Bridging and Switching Basics
|
|
- Audra Adams
- 1 years ago
- Views:
Transcription
1 CHAPTER 4 Bridging and Switching Basics This chapter introduces the technologies employed in devices loosely referred to as bridges and switches. Topics summarized here include general link-layer device operations, local and remote bridging, ATM switching, and LAN switching. Chapters in Part 4, "Bridging and Switching," of this book address specific technologies in more detail. What are s and Switches? s and switches are data communications devices that operate principally at Layer 2 of the OSI reference model. As such, they are widely referred to as data link layer devices. s became commercially available in the early 1980s. At the time of their introduction, bridges connected and enabled packet forwarding between homogeneous networks. More recently, bridging between different networks has also been defined and standardized. Several kinds of bridging have proven important as internetworking devices. Transparent bridging is found primarily in Ethernet environments, while source-route bridging occurs primarily in Token Ring environments. Translational bridging provides translation between the formats and transit principles of different media types (usually Ethernet and Token Ring). Finally, source-route transparent bridging combines the algorithms of transparent bridging and source-route bridging to enable communication in mixed Ethernet/Token Ring environments. Today, switching technology has emerged as the evolutionary heir to bridging based internetworking solutions. Switching implementations now dominate applications in which bridging technologies were implemented in prior network designs. Superior throughput performance, higher port density, lower per-port cost, and greater flexibility have contributed to the emergence of switches as replacement technology for bridges and as complements to routing technology. Link-Layer Device Overview Bridging and switching occur at the link layer, which controls data flow, handles transmission errors, provides physical (as opposed to logical) addressing, and manages access to the physical medium. s provide these functions by using various link-layer protocols that dictate specific flow control, error handling, addressing, and media-access algorithms. Examples of popular link-layer protocols include Ethernet, Token Ring, and FDDI. s and switches are not complicated devices. They analyze incoming frames, make forwarding decisions based on information contained in the frames, and forward the frames toward the destination. In some cases, such as source-route bridging, the entire path to the destination is contained in each frame. In other cases, such as transparent bridging, frames are forwarded one hop at a time toward the destination. Bridging and Switching Basics 4-1
2 Types of s Upper-layer protocol transparency is a primary advantage of both bridging and switching. Because both device types operate at the link layer, they are not required to examine upper-layer information. This means that they can rapidly forward traffic representing any network-layer protocol. It is not uncommon for a bridge to move AppleTalk, DECnet, TCP/IP, XNS, and other traffic between two or more networks. s are capable of filtering frames based on any Layer 2 fields. A bridge, for example, can be programmed to reject (not forward) all frames sourced from a particular network. Because link-layer information often includes a reference to an upper-layer protocol, bridges usually can filter on this parameter. Furthermore, filters can be helpful in dealing with unnecessary broadcast and multicast packets. By dividing large networks into self-contained units, bridges and switches provide several advantages. Because only a certain percentage of traffic is forwarded, a bridge or switch diminishes the traffic experienced by devices on all connected segments. The bridge or switch will act as a firewall for some potentially damaging network errors, and both accommodate communication between a larger number of devices than would be supported on any single LAN connected to the bridge. s and switches extend the effective length of a LAN, permitting the attachment of distant stations that were not previously permitted. Although bridges and switches share most relevant attributes, several distinctions differentiate these technologies. Switches are significantly faster because they switch in hardware, while bridges switch in software and can interconnect LANs of unlike bandwidth. A 10-Mbps Ethernet LAN and a 100-Mbps Ethernet LAN, for example, can be connected using a switch. Switches also can support higher port densities than bridges. Some