Building and evaluating network simulation systems

Size: px
Start display at page:

Download "Building and evaluating network simulation systems"

Transcription

1 S Postgraduate Course in Radiocommunications Fall 2000 Building and evaluating network simulation systems Shkumbin Hamiti Nokia Research Center HUT Page 1 (14)

2 1. Introduction Objectives of Network Simulations Developing Valid and Credible Simulation Models Statistical Issues in Network Simulation Modeling System Randomness Design and Analysis of Simulation Experiments Examples of Simulation Software Some aspects of simulations of mobile networks Spectrum efficiency evaluation Active Session Throughput Satisfied user System Load Spectrum Efficiency Parameter values Required results Notes on traffic models in simulation of communication networks Conclusion Reference Page 2 (14)

3 1. INTRODUCTION This seminar report deals with basic principles of building and evaluating network level simulation models. The main topics discussed here are: Issues that network simulations address Techniques to build valid and credible model Care for statistical issues Available simulation software Notes on simulating cellular networks This report is largely based on references [1] and [2]. It is very common the case that there is a need for studying and evaluating existing or proposed communication systems. The aims of those studies are usually evaluation of system performance and impact on the existing systems. Performing studies and evaluation is quite difficult in live networks and more often in many cases the network does not even exist. Therefore using simulations for studying and evaluating has become a necessity. If the relationships between the nodes and functions of the communication system are simple, there is no better way than using analytical models for evaluation. Analytical solutions have been widely used, especially in queuing systems, however as the number of nodes increases, and stochastic processes becomes more complicated, the analytical solutions are harder to obtain. In addition analytical solutions suffer from several drawbacks: Only steady-state solutions are possible Performance measures other then mean values are quite difficult to get Requires a strong mathematical sophistication from the analyst Today's communication networks are quite complicated and the complexity of the networks is not expected to decrease in the near future. Adding a new feature, or node in the communication networks could have a severe impact on the performance of the system, therefore making practically impossible to evaluate a stand-alone feature without taking into account other features or nodes. Therefore simulation models are basically used everywhere nowadays. Consequently there are many simulation software packages available. In a simulation a mathematical/logical model is numerically evaluated over a time period of interest, and performance measures are estimated from model-generated data. Simulation Page 3 (14)

4 analyses are applicable to systems of almost any level of complexity limited mainly by available simulation resources. Page 4 (14)

5 2. OBJECTIVES OF NETWORK SIMULATIONS It has been shown in the previous presentation [S Pukkila] on radio link level simulation main components of the simulation process: Simulation environment, software and hardware Building Simulation Models based on a real problem that need to be solved Error sources Validation These components are also part of network simulation process, however the objectives of the network simulation differ from those of radio link in particular with respect to the desired performance measures expected from the simulations. Usually for link level simulations the desired simulation results are BER, FER or BLER vs SNR or C/I for various radio level parameters. In case of network simulations the following are the goals of using simulations to design and analyze communications networks: Determination of the system-wide impact of making "local" changes to the network Improved system performance (delays, throughput, etc.) Reduced expenditures Insurance that performance objectives are met before equipment is bought or leased Identification of bottlenecks before system implementation Reduced system development time Etc The usual performance measures that are commonly used in simulation studies of networks are: Throughput End-to-end delay Delay from point A to point B in a network Number of "data units" in a queue or a buffer Utilization of nodes or links Probability of blocked call Probability of lost call Number of collisions and deferrals Satisfied users Network QoS Spectral efficiency of a mobile system Page 5 (14)

6 3. DEVELOPING VALID AND CREDIBLE SIMULATION MODELS A simulation model usually represents some real system that need to be evaluated. Clearly, building all aspects of the simulation system into a simulation model is time consuming and expensive, thus the simulation model must idealize the real system to that extent to be valid enough so that any conclusions drawn from the model would be similar to those derived from physical experiment with the system (if this were possible). It is important for a model to be credible otherwise its results may never be used in the decision-making process, even if the model is valid. The following are some important ideas/techniques for deciding the appropriate level of model detail, for validating a simulation model, and for developing a model with high credibility: State definitely the issues to be addressed and the performance measures at the beginning of the study Collect information on the network topology and protocols Create a clear "assumption document" Perform a structured walk-through of the conceptual model (the best way is to do a walk-through with other experts and colleagues) Use sensitivity analyses to determine important model factors Compare performance measures for the existing network to comparable performance measures for simulation model of the existing network (time consuming but very important to "calibrate" the model) Page 6 (14)

7 4. STATISTICAL ISSUES IN NETWORK SIMULATION Since random samples from input probability distributions are used to "drive" a simulation model through time, basic output data or estimated performance measures computed from them are also random. Therefore it is important to model the random process inputs to a simulation model correctly and to design and analyze simulation experiments in a proper manner. 4.1 Modeling System Randomness The most important source of randomness for network simulations is usually associated with message traffic. In general, one should model messages (or transactions) not packets. The messages are fragmented into packets by the network protocols employed in the simulation. Note also that messages may not be independent from each other (transaction nature must be taken into account). The following methods of generating traffic are often used: Message departure times and message sizes for a particular node are application based (HTTP, FTP, , etc ) Message interarrival times and message sizes for a particular node are each independent samples from respective probability distributions Traffic data are read into the simulation model from a network analyzer 4.2 Design and Analysis of Simulation Experiments Because of the random nature of simulation input, a simulation model produces a statistical estimate of the (true) performance measure not the measure itself. In order for a simulation estimate to be statistically precise and free of bias, it is recommended to specify for each network configuration appropriate choices for the following: Length of each simulation run Number of independent simulation Length of the warm-up period, if one is appropriate Page 7 (14)

