issues Spatial Reuse Issues Discussion of Open Research Issues Considered In The Thesis Summary of Research Issues Identified in thesis Connected Fixed Node Degree Graphs Introduction Collaborative Algorithm (CA) CA Implementation CA Worked Example CA Limitations Probable Critical Links (PCL) PCL implementation CA-PCL Worked Example Simulation and Analysis CA Scenario CA Results CA Summary CA-PCL Scenario CA-PCL Results CA-PCL Summary Conclusion Improving The Reliability Of Topologies Introduction Fault Tolerance

13 CONTENTS xi Simulation Results Summary Link Redundancy (LR) Selection LR Implementation LR Worked Example Simulation and Analysis Results Summary Conclusion Reliable Channel Access and Reuse Introduction Transmission Power and Channel Reuse Overview Impact of Transmission Range on Hidden and Exposed Nodes Identifying Exposed nodes and Hidden nodes in a topology graph Distributed Range Assignment (DRA) Algorithm DRA Implementation Impact of Global and Local topology Information on Hidden Node Evaluation Worked Example Simulation and Analysis Scenario Overview Results

14 CONTENTS xii 5.6 Conclusion Power Based topology Graphs Introduction Connected Topology Construction Problem Power Based Topology Graphs Implementation Worked Example Simulation and Analysis Scenario Overview Results Conclusion Conclusions and Future Work Overview Significant Results Further Work Bibliography 169 Appendices 179 A Chapter 3 Simulation Data 180 B Chapter 4 Simulation Data 191 C Chapter 5 Simulation Data 201 D Chapter 6 Simulation Data 208

15 List of Figures 2.1 (a) The Hidden Node problem, node A and C cannot sense each other s carrier and transmit simultaneously to node B (b) The Exposed Node problem, node B prevents node C from transmitting (a) Infrastructured mode of IEEE (b) Infrastructureless mode of IEEE (a) PCF frame exchange sequence in IEEE [Group, 1999a] (b) RTS/CTS/DATA/ACK with Virtual Carrier Sensing in the DCF mode of IEEE [Group, 1999a] (a) The Hidden Node solution, node C defers access after receiving a CTS from node B (b) The Exposed Node problem, CTS from node B prevents node C from transmitting A Classification of Topology Control Algorithms A Lune of node i and j is the area covered by the intersection of the two arcs (a) Maximum Transmission Power Based Routing Topology (b) Power Optimised Routing Topology (a) Channel Reuse in Maximum Power Topology (b) Channel Reuse in Low Power Topology (a) MST based network topology. (b) RNG based network topology (a) K-Neigh based topology graph with nd=2. (b) K-Neigh based bidirectional topology graph with nd=2. (c) CA based network topology with nd= xiii

16 LIST OF FIGURES xiv 3.2 (a) Alone Soldier problem in K-Neigh based topology graph with nd=2. (b) CA based network topology with nd= Two disjointed clusters due to the fixed node degree value of A lune of i and j is the region between the two arcs (a) Maximum Power Topology of a 5 node network (b) K-Neigh/CA(nd=2) based topology of a 5 node network (c) CA-PCL based topology of a 5 node network A comparison of the average power adaptation decisions vs total number of network nodes A comparison of the average end-to-end connectivity vs total number of network nodes A comparison of the average one hop neighbours vs total number of network nodes A comparison of the average power vs total number of network nodes A comparison of the average network connectivity vs total number of network nodes A comparison of the average one hop bidirectional neighbours vs total number of network nodes A comparison of the average power vs total number of network nodes A comparison of the network connectivity at different node failure rates vs total number of network nodes A comparison of the network connectivity at different node failure rates vs total number of network nodes A comparison of the network connectivity at different node failure rates vs total number of network nodes A comparison of the average network connectivity of the topology control algorithms [Srivastava et al., 2004c] A comparison of the fault tolerance of the topology control algorithms [Srivastava et al., 2004c]

17 LIST OF FIGURES xv 4.3 A comparison of the transmission power of the topology control algorithms A comparison of the hop diameter of the topology control algorithms A comparison of the average one hop neighbours of the topology control algorithms A Comparison of the RNG and LR-RNG topology graphs A comparison of the fault tolerance of the topology control algorithms A comparison of the average one hop bi-directional neighbours of the topology control algorithms A comparison of the average transmission power of the topology control algorithms A comparison of the hop diameter of the topology control algorithms A DRNG based network topology DRA applied to a DRNG based network topology A comparison of the average number of hidden nodes per link against the total number of network nodes in Distributed Relative Neighbourhood Graphs A comparison of the average number of hidden nodes per link against the total number of network nodes in Minimum Spanning Tree based Graphs A comparison of the average number of exposed nodes per link against the total number of network nodes in Distributed Relative Neighbourhood Graphs A comparison of the average number of exposed nodes per link against the total number of network nodes in Minimum Spanning Tree based Graphs A comparison of the average transmission power of the RTS and CTS packets per link against the total number of network nodes in Distributed Relative Neighbourhood Graphs