switches support cut-through switching, which reduces latency and delays in the network, while bridges support only store-and-forward traffic switching. Finally, switches reduce collisions on network segments because they provide dedicated bandwidth to each network segment. Types of s s can be grouped into categories based on various product characteristics. Using one popular classification scheme, bridges are either local or remote. Local bridges provide a direct connection between multiple LAN segments in the same area. Remote bridges connect multiple LAN segments in different areas, usually over telecommunications lines. Figure 4-1 illustrates these two configurations. Figure 4-1 Local and remote bridges connect LAN segments in specific areas. Ethernet Local bridging Token Ring Remote bridging S1287a 4-2 Internetworking Technology Overview, June 1999
3 Types of s Remote bridging presents several unique internetworking challenges, one of which is the difference between LAN and WAN speeds. Although several fast WAN technologies now are establishing a presence in geographically dispersed internetworks, LAN speeds are often an order of magnitude faster than WAN speeds. Vast differences in LAN and WAN speeds can prevent users from running delay-sensitive LAN applications over the WAN. Remote bridges cannot improve WAN speeds, but they can compensate for speed discrepancies through a sufficient buffering capability. If a LAN device capable of a 3-Mbps transmission rate wants to communicate with a device on a remote LAN, the local bridge must regulate the 3-Mbps data stream so that it does not overwhelm the 64-kbps serial link. This is done by storing the incoming data in on-board buffers and sending it over the serial link at a rate that the serial link can accommodate. This buffering can be achieved only for short bursts of data that do not overwhelm the bridge s buffering capability. The Institute of Electrical and Electronic Engineers (IEEE) differentiates the OSI link layer into two separate sublayers: the Media Access Control (MAC) sublayer and the Logical Link Control (LLC) sublayer. The MAC sublayer permits and orchestrates media access, such as contention and token passing, while the LLC sublayer deals with framing, flow control, error control, and MAC-sublayer addressing. Some bridges are MAC-layer bridges, which bridge between homogeneous networks (for example, IEEE and IEEE 802.3), while other bridges can translate between different link-layer protocols (for example, IEEE and IEEE 802.5). The basic mechanics of such a translation are shown in Figure 4-2. Figure 4-2 illustrates an IEEE host (Host A) formulating a packet that contains application information and encapsulating the packet in an IEEE compatible frame for transit over the IEEE medium to the bridge. At the bridge, the frame is stripped of its IEEE header at the MAC sublayer of the link layer and is subsequently passed up to the LLC sublayer for further processing. After this processing, the packet is passed back down to an IEEE implementation, which encapsulates the packet in an IEEE header for transmission on the IEEE network to the IEEE host (Host B). A bridge s translation between networks of different types is never perfect because one network likely will support certain frame fields and protocol functions not supported by the other network. Bridging and Switching Basics 4-3
4 Types of Switches Figure 4-2 A MAC-layer bridge connects the IEEE and IEEE networks. Host A Host B Application Application Presentation Presentation Session Session Transport Transport Network Network Link LLC MAC PKT PKT PKT Link Link Physical PKT PKT Physical Physical medium medium S1288a Types of Switches Switches are data link layer devices that, like bridges, enable multiple physical LAN segments to be interconnected into a single larger network. Similar to bridges, switches forward and flood traffic based on MAC addresses. Because switching is performed in hardware instead of in software, however, it is significantly faster. Switches use either store-and-forward switching or cut-through switching when forwarding traffic. Many types of switches exist, including ATM switches, LAN switches, and various types of WAN switches. ATM Switch Asynchronous Transfer Mode (ATM) switches provide high-speed switching and scalable bandwidths in the workgroup, the enterprise network backbone, and the wide area. ATM switches support voice, video, and data applications and are designed to switch fixed-size information units called cells, which are used in ATM communications. Figure 4-3 illustrates an enterprise network comprised of multiple LANs interconnected across an ATM backbone. 4-4 Internetworking Technology Overview, June 1999