8 5. EXAMPLES OF SIMULATION SOFTWARE One of the major tasks in building a simulation model of a communications network is that of converting a system description into a computer program. An analyst may use either a general-purpose programming language (C or C++) or simulation software for this purpose. There are three major types of software for simulating communications networks. A general-purpose simulation language is a simulation package that is general in nature but may have some special features for communications such as explicit modules for Ethernet. Examples are Arena, BONes Designer, GPSS/H, MODSIM II, SIMSCRIPT etc. A communciation oriented simulation language is a simulation language that is specifically oriented toward communications networks, for example OPNET Modeler. Advantages are possibly reduced programming time and modeling constructs oriented towards communication systems. A communications oriented simulator, in its most basic form, is a simulation package that allows one to simulate a network in a specific class of communication networks with no programming. Examples are BONes Plannet, COMNET III, NET, NETWORK, etc. A one example of the communication oriented simulation language software package is OPNET. OPNET is an event-driven simulator. The modeling in opnet is done in three stages (examples shown in the figures below) network, node and process level. The network editor is used to specify geographically the network topology consisting of nodes and fixed-position links. The node editor is used to describe graphically the data flow between modules in a node. The modules in the node can be protocol layers or hardware models. Available modules are processors, queues and traffic generators. The process editor uses state diagrams and C/C++ programming language, In addition there is an extensive library of primitives for most serious protocol modeling. Figure 1. Network Editor Page 8 (14)

9 Figure 2. Node Editor Figure 3. Process Editor Page 9 (14)

10 6. SOME ASPECTS OF SIMULATIONS OF MOBILE NETWORKS 6.1 Spectrum efficiency evaluation This section presents the definition of system capacity to be used for spectrum efficiency evaluation, and a methodology to derive these figures using system simulations as specified in UMTS v Active Session Throughput The active session throughput, S, is defined as the ratio of correctly received user bits during the entire session and the session length excluding the time where there is nothing to transmit (i.e. empty buffer) Satisfied user For circuit switched services, we define a satisfied user as a user that have all three of the following constraints fulfilled: 1. The user do not get blocked when arriving to the system. If blocking is applied, the proponent must specify used blocking criteria. 2. The user have sufficiently good quality more than a certain time (fraction) of the session, i.e., Probability(BER > BER_Threshold) < x 1 % 3. The user does not get dropped. A call is dropped if BER > BER_Threshold more than t dropp1 seconds. In order to get comparable results for good quality percentage, quality statistics have to be collected every t 1 seconds. For packet services, we define a satisfied user as a user that have all three of the following constraints fulfilled: 1. The user do not get blocked when arriving to the system 1. If blocking is applied, the proponent must specify used blocking criteria. 2. The active session throughput, S, of the session is equal to or greater than S threshold. 3. The user does not get dropped. If dropping is applied, the proponent must specify used dropping criteria System Load The system load, ν, is measured in [kb/s/cell/mhz]. For circuit switched users, the system load, ν cs, is derived as follows: 1 The most common way of treating packet users is not to block them but to queue them. However, if the proponent applies some kind of admission control for packet users, there will exist a ratio of blocked packet users. Thus blocking of packet users, means that they are not put in a queue but entirely blocked from the system. Page 10 (14)

11 ν cs = ω cs * user_bitrate * activity_factor / system_bandwidth [kb/s/cell/mhz], where ω cs is the average number of (simultaneous) circuit switched users per cell, i.e. the offered load (Erlangs). System load for packet users, ν pkt, is derived as follows: ν pkt = D/T/Cells/system_bandwidht [kb/s/cell/mhz], where D is total number of correctly received user bits within the cells from where the statistics are collected T is the simulation measuring time, defined as the time during the simulation when the statistics are collected Cells is the number of cells in the system from where the statistics are collected. The system load is calculated separately for uplink and downlink respectively. In the case of mixed services configurations, the system load is derived as: N N sc pkt cs, i pkt, i i= 1 i= 1 ν = ν + ν where N cs is the number of circuit switched services and N pkt is the number of packet services Spectrum Efficiency For single service scenarios, the spectrum efficiency, ν*, is defined as the system load where there are exactly x 2 % satisfied users. In the case of mixed services configurations, there must be at least x 2 % satisfied users for each service independently. The spectrum efficiency is defined as the system load where any of the services has exactly x 2 % satisfied users, whereas the rest of the services have at least x 2 % satisfied users each. This is exemplified in Figure 4. The spectrum efficiency should be given separately for uplink and downlink respectively. Page 11 (14)

12 % Satisfied Users Packet x 2 % limit Circuit Switched Spectrum Efficiency, ν* System Load, ν [kb/s/cell/mhz] Figure 4. Example of spectrum efficiency for a mixed service scenario with one circuit switched service and one packet service Parameter values In Table 1 the values of the parameters previously mentioned are presented. TABLE 1: Values of parameter in spectrum efficiency evaluation Paramet er x 1, t 1 t dropp1 S threshold Name/Description Bad quality probability threshold sampling time for quality statistics Dropping time-out, circuit switched Active Session Throughput Threshold Value 5 % 0.5 second Max (5, 10/(bit rate. BER_threshold) seconds 10% of the average bit rates in footnote of Table (i.e., S threshold = 0.8, 3.2, 6.4, 14.4, 38.4 and kbit/s for average bit rates of 8,32,64,144,384 and 2048 kbit/s respectively). x 2 Threshold for ratio of satisfied 98 % users BW Bandwidth 30 MHz duplex Required results Within the spectrum efficiency evaluation the following results should be provided for each test case: 1. Numerical value of the spectrum efficiency [kb/s/cell/mhz] 2. Numerical value for ratio of satisfied users for the case from where the spectrum efficiency value (in 1.) is obtained. Page 12 (14)