18 LIST OF FIGURES xvi 5.8 A comparison of the average transmission power of the RTS and CTS packets per link against the total number of network nodes in Minimum Spanning Tree based Graphs A Comparison of the DRNG topology graphs constructed using Free Space and Log-normal shadowing signal propagation models Power based DRNG topology, assuming a Free Space signal attenuation model Power based DRNG topology, assuming log-normal shadowing Power based bidirectional DRNG topology, assuming log-normal shadowing Power based bidirectional DRNG topology with Convert-TCN(), assuming log-normal shadowing A comparison of the connectivity of the RNG and RNG-CA topology graphs A comparison of the average one hop neighbors of the RNG and RNG-CA topology graphs A comparison of the average transmission power per link of the RNG and RNG-CA topology graphs

19 List of Tables 2.1 Summary of characteristics of the centralised topology control algorithms Summary of characteristics of the distributed topology control algorithms A.1 A comparison of the average power adaptation decisions vs total number of network nodes illustrated in Figure A.2 A comparison of the average end-to-end network connectivity vs total number of network nodes illustrated in Figure A.3 A comparison of the average one hop bidirectional neighbours vs total number of network nodes illustrated in Figure A.4 A comparison of the average transmission power vs total number of network nodes illustrated in Figure A.5 A comparison of the average network connectivity vs total number of network nodes illustrated in Figure A.6 A comparison of the average one hop bidirectional neighbours vs total number of network nodes illustrated in Figure A.7 A comparison of the average transmission power vs total number of network nodes illustrated in Figure A.8 A comparison of the average network connectivity at different node failure rates vs total number of network nodes illustrated in Figure A.9 A comparison of the average network connectivity at different node failure rates vs total number of network nodes illustrated in Figure xvii

20 LIST OF TABLES xviii A.10 A comparison of the average network connectivity at different node failure rates vs total number of network nodes illustrated in Figure B.1 A comparison of the average network connectivity vs total number of network nodes illustrated in Figure B.2 A comparison of the average network connectivity vs the node failure rate illustrated in Figure B.3 A comparison of the average transmission power vs total number of network nodes illustrated in Figure B.4 A comparison of the average hop diameters vs total number of network nodes illustrated in Figure B.5 A comparison of the average one hop neighbours vs total number of network nodes illustrated in Figure B.6 A comparison of the average network connectivity vs the node failure rate illustrated in Figure B.7 A comparison of the average one hop neighbours vs total number of network nodes illustrated in Figure B.8 A comparison of the average transmission powers vs total number of network nodes illustrated in Figure B.9 A comparison of the average hop diameter vs total number of network nodes illustrated in Figure C.1 A comparison of the average hidden nodes per link in Distributed Relative Neighbourhood Graphs vs the total number of network nodes illustrated in Figure C.2 A comparison of the average hidden nodes per link in Minimum Spanning Tree Based Graphs vs the total number of network nodes illustrated in Figure C.3 A comparison of the average exposed nodes per link in Distributed Relative Neighbourhood Graphs vs the total number of network nodes illustrated in Figure C.4 A comparison of the average exposed nodes per link in Minimum Spanning Tree Based Graphs vs the total number of network nodes illustrated in Figure

21 LIST OF TABLES xix C.5 A comparison of the average transmission power of the RTS and CTS messages per link in Distributed Relative Neighbourhood Graphs vs the total number of network nodes illustrated in Figure C.6 A comparison of the average transmission power of the RTS and CTS messages per link in Minimum Spanning Tree Based Graphs vs the total number of network nodes illustrated in Figure D.1 A comparison of the average network connectivity vs the total number of network nodes illustrated in Figure D.2 A comparison of the average one hop neighbours vs the total number of network nodes illustrated in Figure D.3 A comparison of the average transmission range vs the total number of network nodes illustrated in Figure

22 List of Abbreviations ABR ACK AODV AP ARA ARTP BS BSS CA CA-PCL CFP CI CO COMPOW CP CSMA CSMA/CA CTS DARPA DBTMA DCF DDR DE Associativity-Based Routing Acknowledgment Ad-hoc On-demand Distance Vector Access Point Ant-colony-based Routing Algorithm Articulation Point Base Station Basic Service Set Collaborative Algorithm Collaborative Algorithm with Probable Critical Links Contention Free Period Contention Index Communication Overhead Common Power Level Contention Period Carrier Sense Multiple Access Carrier Sense Multiple Access With Collision Avoidance Clear To Send Defense Advance Research Project Agency Dual Busy Tone Multiple Access Distributed Coordinate Function Distributed Dynamic Routing Directed Edges xx