5 LAN Switch Figure 4-3 Multi-LAN networks can use an ATM-based backbone when switching cells. Engineering R&D ATM Backbone Sales Marketing Security LAN Switch LAN switches are used to interconnect multiple LAN segments. LAN switching provides dedicated, collision-free communication between network devices, with support for multiple simultaneous conversations. LAN switches are designed to switch data frames at high speeds. Figure 4-4 illustrates a simple network in which a LAN switch interconnects a 10-Mbps and a 100-Mbps Ethernet LAN. Figure 4-4 A LAN switch can link 10-Mbps and 100-Mbps Ethernet segments. 10-Mbps Ethernet LAN Switch 100-Mbps Ethernet Bridging and Switching Basics 4-5
6 Types of Switches 4-6 Internetworking Technology Overview, June 1999
Introduction to LAN Protocols
CHAPTER 2 Introduction to LAN Protocols This chapter introduces the various media-access methods, transmission methods, topologies, and devices used in a local area network (LAN). Topics addressed focus
Introduction to LAN Protocols
CHAPTER 2 Chapter Goals Learn about different LAN protocols. Understand the different methods used to deal with media contention. Learn about different LAN topologies. This chapter introduces the various
Layer 2 functionality bridging and switching
Layer 2 functionality bridging and switching BSAD 141 Dave Novak Sources: Network+ Guide to Networks, Dean 2013 Overview Layer 2 functionality Error detection Bridges Broadcast and collision domains How
Lecture 1 Overview - Data Communications, Data Networks, and the Internet
DATA AND COMPUTER COMMUNICATIONS Lecture 1 Overview - Data Communications, Data Networks, and the Internet Mei Yang Based on Lecture slides by William Stallings 1 OUTLINE Data Communications and Networking
Network protocols and. network systems INTRODUCTION CHAPTER
CHAPTER Network protocols and 2 network systems INTRODUCTION The technical area of telecommunications and networking is a mature area of engineering that has experienced significant contributions for more
A LAN is a high-speed data network that covers a relatively small geographic area. It typically connects workstations, personal computers, printers,
CBCN4103 A LAN is a high-speed data network that covers a relatively small geographic area. It typically connects workstations, personal computers, printers, servers, and other devices. LANs offer computer
Routing Between VLANs Overview
Routing Between VLANs Overview This chapter provides an overview of VLANs. It describes the encapsulation protocols used for routing between VLANs and provides some basic information about designing VLANs.
CCNA Exploration1 Chapter 7: OSI Data Link Layer
CCNA Exploration1 Chapter 7: OSI Data Link Layer LOCAL CISCO ACADEMY ELSYS TU INSTRUCTOR: STELA STEFANOVA 1 Explain the role of Data Link layer protocols in data transmission; Objectives Describe how the
Routing Between VLANs Overview
Routing Between VLANs Overview This chapter provides an overview of VLANs. It describes the encapsulation protocols used for routing between VLANs and provides some basic information about designing VLANs.
Internetworking is connecting two or more computer networks with some sort of routing device to exchange traffic back and forth, and guide traffic on
CBCN4103 Internetworking is connecting two or more computer networks with some sort of routing device to exchange traffic back and forth, and guide traffic on the correct path across the complete network
TCOM 370 NOTES 99-1 NETWORKING AND COMMUNICATIONS
TCOM 370 NOTES 99-1 NETWORKING AND COMMUNICATIONS Communication Networks Allow Exchange of Information between Users telephone network for voice communication interconnected computers and peripherals,
Distributed Queue Dual Bus
Distributed Queue Dual Bus IEEE 802.3 to 802.5 protocols are only suited for small LANs. They cannot be used for very large but non-wide area networks. IEEE 802.6 DQDB is designed for MANs It can cover
Guide to Networking Essentials, 6 th Edition. Chapter 6: Network Reference Models and Standards
Guide to Networking Essentials, 6 th Edition Chapter 6: Network Reference Models and Standards Objectives Explain the OSI reference model layers and their relationship to hardware and software Explain
Local Area Network Overview
Local Area Network Overview Chapter 15 CS420/520 Axel Krings Page 1 LAN Applications (1) Personal computer LANs Low cost Limited data rate Back end networks Interconnecting large systems (mainframes and
More on LANS. LAN Wiring, Interface
More on LANS Chapters 10-11 LAN Wiring, Interface Mostly covered this material already NIC = Network Interface Card Separate processor, buffers incoming/outgoing data CPU might not be able to keep up network