13 3. Average active session throughput [kb/s], mean(s), for the case from where the spectrum efficiency value (in 1.) is obtained. 4. A sample density function of the active session throughput values (per session) for the case from where the spectrum efficiency value (in 1.) is obtained. 7. NOTES ON TRAFFIC MODELS IN SIMULATION OF COMMUNICATION NETWORKS When simulating a communication network, especially mobile network there is one quite important issue to note, and that relates to the traffic models that are used in simulations. The usual traffic sources in toady's network are from traffic sources in the Internet, like WWW, , ftp etc. For example in WWW session, transmission times appear to exhibit heavy-tailed characteristics, file requests, file transfers, unique files and available files are heavy-tailed too. In case of applications like Telnet, FTP, NNTP, SMTP components of connection characteristics are modeled in general using lognormal distributions. However, the number of bytes in an FTP burst appears to fit well with Pareto distribution. When using heavy-tailed distributions in the simulations there are two characteristics: slow convergence to a steady-state high variability at steady state The reason is that the average-case behavior depends on the presence of many small observations as well as few large observations, so the convergence to the steady state could be slow and the presence of large observations could have a dominating effect. So in order to obtain stable results in simulations when using heavy-tailed workloads one should be careful that α is greater then about 1.7, otherwise one should carefully consider the stability of the results. 8. CONCLUSION This report gives an overview of issues that one should pay attention when simulating communication networks. Some examples of available communication software are also presented. Parameters and performance measures that are usually used when simulating cellular networks are shown based on UMTS v When using traffic models with heavy tailed load, one should pay close attention to the stability of results. 2 The values of the active session throughput thresholds are chosen to make it possible to perform re-transmission, queuing, etc. in order to make the packet services effective from a system point of view. Page 13 (14)

14 9. REFERENCE [1] Law A.M, McComas M.G, Simulation Software for Communications Networks: The State of the Art, IEEE Communications Magazine, March 1994 [2] Law A.M, Simulation of Communication Networks, In Proceedings of the 1996 Winter Simulation Conference (eds. Charnes J.M et. al.) [3] UMTS v Page 14 (14)

15 HOME WORK 1. When simulating cellular networks, radio link level behaviour should be taken into account. Provide example how. 2. When simulating celluar networks, it is often required to run dynamic simulations. Why?1

Quality of Service in Telecommunication Networks

Quality of Service in Telecommunication Networks Quality of Service in Telecommunication Networks Åke Arvidsson, Ph.D. Ericsson Core Network Development, Sweden Main Message Traffic theory: QoS is (partly) about congestion. Congestion is partly caused

More information

Appendix B. Standards-Track TCP Evaluation

Appendix B. Standards-Track TCP Evaluation 215 Appendix B Standards-Track TCP Evaluation In this appendix, I present the results of a study of standards-track TCP error recovery and queue management mechanisms. I consider standards-track TCP error

More information

QoS metrics and requirements

QoS metrics and requirements QoS metrics and requirements Lectured by Alexander Pyattaev Department of Communications Engineering Tampere University of Technology alexander.pyattaev@tut.fi March 5, 2012 Outline 1 Introduction 2 Performance

More information

LTE system performance optimization by RED based PDCP buffer management

LTE system performance optimization by RED based PDCP buffer management LTE system performance optimization by RED based PDCP buffer management Umar Toseef 1,2, Thushara Weerawardane 2, Andreas Timm-Giel 2, Carmelita Görg 1 1, University of Bremen, Bremen, Germany 2, TUHH,

More information

DiffServ Architecture: Impact of scheduling on QoS

DiffServ Architecture: Impact of scheduling on QoS DiffServ Architecture: Impact of scheduling on QoS Abstract: Scheduling is one of the most important components in providing a differentiated service at the routers. Due to the varying traffic characteristics

More information

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers Overview 15-441 Computer Networking TCP & router queuing Lecture 10 TCP & Routers TCP details Workloads Lecture 10: 09-30-2002 2 TCP Performance TCP Performance Can TCP saturate a link? Congestion control

More information

SIMULATION FRAMEWORK MODELING

SIMULATION FRAMEWORK MODELING CHAPTER 5 SIMULATION FRAMEWORK MODELING 5.1 INTRODUCTION This chapter starts with the design and development of the universal mobile communication system network and implementation of the TCP congestion

More information

Modelling a Video-on-Demand Service over an Interconnected LAN and ATM Networks

Modelling a Video-on-Demand Service over an Interconnected LAN and ATM Networks Modelling a Video-on-Demand Service over an Interconnected LAN and ATM Networks Kok Soon Thia and Chen Khong Tham Dept of Electrical Engineering National University of Singapore Tel: (65) 874-5095 Fax:

More information

Performance of UMTS Radio Link Control

Performance of UMTS Radio Link Control Performance of UMTS Radio Link Control Qinqing Zhang, Hsuan-Jung Su Bell Laboratories, Lucent Technologies Holmdel, NJ 77 Abstract- The Radio Link Control (RLC) protocol in Universal Mobile Telecommunication

More information

Lecture 5: Performance Analysis I

Lecture 5: Performance Analysis I CS 6323 : Modeling and Inference Lecture 5: Performance Analysis I Prof. Gregory Provan Department of Computer Science University College Cork Slides: Based on M. Yin (Performability Analysis) Overview