23 List of Abbreviations xxi DFS DHCP DIFS DNS DNTC DRA DREAM DRNG DRNG DS DSDV DSR DSSS DST DT FAMA FHSS FSR GAMA GB GPS GSR IEEE IR LAN LAR LILT LINT LMST LR Depth First Search Dynamic Host Configuration Protocol Distributed Coordinate Function Inter Frame Space Domain Name Service Distributed Novel Topology Control Algorithm Distributed Range Assignment Distance Routing Effect Algorithm For Mobility Distributed Relative Neighbourhood Graph Distributed Relative Neighbourhood Graph Distribution System Distance-Sequenced Distance Vector Dynamic Source Routing Direct Sequence Spread Spectrum Distributed Spanning Tree Delaunay Triangulation Floor Acquisition Multiple Access Frequency Hopping Spread Spectrum Fisheye State Routing Group Allocation Multiple Access Graph Based Global Positioning System Global State Routing Institute of Electrical and Electronics Engineers Infra Red Local Area Network Location Aided Routing Location Information Link State Topology Location Information No Topology Localized Minimum Spanning Tree Link Redundancy

24 List of Abbreviations xxii LR-MST LR-RNG MAC MACA MACAW MANETs MG minr MPT MST MST+1 NAP NAV ND ND-GB ND-PCB Non-GB NonND Non-PCB NRP NTC OFDM OSLR PC PCB PCF PCL PHY PIFS PL Link Redundancy Algorithm Applied to Minimum Spanning Tree Link Redundancy Algorithm Applied to Relative Neighbourhood Graph Medium Access Control Multiple Access Collision Avoidance Multiple Access Collision Avoidance For Wireless LAN Mobile Ad-hoc Networks Mobile Grid Minimum Radius Graph Maximum Power Topology Minimum Spanning Tree Minimum Spanning Tree Graph with One Additional Link Per Node Neighbour Addition Protocol Network Allocation Vector Node Degree Node Degree Graph Based Node Degree Power Control Based Non Node Degree Graph Based Non Node Degree Non Node Degree Power Control Based Neighbour Reduction Protocol Novel Topology Control Orthogonal Frequency Division Multiplexing Optimised Link State Routing Point Coordinator Power Control Based Point Coordination Function Probable Critical Link Physical Layer Point Coordinate Function Inter Frame Space Pathloss

25 List of Abbreviations xxiii PL RDMAR RNG RNG+1 ROAM RP RTS SE SIFS SLURP SSA STAR TB TBRPF TORA VCS WAN WLANS WRP ZHLS ZRP Power Level Relative Distance Micro-discovery Ad-hoc Routing Relative Neighbourhood Graph Relative Neighbourhood Graph with One Additional Link Per Node Routing On-demand Acyclic Multipath Routing Protocol Request To Send Side Effect Edges Short Inter Frame Space Scalable Location Update Routing Protocol Signal Stability Adaptive Source Tree Adaptive Routing Tree Based Topology Broadcast Reverse Path Forwarding Temporally Ordered Routing Algorithms Virtual Carrier Sensing Wide Area Network Wireless Local Area Networks Wireless Routing Protocol Zone Based Hierarchical Link State Zone Routing Protocol

Efficient topology control algorithms for ad hoc networks

Efficient topology control algorithms for ad hoc networks University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2006 Efficient topology control algorithms for ad hoc networks Gaurav Srivastava University

More information

On exploiting spatial reuse in wireless ad hoc networks

On exploiting spatial reuse in wireless ad hoc networks University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2008 On exploiting spatial reuse in wireless ad hoc networks Ziguang

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS ix TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS v xiv xvi xvii 1. INTRODUCTION TO WIRELESS NETWORKS AND ROUTING PROTOCOLS 1 1.1

More information

Introduction to Mobile Ad hoc Networks (MANETs)

Introduction to Mobile Ad hoc Networks (MANETs) Introduction to Mobile Ad hoc Networks (MANETs) 1 Overview of Ad hoc Network Communication between various devices makes it possible to provide unique and innovative services. Although this inter-device

More information

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du Chapter 6 Wireless and Mobile Networks Csci 4211 David H.C. Du Wireless LAN IEEE 802.11 a, b, g IEEE 802.15 Buletooth Hidden Terminal Effect Hidden Terminal Problem Hidden terminals A, C cannot hear each

More information

Medium Access and Routing In Multi Hop Wireless Infrastructures

Medium Access and Routing In Multi Hop Wireless Infrastructures Electrical Engineering, Mathematics and Computer Science Medium Access and Routing In Multi Hop Wireless Infrastructures Ayman Wazwaz Master Thesis M.Sc. Telematics Project Supervisors: Dr. ir. Geert Heijenk

More information

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4.