CH : 15 LOCAL AREA NETWORK OVERVIEW
CH : 15 LOCAL AREA NETWORK OVERVIEW P. 447 LAN (Local Area Network) A LAN consists of a shared transmission medium and a set of hardware and software for interfacing devices to the medium and regulating
Medium Access Protocols
Medium Access Protocols Summary of MAC protocols What do you do with a shared media? Channel Partitioning, by time, frequency or code Time Division,Code Division, Frequency Division Random partitioning
CHAPTER -1. Introduction to Computer Networks
CHAPTER -1 Introduction to Computer Networks PRELIMINARY DEFINITIONS computer network :: [Tanenbaum] a collection of autonomous computers interconnected by a single technology. communications network ::a
Computer Networks. Wenzhong Li. Nanjing University
Computer Networks Wenzhong Li Nanjing University 1 Chapter 2. Direct Link Networks Link Service and Framing Error Detection and Reliable Transmission HDLC, PPP, and SONET Token Ring Ethernet Bridges and
Review of Network Technologies
Indian Institute of Technology Kharagpur Review of Network Technologies Prof. Indranil Sen Gupta Dept. of Computer Science & Engg. I.I.T. Kharagpur, INDIA Lecture 2: Review of network technologies On completion,
Chapter 9 Ethernet Part 1
Chapter 9 Ethernet Part 1 Introduction to Ethernet Ethernet Local Area Networks (LANs) LAN (Local Area Network) - A computer network connected through a wired or wireless medium by networking devices (s,
Switched Multimegabit Data Service (SMDS)
CHAPTER 14 Switched Multimegabit Data Service (SMDS) Background Switched Multimegabit Data Service (SMDS) is a high-speed, packet-switched, datagram-based WAN networking technology used for communication
Designing the Switched Workgroup 3-1
This chapter covers the following topics: Selecting An Appropriate Switch For Your Network The HP Family of AdvanceStack Switches Understanding Switching Technology Switch Operations Network Switch Market
Underlying Technologies -Continued-
S465 omputer Networks Spring 2004 hapter 3 (Part B) Underlying Technologies -ontinued- Dr. J. Harrison These slides were produced from material by Behrouz Forouzan for the text TP/IP Protocol Suite (2
Switching and Forwarding Reading: Chapter 3 1/30/14 1
Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Next Problem: Enable communication between hosts that are not directly connected Fundamental Problem of the Internet or any
Cisco Cisco Certified Network Associate (CCNA)
Cisco 200-125 Cisco Certified Network Associate (CCNA) http://killexams.com/pass4sure/exam-detail/200-125 Question: 769 Refer to exhibit: Which destination addresses will be used by Host A to send data
Optical networking technology
1 Optical networking technology Technological advances in semiconductor products have essentially been the primary driver for the growth of networking that led to improvements and simplification in the
Operating Systems CS 571
Computer Networks: Overview Operating Systems CS 571 Network types Range Bandwidth (Mbps) Latency (ms) LAN 1-2 kms 10-1000 1-10 WAN worldwide 0.010-600 100-500 MAN 2-50 kms 1-150 10 Wireless LAN 0.15-1.5
Open Systems Interconnection (OSI) Routing Protocol
CHAPTER 41 Open Systems Interconnection (OSI) Protocol Background The International Organization for Standardization (O) developed a complete suite of routing protocols for use in the Open Systems Interconnection
Table of Contents. Cisco TCP/IP
Table of Contents TCP/IP Overview...1 TCP/IP Technology...1 TCP...1 IP...2 Routing in IP Environments...4 Interior Routing Protocols...5 RIP...5 IGRP...6 OSPF...6 Integrated IS IS...6 Exterior Routing
Internetworking Concepts Overview. 2000, Cisco Systems, Inc. 2-1
Internetworking Concepts Overview 2000, Cisco Systems, Inc. 2-1 2000, Cisco Systems, Inc. www.cisco.com ICND v1.0a 2-2 Objectives On completion of this chapter, you will be able to perform the following
COMPUTER NETWORKS MODEL QUESTION PAPER WITH SOLUTION. (c) Peer-to-peer processes are processes on two or more devices communicating at a
COMPUTER NETWORKS MODEL QUESTION PAPER WITH SOLUTION Q-1(a) In half-duplex transmission, only one entity can send at a time; in a full-duplex transmission, both entities can send at the same time. (b)
Principles behind data link layer services
Data link layer Goals: Principles behind data link layer services Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control: Done!
CHAPTER 18 INTERNET PROTOCOLS ANSWERS TO QUESTIONS
CHAPTER 18 INTERNET PROTOCOLS ANSWERS TO QUESTIONS 18.1 (1) The communications network may only accept blocks of data up to a certain size. (2) Error control may be more efficient with a smaller PDU size.
