December 2 nd, 2016 Ivan Seskar WINLAB

Size: px
Start display at page:

Download "December 2 nd, 2016 Ivan Seskar WINLAB"

Transcription

1 FALL 2016 RESEARCH REVIEW Software-defined Infrastructure for Advanced Wireless Testbeds December 2 nd, 2016 Ivan Seskar Department of ECE Rutgers, The State University of New Jersey seskar (at) winlab (dot) Rutgers (dot) edu

2 Technical Challenges Faster Cellular Radios Access ~1-10 Gbps ~1000x capacity Low- Latency/ Low-Power Access Network For Real- Time IoT New Spectrum & Dynamic Spectrum Access Next-Gen Mobile Network Wideband PHY Cloud RAN arch Massive MIMO mmwave (60 Ghz) Multi-Radio access HetNet (+WiFi, etc.) Custom PHY for IoT New MAC protocols RAN redesign Light-weight control Control/data separation Network protocol redesign. 60 Ghz & other new bands New unlicensed/shared spectrum Dynamic spectrum access Spectrum sharing techniques Non-contiguous spectrum Network/DB coordination methods. Mobile network redesign Convergence with Internet Clean-slate Mobile Internet Software Defined Networks Open wireless network APIs Cloud services & computing Edge cloud/fog computing Virtualization, NFV.

3 Wireless Network Softwarization Use software programming to design, implement, deploy, manage and maintain wireless network equipment, components and services Goals: Increase re-usability Rapid re-design of network and service architectures Optimize processes in networks Reduce costs Bring added value to infrastructures

4 Softwarization in Wireless Networks In radio access networks - Agility in spatial, temporal and frequency dimensions enabling: Fine-grained physical layer/network programmability Flexibility in spectrum management Dynamic provisioning Heterogeneous deployments. In mobile edge networks - Extend softwarization from the conventional data center to the edge of wireless networks: Enable on demand service deployment at the most effective locations based on application requirements Automate service establishment/maintenance mechanisms (in a timely fashion)

5 Capacity, Capacity, Capacity 1000 = bits/sec km 2 = Research Viewpoint bits/sec/hz cell Hz cell km 2 4G ~1000x ~20x Industry Viewpoint 5G ~1000x ~3-5x ~5-10x Air Interface Spectrum Spectral efficiency ~25x ~1-2x Networking Bandwidth Cell density Giuseppe Caire: Massive MIMO: implementation issues and impact on network optimization 2016 Tyrrhenian International Workshop on Digital Communications (TIW16) ~1-2x Qian (Clara) Li,Huaning Niu, Apostolos (Tolis) Papathanassiou, and Geng Wu: 5G Network Capacity IEEE vehicular technology magazine, March 2014

6 Capacity, Capacity, Capacity (cont d) Spectral Efficiency/Air Interface Cell Density/Networking Bandwidth/Spectrum Academia Massive MIMO: Serve users per sector with antennas per BS Small Cells & Heterogeneous SoNs: From 300m to 90m cell radius on average mmwaves: From 2-6 GHz to GHz Industry Coordinated Multipoint Tx/Rx 3-D/Full-Dimensional MIMO New Modulation and/or Coding Schemes Cell Densification WLAN Offloading Integrated MultiRAT Operation Device-to-Device Joint Scheduling, Nonorthogonal Multiple Access Information and Communication Technology Coupling More Licensed and Unlicensed Spectrum, mmwaves Licensed Shared Access Unlicensed Spectrum Sharing

7 5G Spectrum Coverage Mérouane Debbah, 5G: Can we make it by 2020? 2016 Tyrrhenian International Workshop on Digital Communications (TIW16)

8 Basestation Architecture Evolution Traditional Design Current Design Cloud Radio Access Network (CRAN) Power Amplifier Baseband Transport Control & Mgmt. Core Network Power Amplifier Baseband Transport Control & Mgmt. Core Network Remote Radio Head (RRH) Baseband Unit (BBU) FRONTHAUL Common Public Radio Interface (CPRI) Open Base Station Architecture Initiative (OBSAI) Open Radio Equipment Interface (ETSI-ORI) BACKHAUL S11,R4,R6 Power Amplifi er Power Amplifi er Baseband Power Amplifi er Baseband Transport Baseband Control Transport & Mgmt. Control Transport & Mgmt. Control & Mgmt. Core Network Core Network

9 METIS-II Key 5G Architecture Paradigms 5G RAN a Harmonized and Integrated Landscape of AIVs A Logical CN/RAN Split with evolved Interfaces Moving Functionality from Core Network to RAN: Mobility and Paging in 5G RAN Protocol Stack Considerations Functionality on a Faster Time Scale: Agile Traffic Steering and Resource Mgmt RAN Enablers for Network Slicing Physical Architecture and Possible Function Splits