More information

Improving Internet Performance through Traffic Managers

Improving Internet Performance through Traffic Managers Improving Internet Performance through Traffic Managers Ibrahim Matta Computer Science Department Boston University Computer Science A Glimpse of Current Internet b b b b Alice c TCP b (Transmission Control

More information

Basics (cont.) Characteristics of data communication technologies OSI-Model

Basics (cont.) Characteristics of data communication technologies OSI-Model 48 Basics (cont.) Characteristics of data communication technologies OSI-Model Topologies Packet switching / Circuit switching Medium Access Control (MAC) mechanisms Coding Quality of Service (QoS) 49

More information

Layer 3: Network Layer. 9. Mar INF-3190: Switching and Routing

Layer 3: Network Layer. 9. Mar INF-3190: Switching and Routing Layer 3: Network Layer 9. Mar. 2005 1 INF-3190: Switching and Routing Network Layer Goal Enable data transfer from end system to end system End systems Several hops, (heterogeneous) subnetworks Compensate

More information

PERFORMANCE ANALYSIS FOR GPRS WITH PRIORITIZED AND NON-PRIORITIZED MOBILITY MANAGEMENT PROCEDURES

PERFORMANCE ANALYSIS FOR GPRS WITH PRIORITIZED AND NON-PRIORITIZED MOBILITY MANAGEMENT PROCEDURES PERFORMANCE ANALYSIS FOR GPRS WITH PRIORITIZED AND NON-PRIORITIZED MOBILITY MANAGEMENT PROCEDURES Karann Chew, Rahim Tafazolli University of Surrey, United Kingdom Abstract - GPRS is part of the evolution

More information

Congestion Control. Principles of Congestion Control. Network assisted congestion. Asynchronous Transfer Mode. Computer Networks 10/23/2013

Congestion Control. Principles of Congestion Control. Network assisted congestion. Asynchronous Transfer Mode. Computer Networks 10/23/2013 Congestion Control Kai Shen Principles of Congestion Control Congestion: Informally: too many sources sending too much data too fast for the network to handle Results of congestion: long delays (e.g. queueing

More information

15-744: Computer Networking TCP

15-744: Computer Networking TCP 15-744: Computer Networking TCP Congestion Control Congestion Control Assigned Reading [Jacobson and Karels] Congestion Avoidance and Control [TFRC] Equation-Based Congestion Control for Unicast Applications

More information

CS 268: Computer Networking

CS 268: Computer Networking CS 268: Computer Networking L-6 Router Congestion Control TCP & Routers RED XCP Assigned reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [KHR02] Congestion Control for High Bandwidth-Delay

More information

OPNET Editors and Features

OPNET Editors and Features OPNET Steven Gordon Sirindhorn International Institute of Technology Thammasat University June 2010 Contents OPNET Menus Nodes and Links Communication Running Multiple OPNET Commonly used editors: 1. Project

More information

Congestion Control. Principles of Congestion Control. Network-assisted Congestion Control: ATM. Congestion Control. Computer Networks 10/21/2009

Congestion Control. Principles of Congestion Control. Network-assisted Congestion Control: ATM. Congestion Control. Computer Networks 10/21/2009 Congestion Control Kai Shen Principles of Congestion Control Congestion: informally: too many sources sending too much data too fast for the network to handle results of congestion: long delays (e.g. queueing

More information

Bandwidth Allocation & TCP

Bandwidth Allocation & TCP Bandwidth Allocation & TCP The Transport Layer Focus Application Presentation How do we share bandwidth? Session Topics Transport Network Congestion control & fairness Data Link TCP Additive Increase/Multiplicative

More information

On the Importance of Using Appropriate Link-to-System Level Interfaces for the Study of Link Adaptation

On the Importance of Using Appropriate Link-to-System Level Interfaces for the Study of Link Adaptation On the Importance of Using Appropriate Link-to-System Level Interfaces for the Study of Link Adaptation Javier Gozalvez and John Dunlop Department of Electronic and Electrical Engineering, University of

More information

Comparison of RRC and MAC based methods of dynamic scheduling between users on the uplink

Comparison of RRC and MAC based methods of dynamic scheduling between users on the uplink ETSI SMG2 UMTS L2/3 Tdoc TSGR2#2(99) 127 Stockholm 8-11 March 1999 Agenda item: 6.2 Source: Motorola Comparison of RRC and MAC based methods of dynamic scheduling between users on the uplink 1 Introduction

More information

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15 Introduction to Real-Time Communications Real-Time and Embedded Systems (M) Lecture 15 Lecture Outline Modelling real-time communications Traffic and network models Properties of networks Throughput, delay

More information

Base Station Subsystem Key Performance Indicators in EGPRS

Base Station Subsystem Key Performance Indicators in EGPRS Base Station Subsystem Key Performance Indicators in EGPRS Anders Arte Supervisor: Prof. Sven-Gustav Häggman Instructor: M.Sc. Leo Bhebhe Content Introduction Objectives and Methodology EGPRS EGPRS Fundamentals

More information

15-744: Computer Networking. Overview. Queuing Disciplines. TCP & Routers. L-6 TCP & Routers

15-744: Computer Networking. Overview. Queuing Disciplines. TCP & Routers. L-6 TCP & Routers TCP & Routers 15-744: Computer Networking RED XCP Assigned reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [KHR02] Congestion Control for High Bandwidth-Delay Product Networks L-6

More information

Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks. Congestion Control in Today s Internet

Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks. Congestion Control in Today s Internet Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks Ion Stoica CMU Scott Shenker Xerox PARC Hui Zhang CMU Congestion Control in Today s Internet Rely

More information

ATM Quality of Service (QoS)