Source-Route Bridging
25 CHAPTER Chapter Goals Describe when to use source-route bridging. Understand the difference between SRB and transparent bridging. Know the mechanism that end stations use to specify a source-route.
Chapter 4. The Medium Access Control Sublayer
Chapter 4 The Medium Access Control Sublayer The Channel Allocation Problem Static Channel Allocation in LANs and MANs Dynamic Channel Allocation in LANs and MANs Dynamic Channel Allocation in LANs and
Performance Evaluation of FDDI, ATM, and Gigabit Ethernet as Backbone Technologies Using Simulation
Performance Evaluation of FDDI, ATM, and Gigabit Ethernet as Backbone Technologies Using Simulation Sanjay P. Ahuja, Kyle Hegeman, Cheryl Daucher Department of Computer and Information Sciences University
- Hubs vs. Switches vs. Routers -
1 Layered Communication - Hubs vs. Switches vs. Routers - Network communication models are generally organized into layers. The OSI model specifically consists of seven layers, with each layer representing
Chapter 2. Switch Concepts and Configuration. Part I
Chapter 2 Switch Concepts and Configuration Part I CCNA3-1 Chapter 2-1 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor,
Hubs, Bridges, and Switches (oh my) Hubs
Hubs, Bridges, and Switches (oh my) Used for extending LANs in terms of geographical coverage, number of nodes, administration capabilities, etc. Differ in regards to: collision domain isolation layer
How Did LANs Evolve to Multilayer Switching?
How Did LANs Evolve to Multilayer Switching? How Did LANs Evolve to Multilayer Switching? Summary In the past, internetworking devices could easily be categorized as either bridges, routers, switches,
Data Link Protocols. TCP/IP Suite and OSI Reference Model
Data Link Protocols Relates to Lab. This module covers data link layer issues, such as local area networks (LANs) and point-to-point links, Ethernet, and the Point-to-Point Protocol (PPP). 1 TCP/IP Suite
Router Router Microprocessor controlled traffic direction home router DSL modem Computer Enterprise routers Core routers
Router Router is a Microprocessor controlled device that forwards data packets across the computer network. It is used to connect two or more data lines from different net works. The function of the router
Fundamentals of Networking. OSI & TCP/IP Model. Kuldeep Sonar 1
Fundamentals of Networking OSI & TCP/IP Model Kuldeep Sonar 1 Kuldeep Sonar 2 OSI Model Kuldeep Sonar 3 Application Layer Layer 7 provides an interface between a host s communication software and any necessary
Switched Multimegabit Data Service
CHAPTER 14 Chapter Goals Tell how SMDS works, and describe its components. Describe the operational elements of the SMDS environment, and outline its underlying protocol. Discuss related technologies.
Data Communication. Introduction of Communication. Data Communication. Elements of Data Communication (Communication Model)
Data Communication Introduction of Communication The need to communicate is part of man s inherent being. Since the beginning of time the human race has communicated using different techniques and methods.
Principles behind data link layer services:
Data link layer Goals: Principles behind data link layer services: Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control Example
1. Data Link Layer Protocols
1. Data Link Layer Protocols Purpose of the Data Link Layer The Data Link Layer Purpose of the Data Link Layer Data Link Sublayers Network LLC Sublayer Data Link Physical MAC Sublayer 802.3 Ethernet 802.11
Internetwork Protocols
Internetwork Protocols Background to IP IP, and related protocols Internetworking Terms (1) Communications Network Facility that provides data transfer service An internet Collection of communications
Configuring Source-Route Bridging
This chapter describes source-route bridging (SRB) configuration tasks. For a discussion of remote source-route bridging (RSRB) configuration tasks, refer to the Configuring Remote Source-Route Bridging
Ethernet Hub. Campus Network Design. Hubs. Sending and receiving Ethernet frames via a hub
Campus Network Design Thana Hongsuwan Ethernet Hub 2003, Cisco Systems, Inc. All rights reserved. 1-1 2003, Cisco Systems, Inc. All rights reserved. BCMSN v2.0 1-2 Sending and receiving Ethernet frames
Data Communication and Network. Introducing Networks
Data Communication and Network Introducing Networks Introduction to Networking Computer network, or simply network Refers to the connection of two or more computers by some type of medium You can connect
CCM 4300 Lecture 5 Computer Networks, Wireless and Mobile Communications. Dr Shahedur Rahman. Room: T115
CCM 4300 Lecture 5 Computer Networks, Wireless and Mobile Communications Dr Shahedur Rahman s.rahman@mdx.ac.uk Room: T115 1 Recap of Last Session Described the physical layer Analogue and Digital signal
1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing.