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4. Topics for Today More on Ethernet Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet Wireless LANs Readings 4.3 to 4.4 1 Original Ethernet Wiring Heavy coaxial cable, called thicknet,

More information

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview Wireless LANs CSE 3213 Fall 2011 4 November 2011 Overview 2 1 Infrastructure Wireless LAN 3 Applications of Wireless LANs Key application areas: LAN extension cross-building interconnect nomadic access

More information

Wireless Local Area Networks. Networks: Wireless LANs 1

Wireless Local Area Networks. Networks: Wireless LANs 1 Wireless Local Area Networks Networks: Wireless LANs 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices (PDAs and cell phones) created an obvious application

More information

15-441: Computer Networking. Wireless Networking

15-441: Computer Networking. Wireless Networking 15-441: Computer Networking Wireless Networking Outline Wireless Challenges 802.11 Overview Link Layer Ad-hoc Networks 2 Assumptions made in Internet Host are (mostly) stationary Address assignment, routing

More information

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

Figure.2. Hidden & Exposed node problem

Figure.2. Hidden & Exposed node problem Efficient Throughput MAC Protocol in Ad-hoc Network s Rahul Mukherjee, HOD and Assistant Professor, Electronics & Communication Department, St. Aloysius Institute of Technology (SAIT), Jabalpur, Rajiv

More information

Efficient Power MAC Protocol in Ad-hoc Network s

Efficient Power MAC Protocol in Ad-hoc Network s Efficient Power MAC Protocol in Ad-hoc Network s Rahul Mukherjee HOD and Assistant Professor, Electronics & Communication Department, St. Aloysius Institute of Technology (SAIT), Jabalpur, Rajiv Gandhi

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks Unicast Routing in Mobile Ad Hoc Networks 1 Routing problem 2 Responsibility of a routing protocol Determining an optimal way to find optimal routes Determining a feasible path to a destination based on

More information

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer 1 Wireless Local Area Networks (WLANs) The proliferation of laptop computers and other mobile devices (PDAs and cell phones)

More information

Unit 7 Media Access Control (MAC)

Unit 7 Media Access Control (MAC) Unit 7 Media Access Control (MAC) 1 Internet Model 2 Sublayers of Data Link Layer Logical link control (LLC) Flow control Error control Media access control (MAC) access control 3 Categorization of MAC

More information

Mobile and Sensor Systems

Mobile and Sensor Systems Mobile and Sensor Systems Lecture 2: Mobile Medium Access Control Protocols and Wireless Systems Dr Cecilia Mascolo In this lecture We will describe medium access control protocols and wireless systems

More information

Ad Hoc Networks: Issues and Routing

Ad Hoc Networks: Issues and Routing Ad Hoc Networks: Issues and Routing Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a time/space problem Who transmits when?

More information

Performance Evaluation of Various Routing Protocols in MANET

Performance Evaluation of Various Routing Protocols in MANET 208 Performance Evaluation of Various Routing Protocols in MANET Jaya Jacob 1,V.Seethalakshmi 2 1 II MECS,Sri Shakthi Institute of Science and Technology, Coimbatore, India 2 Associate Professor-ECE, Sri

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University Lecture 4: Wireless MAC Overview Hung-Yu Wei National Taiwan University Medium Access Control Topology 3 Simplex and Duplex 4 FDMA TDMA CDMA DSSS FHSS Multiple Access Methods Notice: CDMA and spread spectrum

More information

ISSN: International Journal of Advanced Research in Computer Engineering & Technology Volume 1, Issue 5, July 2012

ISSN: International Journal of Advanced Research in Computer Engineering & Technology Volume 1, Issue 5, July 2012 Optimized MAC Protocol with Power Efficiency in Mobile Ad-hoc Network Rahul Mukherjee HOD and Assistant Professor, Electronics & Communication Department, St. Aloysius Institute of Technology (SAIT), Jabalpur,

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.6: Wireless Networks - MAC Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527

More information

Wireless Ad-Hoc Networks

Wireless Ad-Hoc Networks Wireless Ad-Hoc Networks Dr. Hwee-Pink Tan http://www.cs.tcd.ie/hweepink.tan Outline Part 1 Motivation Wireless Ad hoc networks Comparison with infrastructured networks Benefits Evolution Topologies Types

More information

Performance Evaluation of AODV and DSR routing protocols in MANET

Performance Evaluation of AODV and DSR routing protocols in MANET Performance Evaluation of AODV and DSR routing protocols in MANET Naresh Dobhal Diwakar Mourya ABSTRACT MANETs are wireless temporary adhoc networks that are being setup with no prior infrastructure and

More information

CSE 461: Wireless Networks

CSE 461: Wireless Networks CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network

More information

Wireless Protocols. Training materials for wireless trainers

Wireless Protocols. Training materials for wireless trainers Wireless Protocols Training materials for wireless trainers Goals The goal of this lecture is to introduce: IEEE wireless protocols coverage 802.11 radio protocols terminology WiFi modes of operation details

More information

Chapter 16. Wireless LAN, Mobile Ad Hoc Networks, and MANET Routing Protocols. Wireless Network Models. Illustration of an ad hoc network

Chapter 16. Wireless LAN, Mobile Ad Hoc Networks, and MANET Routing Protocols. Wireless Network Models. Illustration of an ad hoc network Chapter 16 Wireless LAN, Mobile Ad Hoc Networks, and MANET Routing Protocols Associate Prof. Yuh-Shyan Chen Department of CSIE National Chung Cheng University Wireless Network Models With Infrastructure:

More information

Wireless LAN, Mobile Ad Hoc Networks, and MANET Routing Protocols

Wireless LAN, Mobile Ad Hoc Networks, and MANET Routing Protocols Chapter 16 Wireless LAN, Mobile Ad Hoc Networks, and MANET Routing Protocols Associate Prof. Yuh-Shyan Chen Department of CSIE National Chung Cheng University 2002/11/ Yuh-Shyan Chen 1 Wireless Network

More information

Kapitel 5: Mobile Ad Hoc Networks. Characteristics. Applications of Ad Hoc Networks. Wireless Communication. Wireless communication networks types

Kapitel 5: Mobile Ad Hoc Networks. Characteristics. Applications of Ad Hoc Networks. Wireless Communication. Wireless communication networks types Kapitel 5: Mobile Ad Hoc Networks Mobilkommunikation 2 WS 08/09 Wireless Communication Wireless communication networks types Infrastructure-based networks Infrastructureless networks Ad hoc networks Prof.

More information

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi Overview 15-441 15-441: Computer Networking 15-641 Lecture 21: Wireless Justine Sherry Peter Steenkiste Fall 2017 www.cs.cmu.edu/~prs/15-441-f17 Link layer challenges and WiFi WiFi Basic WiFi design Some

More information

Wireless LAN -Architecture

Wireless LAN -Architecture Wireless LAN -Architecture IEEE has defined the specifications for a wireless LAN, called IEEE 802.11, which covers the physical and data link layers. Basic Service Set (BSS) Access Point (AP) Distribution

More information

MSIT 413: Wireless Technologies Week 8

MSIT 413: Wireless Technologies Week 8 MSIT 413: Wireless Technologies Week 8 Michael L. Honig Department of EECS Northwestern University November 2017 The Multiple Access Problem How can multiple mobiles access (communicate with) the same

More information

Content distribution networks over shared infrastructure : a paradigm for future content network deployment

Content distribution networks over shared infrastructure : a paradigm for future content network deployment University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2005 Content distribution networks over shared infrastructure :

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

Wireless LAN. Access Point. Provides network connectivity over wireless media

Wireless LAN. Access Point. Provides network connectivity over wireless media LAN Technologies 802.11 Wireless LAN Network connectivity to the legacy wired LAN Access Point Desktop with PCI 802.11 LAN card Laptop with PCMCIA 802.11 LAN card Provides network connectivity over wireless

More information

Enhancing the scalability of heterogeneous MANET routing protocols

Enhancing the scalability of heterogeneous MANET routing protocols University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2012 Enhancing the scalability of heterogeneous MANET routing protocols Huda

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Wireless Communication and Networking CMPT 371

Wireless Communication and Networking CMPT 371 Wireless Communication and Networking CMPT 371 Wireless Systems: AM, FM Radio TV Broadcast Satellite Broadcast 2-way Radios Cordless Phones Satellite Links Mobile Telephony Systems Wireless Local Loop

More information

Mobile and Sensor Systems. Lecture 3: Infrastructure, Ad-hoc and Delay Tolerant Mobile Networks Dr Cecilia Mascolo

Mobile and Sensor Systems. Lecture 3: Infrastructure, Ad-hoc and Delay Tolerant Mobile Networks Dr Cecilia Mascolo Mobile and Sensor Systems Lecture 3: Infrastructure, Ad-hoc and Delay Tolerant Mobile Networks Dr Cecilia Mascolo In this lecture In this lecture we will describe the difference in infrastructure and ad

More information

Wireless Local Area Networks (WLANs) Part I

Wireless Local Area Networks (WLANs) Part I Wireless Local Area Networks (WLANs) Part I Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Transmission Control Protocol over Wireless LAN

Transmission Control Protocol over Wireless LAN Global Journal of Computer Science and Technology Network, Web & Security Volume 12 Issue 17 Version 1.0 Year 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Wireless Communication and Networking CMPT 371

Wireless Communication and Networking CMPT 371 Wireless Communication and Networking CMPT 371 Wireless Systems: AM, FM Radio TV Broadcast Satellite Broadcast 2-way Radios Cordless Phones Satellite Links Mobile Telephony Systems Wireless Local Loop

More information

Simulation & Performance Analysis of Mobile Ad-Hoc Network Routing Protocol

Simulation & Performance Analysis of Mobile Ad-Hoc Network Routing Protocol Simulation & Performance Analysis of Mobile Ad-Hoc Network Routing Protocol V.S.Chaudhari 1, Prof.P.N.Matte 2, Prof. V.P.Bhope 3 Department of E&TC, Raisoni College of Engineering, Ahmednagar Abstract:-

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Winter'11 1 Announcements Accessing secure part of the class Web page: User id: cmpe257.