ATM Quality of Service (QoS) ATM Quality of Service (QoS) Traffic/Service Classes, Call Admission Control Usage Parameter Control, ABR Agenda Introduction Service Classes and Traffic Attributes Traffic Control Flow Control Special

More information

Modelling data networks research summary and modelling tools

Modelling data networks research summary and modelling tools Modelling data networks research summary and modelling tools a 1, 3 1, 2 2, 2 b 0, 3 2, 3 u 1, 3 α 1, 6 c 0, 3 v 2, 2 β 1, 1 Richard G. Clegg (richard@richardclegg.org) December 2011 Available online at

More information

Packet or Circuit Switched Voice Radio Bearers - A Capacity Evaluation for GERAN

Packet or Circuit Switched Voice Radio Bearers - A Capacity Evaluation for GERAN Packet or Circuit Switched Voice Radio Bearers - A Capacity Evaluation for GERAN Mats Arvedson, Magnus Edlund, Ola Eriksson, Andreas Nordin and Anders Furuskär Radio Communications Systems, S3, Royal Institute

More information

DiffServ Architecture: Impact of scheduling on QoS

DiffServ Architecture: Impact of scheduling on QoS DiffServ Architecture: Impact of scheduling on QoS Introduction: With the rapid growth of the Internet, customers are demanding multimedia applications such as telephony and video on demand, to be available

More information

B. Bellalta Mobile Communication Networks

B. Bellalta Mobile Communication Networks IEEE 802.11e : EDCA B. Bellalta Mobile Communication Networks Scenario STA AP STA Server Server Fixed Network STA Server Upwnlink TCP flows Downlink TCP flows STA AP STA What is the WLAN cell performance

More information

QoS in multiservice IP networks Vodafone-Italy s point of view

QoS in multiservice IP networks Vodafone-Italy s point of view QoS in multiservice IP networks Vodafone-Italy s point of view Alberto Bona and Livio Pogliano Catania February, 3 rd 2005 Page 1 Vodafone s footprint Page 2 QoS categories for wireless applications increasing

More information

Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms

Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA 408 745 2000 or 888 JUNIPER www.juniper.net Table

More information

Computer Networking. Queue Management and Quality of Service (QOS)

Computer Networking. Queue Management and Quality of Service (QOS) Computer Networking Queue Management and Quality of Service (QOS) Outline Previously:TCP flow control Congestion sources and collapse Congestion control basics - Routers 2 Internet Pipes? How should you

More information

Implementation of WiFiRe PHY Sectorization in OPNET

Implementation of WiFiRe PHY Sectorization in OPNET P Sreedhar Reddy Roll No. 06305024 24th July, 2007 Under the Guidance Of Prof. Sridhar Iyer Department Of Computer Science and Engineering Indian Institute Of Technology, Bombay Outline WiFiRe overview.

More information

Sustainable traffic growth in LTE network

Sustainable traffic growth in LTE network Sustainable traffic growth in LTE network Analysis of spectrum and carrier requirements Nokia white paper Sustainable traffic growth in LTE network Contents Executive summary 3 Introduction 4 Capacity

More information

Coverage & Capacity in Hybrid Wideband Ad-hoc/cellular Access System. Results & Scenarios. by Pietro Lungaro

Coverage & Capacity in Hybrid Wideband Ad-hoc/cellular Access System. Results & Scenarios. by Pietro Lungaro Coverage & Capacity in Hybrid Wideband Ad-hoc/cellular Access System Results & Scenarios by Pietro Lungaro Agenda Problem Statement System Assumptions Results Threats Problem Statement Design a possible

More information

TCP Congestion Control : Computer Networking. Introduction to TCP. Key Things You Should Know Already. Congestion Control RED

TCP Congestion Control : Computer Networking. Introduction to TCP. Key Things You Should Know Already. Congestion Control RED TCP Congestion Control 15-744: Computer Networking L-4 TCP Congestion Control RED Assigned Reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [TFRC] Equation-Based Congestion Control

More information

EXPERIMENT N0: 06 AIM:TO DESIGN UMTS NETWORK USING OPNET MODELER APPARATUS: OPNET MODELER 14.0

EXPERIMENT N0: 06 AIM:TO DESIGN UMTS NETWORK USING OPNET MODELER APPARATUS: OPNET MODELER 14.0 EXPERIMENT N0: 06 AIM:TO DESIGN UMTS NETWORK USING OPNET MODELER APPARATUS: OPNET MODELER 14.0 THEORY:Universal Mobile Telecommunications System (UMTS) is a Third Generation (3G) wireless protocol that

More information

ECS 152A Computer Networks Instructor: Liu. Name: Student ID #: Final Exam: March 17, 2005

ECS 152A Computer Networks Instructor: Liu. Name: Student ID #: Final Exam: March 17, 2005 ECS 152A Computer Networks Instructor: Liu Name: Student ID #: Final Exam: March 17, 2005 Duration: 120 Minutes 1. The exam is closed book. However, you may refer to one sheet of A4 paper (double sided)

More information

Resource allocation in networks. Resource Allocation in Networks. Resource allocation

Resource allocation in networks. Resource Allocation in Networks. Resource allocation Resource allocation in networks Resource Allocation in Networks Very much like a resource allocation problem in operating systems How is it different? Resources and jobs are different Resources are buffers

More information

ADVANCED COMPUTER NETWORKS

ADVANCED COMPUTER NETWORKS ADVANCED COMPUTER NETWORKS Congestion Control and Avoidance 1 Lecture-6 Instructor : Mazhar Hussain CONGESTION CONTROL When one part of the subnet (e.g. one or more routers in an area) becomes overloaded,

More information

Lecture 21. Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov.