/9/008 From Signals to Packets Lecture Datalink Framing, Switching Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Carnegie Mellon University Analog Signal Digital
Chapter 11 in Stallings 10 th Edition
Local Area Network Overview Chapter 11 in Stallings 10 th Edition CS420/520 Axel Krings Page 1 LAN Applications (1) Personal computer LANs Low cost Limited data rate Back end networks Interconnecting large
Refer to the exhibit. Which set of devices contains only end devices? A,C,D B,E,G,H C,D,G,H,I,J D,E,F,H,I,J E,F,H,I,J
1. What is the purpose of the TCP/IP Network Access layer? path determination and packet switching data presentation the division of segments into packets network media control 2. Which characteristic
We are going to see a basic definition of the devices you can find in a corporate wired network, so you can understand basic IT engineering jargon.
Computer network devices, also known as communication devices, are the backbone of a data communication network. In this category we can find routers, switches, hubs, LAN cards, gateways, modems, hardware
Lecture 9: Bridging & Switching"
Lecture 9: Bridging & Switching" CSE 123: Computer Networks Alex C. Snoeren HW 2 due Wednesday! Lecture 9 Overview" Finishing up media access Contention-free methods (rings) Moving beyond one wire Link
Switched Ethernet Virtual LANs
Switched Ethernet Virtual LANs Computer Networks Lecture 4 http://goo.gl/pze5o8 Switched Ethernet 2 LAN Switches Behave as bridges (operates in the logical tree topology) Switching is implemented by hardware
Point-to-Point Network Switching. Computer Networks Term B10
Point-to-Point Network Switching Computer Networks Term B10 Network Switching Outline Circuit Switching, Message Switching, Packet Switching, Cell Switching Connection-Oriented versus Connectionless Protocols
Data Networks. Lecture 1: Introduction. September 4, 2008
Data Networks Lecture 1: Introduction September 4, 2008 Slide 1 Learning Objectives Fundamental aspects of network Design and Analysis: Architecture: layering, topology design, switching mechanisms Protocols:
Fundamental Issues. System Models and Networking Chapter 2,3. System Models. Architectural Model. Middleware. Bina Ramamurthy
System Models and Networking Chapter 2,3 Bina Ramamurthy Fundamental Issues There is no global time. All communications are by means of messages. Message communication may be affected by network delays
IP Video Network Gateway Solutions
IP Video Network Gateway Solutions INTRODUCTION The broadcast systems of today exist in two separate and largely disconnected worlds: a network-based world where audio/video information is stored and passed
CiscoFusion. (C) 1997 Networking Hardware Division raj 01/09/97. CiscoFusion maintains routers in the network path
CiscoFusion CiscoFusion maintains routers in the network path Current collapsed backbone networks CiscoFusion Network of the future ATM Switch The New Wiring Closet Today's Wiring Closet Multilayer Switch
Introduction. Computer Networks: Introduction 1
Introduction Computer Networks: Introduction 1 Network Definitions and Classification Preliminary definitions and network terminology Sample application paradigms Classifying networks by transmission technology
Typical Network Uses
Computer Networks Introduction The next Great Revolution - Computer Networks- computers connected together for exchanging information Our information-oriented society - applications in education, commerce,
Troubleshooting Frame Relay Connections
CHAPTER 18 Frame Relay was originally conceived as a protocol for use over ISDN interfaces. Initial proposals to this effect were submitted to the International Telecommunication Union Telecommunication
Connecting to the Network
Connecting to the Network Networking for Home and Small Businesses Chapter 3 1 Objectives Explain the concept of networking and the benefits of networks. Explain the concept of communication protocols.