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 5 CMPE 257 Winter'11 1 Announcements Project proposals. Student presentations. 10 students so

More information

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking Wireless Challenges 15-441: Computer Networking Lecture 25: Wireless Networking Force us to rethink many assumptions Need to share airwaves rather than wire Don t know what hosts are involved Host may

More information

Multiple Access in Cellular and Systems

Multiple Access in Cellular and Systems Multiple Access in Cellular and 802.11 Systems 1 GSM The total bandwidth is divided into many narrowband channels. (200 khz in GSM) Users are given time slots in a narrowband channel (8 users) A channel

More information

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

standard. Acknowledgement: Slides borrowed from Richard Y. Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data rate applications Ability to

More information

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018 WiFi Networks: IEEE 802.11b Wireless LANs Carey Williamson Department of Computer Science University of Calgary Winter 2018 Background (1 of 2) In many respects, the IEEE 802.11b wireless LAN (WLAN) standard

More information

Wireless Communications

Wireless Communications 4. Medium Access Control Sublayer DIN/CTC/UEM 2018 Why do we need MAC for? Medium Access Control (MAC) Shared medium instead of point-to-point link MAC sublayer controls access to shared medium Examples:

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Spring'15 1 Next week Announcements April 14: ICN (Spencer Sevilla) April 16: DTN

More information

UCS-805 MOBILE COMPUTING Jan-May,2011 TOPIC 8. ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala.

UCS-805 MOBILE COMPUTING Jan-May,2011 TOPIC 8. ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala. Mobile Ad Hoc Networks: Routing TOPIC 8 UCS-805 MOBILE COMPUTING Jan-May,2011 ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Email-alakroy.nerist@gmail.com Mobile Ad Hoc Networks (MANET) Introduction

More information

ROUTING PROTOCOLS FOR MANETs

ROUTING PROTOCOLS FOR MANETs ROUTING PROTOCOLS FOR MANETs A Master s Project Presented to Department of Telecommunications In Partial Fulfillment of the Requirements for the Master of Science Degree State University of New York Polytechnic

More information

Review of Medium Access Control protocol for MANET

Review of Medium Access Control protocol for MANET Review of Medium Access Control protocol for MANET Khushboo Agarwal Department of CSE&IT, Madhav Institute of Technology and Science, Gwalior 474005 ka.agarwal5@gmail.com Abstract: The mobile Adhoc network

More information

Computer Networks. Wireless LANs

Computer Networks. Wireless LANs Computer Networks Wireless LANs Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN 802.11 Personal wireless nw WPAN 802.15 WiFi 802.11a 802.11b 802.11h 802.11i/e/

More information

Institute of Electrical and Electronics Engineers (IEEE) IEEE standards

Institute of Electrical and Electronics Engineers (IEEE) IEEE standards HW Institute of Electrical and Electronics Engineers (IEEE) IEEE 802.11 standards WLAN Standard (IEEE 802.11) The IEEE 802.11 is a family of standards that governs the operations and functions of WLANs.

More information

Performance Analysis and Enhancement of Routing Protocol in Manet

Performance Analysis and Enhancement of Routing Protocol in Manet Vol.2, Issue.2, Mar-Apr 2012 pp-323-328 ISSN: 2249-6645 Performance Analysis and Enhancement of Routing Protocol in Manet Jaya Jacob*, V.Seethalakshmi** *II MECS, Sri Shakthi Institute of Engineering and

More information

6367(Print), ISSN (Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJCET)

6367(Print), ISSN (Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJCET) INTERNATIONAL International Journal of Computer JOURNAL Engineering OF COMPUTER and Technology ENGINEERING (IJCET), ISSN 0976- & TECHNOLOGY (IJCET) ISSN 0976 6367(Print) ISSN 0976 6375(Online) Volume 4,

More information

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology CSC344 Wireless and Mobile Computing Department of Computer Science COMSATS Institute of Information Technology Wireless Local Area Networks (WLANs) Part I Almost all wireless LANs now are IEEE 802.11

More information

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:

More information

IEEE Medium Access Control. Medium Access Control

IEEE Medium Access Control. Medium Access Control IEEE 802.11 Medium Access Control EECS3214 3 April 2018 Medium Access Control reliable data delivery access control MAC layer covers three functional areas: security 2 1 MAC Requirements To avoid interference

More information

Zone-based Proactive Source Routing Protocol for Ad-hoc Networks

Zone-based Proactive Source Routing Protocol for Ad-hoc Networks 2014 IJSRSET Volume i Issue i Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Science Zone-based Proactive Source Routing Protocol for Ad-hoc Networks Dr.Sangheethaa.S 1, Dr. Arun Korath

More information

Wireless Local Area Part 2

Wireless Local Area Part 2 Wireless Local Area Part 2 BER 802.11: advanced capabilities Rate Adaptation base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. 6: Wireless and Mobile Networks 6

More information

Media Access Control in Ad Hoc Networks

Media Access Control in Ad Hoc Networks Media Access Control in Ad Hoc Networks The Wireless Medium is a scarce precious resource. Furthermore, the access medium is broadcast in nature. It is necessary to share this resource efficiently and

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 7.1 Comparison: infrastructure vs.