Lecture 21. Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov. Lecture 21 Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov. 7 http://money.cnn.com/2011/11/07/technology/juniper_internet_outage/

More information

Improving TCP Performance over Wireless Networks using Loss Predictors

Improving TCP Performance over Wireless Networks using Loss Predictors Improving TCP Performance over Wireless Networks using Loss Predictors Fabio Martignon Dipartimento Elettronica e Informazione Politecnico di Milano P.zza L. Da Vinci 32, 20133 Milano Email: martignon@elet.polimi.it

More information

EECS 454: Modeling and Analysis of Communication Networks

EECS 454: Modeling and Analysis of Communication Networks : Modeling and Analysis of Communication Networks Spring Quarter 2008 Meeting time: 12:30-1:50 MW Instructor: Randall Berry Office: Tech, Rm. M318 Office Hours: by appointment Course Overview Primary goal

More information

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle (UNC-CH) November 16-17, 2001 Univ. of Maryland Symposium The Problem TCP Reno congestion control reacts only to packet

More information

Unit 2 Packet Switching Networks - II

Unit 2 Packet Switching Networks - II Unit 2 Packet Switching Networks - II Dijkstra Algorithm: Finding shortest path Algorithm for finding shortest paths N: set of nodes for which shortest path already found Initialization: (Start with source

More information

Assignment 7: TCP and Congestion Control Due the week of October 29/30, 2015

Assignment 7: TCP and Congestion Control Due the week of October 29/30, 2015 Assignment 7: TCP and Congestion Control Due the week of October 29/30, 2015 I d like to complete our exploration of TCP by taking a close look at the topic of congestion control in TCP. To prepare for

More information

Active Adaptation in QoS Architecture Model

Active Adaptation in QoS Architecture Model Active Adaptation in QoS Architecture Model Drago agar and Snjeana Rimac -Drlje Faculty of Electrical Engineering University of Osijek Kneza Trpimira 2b, HR-31000 Osijek, CROATIA Abstract - A new complex

More information

Latency on a Switched Ethernet Network

Latency on a Switched Ethernet Network Page 1 of 6 1 Introduction This document serves to explain the sources of latency on a switched Ethernet network and describe how to calculate cumulative latency as well as provide some real world examples.

More information

Latency on a Switched Ethernet Network

Latency on a Switched Ethernet Network FAQ 07/2014 Latency on a Switched Ethernet Network RUGGEDCOM Ethernet Switches & Routers http://support.automation.siemens.com/ww/view/en/94772587 This entry is from the Siemens Industry Online Support.

More information

Random Early Detection (RED) gateways. Sally Floyd CS 268: Computer Networks

Random Early Detection (RED) gateways. Sally Floyd CS 268: Computer Networks Random Early Detection (RED) gateways Sally Floyd CS 268: Computer Networks floyd@eelblgov March 20, 1995 1 The Environment Feedback-based transport protocols (eg, TCP) Problems with current Drop-Tail

More information

UNIT 2 TRANSPORT LAYER

UNIT 2 TRANSPORT LAYER Network, Transport and Application UNIT 2 TRANSPORT LAYER Structure Page No. 2.0 Introduction 34 2.1 Objective 34 2.2 Addressing 35 2.3 Reliable delivery 35 2.4 Flow control 38 2.5 Connection Management

More information

CSE 123A Computer Networks

CSE 123A Computer Networks CSE 123A Computer Networks Winter 2005 Lecture 14 Congestion Control Some images courtesy David Wetherall Animations by Nick McKeown and Guido Appenzeller The bad news and the good news The bad news: new

More information

THE TCP specification that specifies the first original

THE TCP specification that specifies the first original 1 Median Filtering Simulation of Bursty Traffic Auc Fai Chan, John Leis Faculty of Engineering and Surveying University of Southern Queensland Toowoomba Queensland 4350 Abstract The estimation of Retransmission

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Name: Student ID #: Campus/SITN-Local/SITN-Remote? MC MC Long 18 19 TOTAL /20 /20 CS244a: An Introduction to Computer Networks Final Exam: Thursday February 16th, 2000 You are allowed 2 hours to complete

More information

ScienceDirect. Configuration of Quality of Service Parameters in Communication Networks

ScienceDirect. Configuration of Quality of Service Parameters in Communication Networks Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 69 ( 2014 ) 655 664 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013 Configuration of Quality

More information

Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel

Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel Semra.gulder@crc.ca, mathieu.deziel@crc.ca Abstract: This paper describes a QoS mechanism suitable for Mobile Ad Hoc Networks

More information

QOS ANALYSIS OF 3G AND 4G. Khartoum, Sudan 2 unversity of science and Technology, Khartoum, Sudan

QOS ANALYSIS OF 3G AND 4G. Khartoum, Sudan 2 unversity of science and Technology, Khartoum, Sudan QOS ANALYSIS OF 3G AND 4G Doaa Hashim Osman 1, Amin Babiker 2 and Khalid hammed Bellal 1 Department of Communication, Faculty of Engineering, AL Neelain University, Khartoum, Sudan 2 unversity of science

More information

Bridging and Switching Basics

Bridging and Switching Basics CHAPTER 4 Bridging and Switching Basics This chapter introduces the technologies employed in devices loosely referred to as bridges and switches. Topics summarized here include general link-layer device

More information

Wireless Networks (CSC-7602) Lecture 8 (15 Oct. 2007)