Data Communications. Connecting Devices
Data Communications Connecting Devices Connecting Devices Networks do not normally operate in isolation. They are connected to one another or to the Internet. To connect LANs, or segments of LANs, we use
USING BRIDGES, ROUTERS AND GATEWAYS IN DATA ACQUISITION NETWORKS
USING BRIDGES, ROUTERS AND GATEWAYS IN DATA ACQUISITION NETWORKS Tom De Selms JDANS Lead Engineer Veridian Engineering thomas.deselms@veridian.com ABSTRACT Using acquisition networks requires an understanding
CS-461 Internetworking. Dr. Mohamed Aboutabl
CS-461 Internetworking Dr. Mohamed Aboutabl http://www.cs.jmu.edu/users/aboutams The McGraw-Hill Companies, Inc., 2000 1 Chapter 1 Introduction The McGraw-Hill Companies, Inc., 2000 2 Internet today Network
IP Network Emulation
Developing and Testing IP Products Under www.packetstorm.com 2017 PacketStorm Communications, Inc. PacketStorm is a trademark of PacketStorm Communications. Other brand and product names mentioned in this
CHAPTER 8: LAN Standards
CHAPTER 8: LAN Standards DR. BHARGAVI GOSWAMI, ASSOCIATE PROFESSOR HEAD, DEPARTMENT OF COMPUTER SCIENCE, GARDEN CITY COLLEGE BANGALORE. LAN STRUCTURE NETWORK INTERFACE CARD MEDIUM ACCESS CONTROL SUB LAYER
Internetwork Basic. Possible causes of LAN traffic congestion are
Internetworking 1 C H A P T E R 2 Internetworking Basics Internetworking Model The OSI Reference Model Ethernet Networking Wireless Networking Data Encapsulation Topic 3 1 Internetwork Basic 4 Possible
Computer Networks. Andrew S. Tanenbaum
Computer Networks Third Edition Andrew S. Tanenbaum 1 ; l Vrije Universiteit Amsterdam, The Netherlands For book and bookstore information Prentice Hall PTR Upper Saddle River, New Jersey 07458 CONTENTS
COSC 6377 Mid-Term #2 Fall 2000
Name: SSN: Signature: Open book, open notes. Your work must be your own. Assigned seating. Test time: 7:05pm to 8:05pm. You may not use a calculator or PalmPilot to calculate subnetting/host/netid information.
Chapter 5. The Network Layer. Network Layer Design Isues. Store-and-Forward Packet Switching 10/7/2010. Implementation of Connectionless Service
Network Layer Design Isues Chapter 5 The Network Layer Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented
Computer Networks. Lecture 8 Local Area Network, IEEE 802.x
Computer Networks Lecture 8 Local Area Network, IEEE 802.x Local area network A local area network (LAN) is a computer network that interconnects computers within a limited area such as a home, school,
SIMULATION OF PACKET DATA NETWORKS USING OPNET
SIMULATION OF PACKET DATA NETWORKS USING OPNET Nazy Alborz, Maryam Keyvani, Milan Nikolic, and Ljiljana Trajkovic * School of Engineering Science Simon Fraser University Vancouver, British Columbia, Canada
Chapter 5. The Network Layer. CEN Chapter 5 1
Chapter 5 The Network Layer CEN 445 - Chapter 5 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation
OSI Reference Model. Computer Networks lab ECOM Prepared By : Eng. Motaz Murtaja Eng. Ola Abd Elatief
Islamic University of Gaza Faculty of Engineering Computer Engineering Department Computer Networks lab ECOM 4121 OSI Reference Model Prepared By : Eng. Motaz Murtaja Eng. Ola Abd Elatief May /2010 OSI
2. LAN Topologies Gilbert Ndjatou Page 1
2. LAN Topologies Two basic categories of network topologies exist, physical topologies and logical topologies. The physical topology of a network is the cabling layout used to link devices. This refers
Chapter 5 OSI Network Layer
Chapter 5 OSI Network Layer The protocols of the OSI model Network layer specify addressing and processes that enable Transport layer data to be packaged and transported. The Network layer encapsulation
IT114 NETWORK+ Learning Unit 1 Objectives: 1, 2 Time In-Class Time Out-Of-Class Hours 2-3. Lectures: Course Introduction and Overview
IT114 NETWORK+ Course Objectives Upon successful completion of this course, the student will be able to: 1. Identify the devices and elements of computer networks; 2. Diagram network models using the appropriate