More information

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang Intelligent Transportation Systems Medium Access Control Prof. Dr. Thomas Strang Recap: Wireless Interconnections Networking types + Scalability + Range Delay Individuality Broadcast o Scalability o Range

More information

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless LANs. ITS 413 Internet Technologies and Applications Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE

More information

Routing Protocols in Mobile Ad-Hoc Network

Routing Protocols in Mobile Ad-Hoc Network International Journal of Computer Science & Management Studies, Vol. 12, Issue 02, April 2012 Protocols in Mobile Ad-Hoc Network Sachin Minocha M. Tech Student, Vaish College of Engineering, Rohtak, Haryana

More information

ECE442 Communications Lecture 3. Wireless Local Area Networks

ECE442 Communications Lecture 3. Wireless Local Area Networks ECE442 Communications Lecture 3. Wireless Local Area Networks Husheng Li Dept. of Electrical Engineering and Computer Science Spring, 2014 Wireless Local Networks 1 A WLAN links two or more devices using

More information

DYNAMIC SEARCH TECHNIQUE USED FOR IMPROVING PASSIVE SOURCE ROUTING PROTOCOL IN MANET

DYNAMIC SEARCH TECHNIQUE USED FOR IMPROVING PASSIVE SOURCE ROUTING PROTOCOL IN MANET DYNAMIC SEARCH TECHNIQUE USED FOR IMPROVING PASSIVE SOURCE ROUTING PROTOCOL IN MANET S. J. Sultanuddin 1 and Mohammed Ali Hussain 2 1 Department of Computer Science Engineering, Sathyabama University,

More information

Ad Hoc Networks: Introduction

Ad Hoc Networks: Introduction Ad Hoc Networks: Introduction Module A.int.1 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA 1 Ad Hoc networks: introduction A.int.1-2

More information

Wireless Local Area Network (IEEE )

Wireless Local Area Network (IEEE ) Wireless Local Area Network (IEEE 802.11) -IEEE 802.11 Specifies a single Medium Access Control (MAC) sublayer and 3 Physical Layer Specifications. Stations can operate in two configurations : Ad-hoc mode

More information

Wireless Networking & Mobile Computing

Wireless Networking & Mobile Computing Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Lec #4: Medium Access Control - II Tamer Nadeem Dept. of Computer Science IEEE 802.11 Standards Page 2 Spring 2012 CS 752/852 - Wireless

More information

Ad Hoc Routing Protocols and Issues

Ad Hoc Routing Protocols and Issues Ad Hoc Routing Protocols and Issues Stefano Basagni ECE Dept Northeastern University Boston, Jan 2003 Ad hoc (AD-HAHK or AD-HOKE)-Adjective a) Concerned with a particular end or purpose, and b) formed

More information

Data Communications. Data Link Layer Protocols Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs Data Communications Data Link Layer Protocols Wireless LANs Wireless Networks Several different types of communications networks are using unguided media. These networks are generally referred to as wireless

More information

CIS 9590 Ad Hoc Networks (Part II) Jie Wu Department of Computer and Information Sciences Temple University Philadelphia, PA 19122

CIS 9590 Ad Hoc Networks (Part II) Jie Wu Department of Computer and Information Sciences Temple University Philadelphia, PA 19122 CIS 9590 Ad Hoc Networks (Part II) Jie Wu Department of Computer and Information Sciences Temple University Philadelphia, PA 19122 Table of Contents Introduction Infrastructured networks Handoff location

More information

ANALYSIS OF DIFFERENT REACTIVE, PROACTIVE & HYBRID ROUTING PROTOCOLS: A REVIEW

ANALYSIS OF DIFFERENT REACTIVE, PROACTIVE & HYBRID ROUTING PROTOCOLS: A REVIEW ANALYSIS OF DIFFERENT REACTIVE, PROACTIVE & HYBRID ROUTING PROTOCOLS: A REVIEW Kirandeep Kaur 1, Mr.Pawan Luthra 2, Er.Gagandeep 3 1 Department of Computer Science and Engineering, Shaheed Bhagat Singh

More information

A Novel Review on Routing Protocols in MANETs

A Novel Review on Routing Protocols in MANETs Robinpreet Kaur & Mritunjay Kumar Rai Department of Electronics and Engineering, Lovely Professional University, Phagwara, Punjab, India E-mail : robin_turna@yahoo.com, raimritunjay@gmail.com Abstract

More information

2. LITERATURE REVIEW. Performance Evaluation of Ad Hoc Networking Protocol with QoS (Quality of Service)

2. LITERATURE REVIEW. Performance Evaluation of Ad Hoc Networking Protocol with QoS (Quality of Service) 2. LITERATURE REVIEW I have surveyed many of the papers for the current work carried out by most of the researchers. The abstract, methodology, parameters focused for performance evaluation of Ad-hoc routing

More information

Relative Performance Analysis of Reactive (on-demand-driven) Routing Protocols

Relative Performance Analysis of Reactive (on-demand-driven) Routing Protocols Relative Performance Analysis of Reactive (on-demand-driven) Routing Protocols Mukesh Kumar Garg, Dr. Ela Kumar Abstract A Mobile Ad Hoc Network (MANET) is a group of wireless mobile computers (or nodes);