Wireless Networks (CSC-7602) Lecture 8 (15 Oct. 2007) Wireless Networks (CSC-7602) Lecture 8 (15 Oct. 2007) Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark 1 Today Wireline Fair Schedulling Why? Ideal algorithm Practical algorithms Wireless Fair Scheduling

More information

CS644 Advanced Networks

CS644 Advanced Networks What we know so far CS644 Advanced Networks Lecture 6 Beyond TCP Congestion Control Andreas Terzis TCP Congestion control based on AIMD window adjustment [Jac88] Saved Internet from congestion collapse

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Do not write in this box MCQ 9: /10 10: /10 11: /20 12: /20 13: /20 14: /20 Total: Name: Student ID #: CS244a Winter 2003 Professor McKeown Campus/SITN-Local/SITN-Remote? CS244a: An Introduction to Computer

More information

Concept of a QoS aware Offer Planning for GPRS/EDGE Networks

Concept of a QoS aware Offer Planning for GPRS/EDGE Networks #150 1 Concept of a QoS aware Offer Planning for GPRS/EDGE Networks A. Kunz, S. Tcaciuc, M. Gonzalez, C. Ruland, V. Rapp Abstract A new era in wireless services has begun by introducing of packet oriented

More information

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols Integrated services Reading: S. Keshav, An Engineering Approach to Computer Networking, chapters 6, 9 and 4 Module objectives Learn and understand about: Support for real-time applications: network-layer

More information

UNIVERSITY OF CYPRUS DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF CYPRUS DEPARTMENT OF COMPUTER SCIENCE Master s Thesis Coverage and Capacity Planning in Enhanced UMTS Josephine Antoniou UNIVERSITY OF CYPRUS DEPARTMENT OF COMPUTER SCIENCE June 2004 UNIVERSITY OF CYPRUS DEPARTMENT OF COMPUTER SCIENCE 1 Table

More information

Impact of TCP Window Size on a File Transfer

Impact of TCP Window Size on a File Transfer Impact of TCP Window Size on a File Transfer Introduction This example shows how ACE diagnoses and visualizes application and network problems; it is not a step-by-step tutorial. If you have experience

More information

Performance Analysis of the Intertwined Effects between Network Layers for g Transmissions

Performance Analysis of the Intertwined Effects between Network Layers for g Transmissions Performance Analysis of the Intertwined Effects between Network Layers for 802.11g Transmissions Jon Gretarsson, Feng Li, Mingzhe Li, Ashish Samant, Huahui Wu, Mark Claypool and Robert Kinicki WPI Computer

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 ISSN ISSN 2229-5518 1044 Communication Requirements and Analysis of UMTS Based Smart Grids Distribution Networks Dr. Rajaa Aldeen Abd Khalid, Teba Adil Jihad Abstract- A smart grid (SG), an enhancement of the

More information

Next Steps Spring 2011 Lecture #18. Multi-hop Networks. Network Reliability. Have: digital point-to-point. Want: many interconnected points

Next Steps Spring 2011 Lecture #18. Multi-hop Networks. Network Reliability. Have: digital point-to-point. Want: many interconnected points Next Steps Have: digital point-to-point We ve worked on link signaling, reliability, sharing Want: many interconnected points 6.02 Spring 2011 Lecture #18 multi-hop networks: design criteria network topologies

More information

Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO [IMT.EVAL]

Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO [IMT.EVAL] IEEE L802.16-08/032 Source: Doc. 5D/5, 5D/97 and 5D/EVAL-CG TECHNOLOGY Subject: Question ITU-R 229-1/8 Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO [IMT.EVAL] This contribution

More information

Christos Papadopoulos

Christos Papadopoulos CS557: Measurements Christos Papadopoulos Adapted by Lorenzo De Carli Outline End-to-End Packet Dynamics - Paxon99b Wireless measurements - Aguayo04a Note: both these studies are old, so the results have

More information

Cover sheet for Assignment 3

Cover sheet for Assignment 3 Faculty of Arts and Science University of Toronto CSC 358 - Introduction to Computer Networks, Winter 2018, LEC0101 Cover sheet for Assignment 3 Due Monday March 5, 10:00am. Complete this page and attach

More information

Tampere University of Technology Department of Electronics and Communications Engineering. W.I.N.T.E.R. Group

Tampere University of Technology Department of Electronics and Communications Engineering. W.I.N.T.E.R. Group Tampere University of Technology Department of Electronics and Communications Engineering W.I.N.T.E.R. Group Wireless Intelligence for Networking Technology by Engineering and Research Compiled by Dr.

More information

Switched FC-AL: An Arbitrated Loop Attachment for Fibre Channel Switches

Switched FC-AL: An Arbitrated Loop Attachment for Fibre Channel Switches Switched FC-AL: An Arbitrated Loop Attachment for Fibre Channel Switches Vishal Sinha sinha@cs.umn.edu Department of Computer Science and Engineering University of Minnesota Minneapolis, MN 55455 7481

More information

Real-Time Protocol (RTP)

Real-Time Protocol (RTP) Real-Time Protocol (RTP) Provides standard packet format for real-time application Typically runs over UDP Specifies header fields below Payload Type: 7 bits, providing 128 possible different types of

More information

A Rant on Queues. Van Jacobson. July 26, MIT Lincoln Labs Lexington, MA

A Rant on Queues. Van Jacobson. July 26, MIT Lincoln Labs Lexington, MA A Rant on Queues Van Jacobson July 26, 2006 MIT Lincoln Labs Lexington, MA Unlike the phone system, the Internet supports communication over paths with diverse, time varying, bandwidth. This means we often

More information

CS 268: Lecture 7 (Beyond TCP Congestion Control)