Module 16: Distributed System Structures
Module 16: Distributed System Structures Chapter 16: Distributed System Structures Motivation Types of Distributed Operating Systems Network Structure Network Topology Communication Structure Communication
Chapter One: Networking Fundamentals Computer Networks
1.1 Bandwidth Bandwidth is defined as the amount of information that can flow through a network connection in a given period of time. It is important to understand the concept of bandwidth for the following
LAN Emulation, IP Over ATM and MPOA
LAN Emulation, IP Over ATM and MPOA Professor of Computer and Information Sciences Columbus, OH 43210 These slides are available at http://www.cis.ohio-state.edu/~jain/cis777-00/ 1 Overview LAN Emulation
Chapter 1. Introduction
Chapter 1 Introduction Computer Networks The old model of a single computer serving all of the organization s computational needs has been replace by one in which a large number of separate but interconnected
Encapsulation Bridging and
Encapsulation Bridging and 802.17 Robert Castellano, Jedai Broadband Networks 9/10/2001 rc_ebridge_02.pdf 802-17-02-00051 Outline 802.17 Bridging 802.17 Compatibility Requirements 802.1D Bridging Architecture
Networking interview questions
Networking interview questions What is LAN? LAN is a computer network that spans a relatively small area. Most LANs are confined to a single building or group of buildings. However, one LAN can be connected
Module 16: Distributed System Structures. Operating System Concepts 8 th Edition,
Module 16: Distributed System Structures, Silberschatz, Galvin and Gagne 2009 Chapter 16: Distributed System Structures Motivation Types of Network-Based Operating Systems Network Structure Network Topology
Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross
Part 5: Link Layer Technologies CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross 1 Outline PPP ATM X.25 Frame Relay 2 Point to Point Data Link Control One sender, one receiver,
Informal Quiz #01: SOLUTIONS
ECSE-6600: Internet Protocols Informal Quiz #01: SOLUTIONS : GOOGLE: Shiv RPI shivkuma@ecse.rpi.edu 1 Review of Networking Concepts (I): Informal Quiz SOLUTIONS For each T/F question: Replace the appropriate
Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding.
Integrated Services An architecture for streaming multimedia Aimed at both unicast and multicast applications An example of unicast: a single user streaming a video clip from a news site An example of
Outline: Connecting Many Computers
Outline: Connecting Many Computers Last lecture: sending data between two computers This lecture: link-level network protocols (from last lecture) sending data among many computers 1 Review: A simple point-to-point
Lecture Outline. Lecture 2. OSI model and networking. The OSI model and networking. The OSI model and networking. The OSI model and networking
Lecture 2 The OSI model Chapter 2, specifically pages 42-58 Dave Novak School of Business Administration, University of Vermont Sources: 1) Network+ Guide to Networks, Dean 2013 2) Comer, Computer Networks
Configuring VLAN CHAPTER
CHAPTER 10 LMS collects data about devices so that you can configure and manage Virtual Local Area Network (VLAN) in your network. You must set up your LMS server properly to ensure that Data Collection
Overview of Bridging
Overview of Bridging The Bridging section of this guide discusses the following software components for bridging and routing protocols in Cisco routers: Transparent and Source-Route Transparent (SRT) Bridging,
ก ก Information Technology II
ก ก 202103 Information Technology II ก ก ก ก ก (LAN), ก LAN, ก ก (LAN) ก ก ก LAN ก LAN ก LAN Topology Bus LAN Star LAN Ring LAN Wireless LAN Wireless LAN Wireless ก (LAN) ก ก ก LAN ก LAN WAN ก Random Access
CCNA Exploration Network Fundamentals. Chapter 09 Ethernet
CCNA Exploration Network Fundamentals Chapter 09 Ethernet Updated: 07/07/2008 1 9.0.1 Introduction 2 9.0.1 Introduction Internet Engineering Task Force (IETF) maintains the functional protocols and services