More information

Hands-On Exercises: IEEE Standard

Hands-On Exercises: IEEE Standard Hands-On Exercises: IEEE 802.11 Standard Mohammad Hossein Manshaei and Jean-Pierre Hubaux {hossein.manshaei,jean-pierre.hubaux}@epfl.ch Laboratory for Computer Communications and Applications (LCA) March

More information

Wireless Networking & Mobile Computing

Wireless Networking & Mobile Computing Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Network Layer: Ad Hoc Routing Tamer Nadeem Dept. of Computer Science The OSI Communication Model Page 2 Spring 2012 CS 752/852 - Wireless

More information

Analysis and Comparison of DSDV and NACRP Protocol in Wireless Sensor Network

Analysis and Comparison of DSDV and NACRP Protocol in Wireless Sensor Network Analysis and Comparison of and Protocol in Wireless Sensor Network C.K.Brindha PG Scholar, Department of ECE, Rajalakshmi Engineering College, Chennai, Tamilnadu, India, brindhack@gmail.com. ABSTRACT Wireless

More information

Implementation and Performance Evaluation of Three Routing Protocols for Mobile Ad Hoc Network Using Network Simulator

Implementation and Performance Evaluation of Three Routing Protocols for Mobile Ad Hoc Network Using Network Simulator Implementation and Performance Evaluation of Three Protocols for Mobile Ad Hoc Network Using Network Simulator Suhaila A. Dabibbi and Shawkat K. Guirguis Abstract Mobile ad hoc network (MANET) is a self-configuring

More information

EZR: Enhanced Zone Based Routing In Manet

EZR: Enhanced Zone Based Routing In Manet EZR: Enhanced Zone Based Routing In Manet Bency Wilson 1, Geethu Bastian 2, Vinitha Ann Regi 3, Arun Soman 4 Department of Information Technology, Rajagiri School of Engineering and Technology, Rajagiri

More information

Hubs, Bridges, and Switches (oh my) Hubs

Hubs, Bridges, and Switches (oh my) Hubs Hubs, Bridges, and Switches (oh my) Used for extending LANs in terms of geographical coverage, number of nodes, administration capabilities, etc. Differ in regards to: collision domain isolation layer

More information

MAC in /20/06

MAC in /20/06 MAC in 802.11 2/20/06 MAC Multiple users share common medium. Important issues: Collision detection Delay Fairness Hidden terminals Synchronization Power management Roaming Use 802.11 as an example to

More information

Outline. CS5984 Mobile Computing. IEEE 802 Architecture 1/7. IEEE 802 Architecture 2/7. IEEE 802 Architecture 3/7. Dr. Ayman Abdel-Hamid, CS5984

Outline. CS5984 Mobile Computing. IEEE 802 Architecture 1/7. IEEE 802 Architecture 2/7. IEEE 802 Architecture 3/7. Dr. Ayman Abdel-Hamid, CS5984 CS5984 Mobile Computing Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Outline IEEE 82 Architecture IEEE 82. Wireless LANs Based on Chapter 4 in Wireless Communications and Networks, William

More information

CS4516 Advanced Computer Networks. Final Review

CS4516 Advanced Computer Networks. Final Review Final Review ------------------------------ Final Material Begins Here --------------------------- V. Local Area Networks A. "The Channel Allocation Problem" 1. assumptions B. LAN Performance Notation

More information

Mobile Communications. Ad-hoc and Mesh Networks

Mobile Communications. Ad-hoc and Mesh Networks Ad-hoc+mesh-net 1 Mobile Communications Ad-hoc and Mesh Networks Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto Ad-hoc+mesh-net 2 What is an ad-hoc network? What are differences between

More information

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs ( wi-fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5

More information

Location Awareness in Ad Hoc Wireless Mobile Neworks

Location Awareness in Ad Hoc Wireless Mobile Neworks Location Awareness in Ad Hoc Wireless Mobile Neworks Lijuan Ai Wenyu Wang Yi Zhou 11/14/2001 Mobile Computing, Fall 2001 1 PART I INTRODUCTION TO MANET & LOCATION-AWARE COMPONENTS 11/14/2001 Mobile Computing,

More information

3.1. Introduction to WLAN IEEE

3.1. Introduction to WLAN IEEE 3.1. Introduction to WLAN IEEE 802.11 WCOM, WLAN, 1 References [1] J. Schiller, Mobile Communications, 2nd Ed., Pearson, 2003. [2] Martin Sauter, "From GSM to LTE", chapter 6, Wiley, 2011. [3] wiki to

More information

Wireless networks. Wireless Network Taxonomy

Wireless networks. Wireless Network Taxonomy Wireless networks two components to be considered in deploying applications and protocols wireless links ; mobile computing they are NOT the same thing! wireless vs. wired links lower bandwidth; higher

More information