CS 268: Lecture 7 (Beyond TCP Congestion Control) Outline CS 68: Lecture 7 (Beyond TCP Congestion Control) TCP-Friendly Rate Control (TFRC) explicit Control Protocol Ion Stoica Computer Science Division Department of Electrical Engineering and Computer

More information

2. Modelling of telecommunication systems (part 1)

2. Modelling of telecommunication systems (part 1) 2. Modelling of telecommunication systems (part ) lect02.ppt S-38.45 - Introduction to Teletraffic Theory - Fall 999 2. Modelling of telecommunication systems (part ) Contents Telecommunication networks

More information

Lecture 14: Performance Architecture

Lecture 14: Performance Architecture Lecture 14: Performance Architecture Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 14-1 Background Performance: levels for capacity, delay, and RMA. Performance

More information

Implementation of a WAP model to evaluate Capacity in 3G radio access networks

Implementation of a WAP model to evaluate Capacity in 3G radio access networks Implementation of a model to evaluate Capacity in 3G radio access networks Henrik Fållby Outline Scoop of this thesis switched vs. circuit switched networks Data in GSM radio networks Wireless Application

More information

Kommunikationssysteme [KS]

Kommunikationssysteme [KS] Kommunikationssysteme [KS] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

Principles of congestion control

Principles of congestion control Principles of congestion control Congestion: Informally: too many sources sending too much data too fast for network to handle Different from flow control! Manifestations: Lost packets (buffer overflow

More information

Doctoral Written Exam in Networking, Fall 2008

Doctoral Written Exam in Networking, Fall 2008 Doctoral Written Exam in Networking, Fall 2008 December 5, 2008 Answer all parts of all questions. There are four multi-part questions, each of equal weight. Turn in your answers by Thursday, December

More information

B. Bellalta Mobile Communication Networks

B. Bellalta Mobile Communication Networks IEEE 802.11e : EDCA B. Bellalta Mobile Communication Networks Scenario STA AP STA Server Server Fixed Network STA Server Upwnlink TCP flows Downlink TCP flows STA AP STA What is the WLAN cell performance

More information

PERFORMANCE ANALYSIS OF AF IN CONSIDERING LINK UTILISATION BY SIMULATION WITH DROP-TAIL

PERFORMANCE ANALYSIS OF AF IN CONSIDERING LINK UTILISATION BY SIMULATION WITH DROP-TAIL I.J.E.M.S., VOL.2 (4) 2011: 221-228 ISSN 2229-600X PERFORMANCE ANALYSIS OF AF IN CONSIDERING LINK UTILISATION BY SIMULATION WITH DROP-TAIL Jai Kumar, Jaiswal Umesh Chandra Department of Computer Science

More information

The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat

The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat BITAG TWG Boulder, CO February 27, 2013 Kathleen Nichols Van Jacobson Background The persistently full buffer problem, now called bufferbloat,

More information

Flow Control. Flow control problem. Other considerations. Where?

Flow Control. Flow control problem. Other considerations. Where? Flow control problem Flow Control An Engineering Approach to Computer Networking Consider file transfer Sender sends a stream of packets representing fragments of a file Sender should try to match rate

More information

What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control

What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control Chapter 12 Congestion in Data Networks Effect of Congestion Control Ideal Performance Practical Performance Congestion Control Mechanisms Backpressure Choke Packet Implicit Congestion Signaling Explicit

More information

Read Chapter 4 of Kurose-Ross

Read Chapter 4 of Kurose-Ross CSE 422 Notes, Set 4 These slides contain materials provided with the text: Computer Networking: A Top Down Approach,5th edition, by Jim Kurose and Keith Ross, Addison-Wesley, April 2009. Additional figures

More information

Chapter 24 Congestion Control and Quality of Service 24.1

Chapter 24 Congestion Control and Quality of Service 24.1 Chapter 24 Congestion Control and Quality of Service 24.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 24-1 DATA TRAFFIC The main focus of congestion control

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks QoS in IP networks Prof. Andrzej Duda duda@imag.fr Contents QoS principles Traffic shaping leaky bucket token bucket Scheduling FIFO Fair queueing RED IntServ DiffServ http://duda.imag.fr

More information

TCP Revisited CONTACT INFORMATION: phone: fax: web:

TCP Revisited CONTACT INFORMATION: phone: fax: web: TCP Revisited CONTACT INFORMATION: phone: +1.301.527.1629 fax: +1.301.527.1690 email: whitepaper@hsc.com web: www.hsc.com PROPRIETARY NOTICE All rights reserved. This publication and its contents are proprietary

More information

NET ID. CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17

NET ID. CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17 CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17 Q1. 2 points Write your NET ID at the top of every page of this test. Q2. X points Name 3 advantages of a circuit network

More information

Congestion. Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets limited resources

Congestion. Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets limited resources Congestion Source 1 Source 2 10-Mbps Ethernet 100-Mbps FDDI Router 1.5-Mbps T1 link Destination Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets

More information

Fast Automated Estimation of Variance in Discrete Quantitative Stochastic Simulation

Fast Automated Estimation of Variance in Discrete Quantitative Stochastic Simulation Fast Automated Estimation of Variance in Discrete Quantitative Stochastic Simulation November 2010 Nelson Shaw njd50@uclive.ac.nz Department of Computer Science and Software Engineering University of Canterbury,

More information

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6. Transport Layer 6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6.1 Internet Transport Layer Architecture The

More information

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS : Computer Networks Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS Ways to deal with congestion Host-centric versus router-centric Reservation-based versus feedback-based Window-based versus rate-based

More information

Network Performance: Queuing

Network Performance: Queuing Network Performance: Queuing EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials

More information