10 Service Service Service Service Service Service Service Service METIS-II: RAN Support for Network Slicing It is foreseen that network slices will be used to form logical E2E networks for particular business constellations The 5G RAN should be slice-aware Offer means for slice isolation and protection Provide means for efficient resource reuse Key questions are yet the assignment of devices to slices and multi-slice connectivity. Example network slice (E2E logical network) Completely independent realization of network slices in the core network Likely individual logical protocol instances for different services, highly tailored to these. Possibly slice-specific processing of services Likely multiple slices and the services therein multiplexed into common instances for lower MAC, PHY, and sharing the same radio. Note that MAC or PHY functions may still be highly slice- or service tailored MUX RRC PDCP RLC MUX MUX RRC PDCP RLC Possibly slice-specific MAC scheduler MUX MUX RRC PDCP RLC MUX MUX RRC PDCP RLC Possibly slice-specific MAC scheduler Possibly common lower MAC (but with slice-specific and/or service-specific behaviour) Possibly common PHY (but with slice-specific and/or service-specific behaviour) Possibly common radio / spectrum CN Domain RAN Domain

11 PDCP RLC (asynch.) RLC (synch.) MAC (e.g. RRM) METIS-II: Function Splits MAC (e.g. HARQ) FEC Scrambling Modulation, Layer mapping, Precoding Resource element mapping & IFFT D/A Conversion Antenna S1* Resource element mapping & IFFT D/A Conversion Antenna Resource element mapping & IFFT D/A Conversion Antenna M6-M4 Uncoded user data (without H- ARQ retransmissions) M3 Coded user data M2 I/Q samples in frequency domain M1 I/Q samples in time domain (e.g. CPRI) M0 Coaxial cable Scaling with user data rates Scaling with bandwidth and # of antennas Relaxed latency requirements Requiring low-latency fronthaul

12 Typical Fronthaul BW Requirements

13 METIS-II: Deployment Scenarios Scenario 1 Standalone access nodes Each node with one or more (colocated) air interfaces Non-ideal backhaul* Site A: BB- + Central Cloud / Aggregation point Non-ideal backhaul* (optional) Non-ideal backhaul* Site B: BB- + Scenario 2 Central baseband processing unit for high number of access nodes Ideal fronthaul Site A: Optional BB- + Central Cloud / Central BB- Ideal fronthaul Site B: Optional BB- + Scenario 3 Local baseband processing unit for low to medium number of access nodes Local BB- Ideal fronthaul Site A: Optional BB- + Non-ideal backhaul* Local BB- Central Cloud / Aggregation point Non-ideal backhaul* Ideal fronthaul Site B: Optional BB- + Scenario 4 Self-back/fronthauling scenario Non-ideal backhaul (Ideal fronthaul) Site B taken (e.g. novel 5G Wireless selfback/fronthaul Site C: (Optional) BB- + Site B: (Optional) BB- + from Scenario 1-3 (optional e.g. LTE-A Wireless selfback/fronthau l Site D: (Optional) BB- + (e.g. LTE-A (optional e.g. novel 5G (e.g. novel 5G (optional e.g. LTE-A (e.g. LTE-A (optional e.g. novel 5G (e.g. novel 5G (optional e.g. LTE-A (e.g. LTE-A (optional e.g. novel 5G (e.g. novel 5G (optional e.g. LTE-A (e.g. LTE-A (optional e.g. novel 5G (e.g. novel 5G (optional e.g. LTE-A

14 Example: OpenAirInterface enodeb and UE Challenge : Efficient LTE implementation that uses general-purpose x86 processors (GPP) for base-band processing front-end, channel decoding, phy procedures, L2 protocols Key elements: Real-time extensions to Linux OS x86-64 multicore arch Real-time data acquisition to PC SIMD optimized integer DSP 64-bit MMX 128-bit SSE2/3/4 256-bit AVX2 ifft/fft, Channel Estimation, Turbo Decoding SMP Parallelism Master-worker model Courtesy: Navid Nikaein, Eurecom/Open Air Interface

15 OAI Roadmap: Toward Software-defined 5G Network Cloud-native 5G networks Phase 1: Stateless through distributed shared memory, multitenancy Phase 2: Mircoservice Architecture and NFV Supported projects: FP7 MCN, FUI ELASTIC Network Orchestration Approach 1) Openstack and heatstack orchestrator Approach 2) Juju modeling for service-oriented deployment ( Supported project: FP7 MCN, FP7 FLEX, Canonical partnership program Network Programmability network slicing Agent-controller protocol and southband API in support of SDN+MEC agents: in charge of network function monitoring and programmability Network controller: network abstraction (network state graphs), network application realtime, standalone mode or as a plugin Supported projects: H2020 Coherent, H2020 Q4Health, ETSI MEC PoC Courtesy: Raymond Knopp, Euricomm

16 Fronthaul At Scale: ORBIT Testbed Massive-MIMO 40 USRP X310s Available FPGA resources: Resource Type DSP48 Blocks Block Rams (18 kb) Number 58K 14K Logic Cells 7.2M Slices (LUTs) 1.5M 2 x UBX-160 (10 MHz - 6 GHz, 160 MHz BB BW) 2 x 10G Ethernet for fronthaul/interconnect Four corner movable mini-racks (4 x 20 x 20 -> 1 x 80 x 80) > 500+ GPP Cores/CloudLab Rack Number of GPU platforms 32x40G SDN aggregation switch

17 Fronthaul (M1) Requirements for Massive MIMO Single-Ethernet/ Single-host Limit Current BW Requirement???

18 City Scale: CRAN Expanded Massive CPU,GPU,FPGA Cloud

19 Program Experimental License (cont d) Rules have officially become effective as of January 14, But: new forms and reporting WEB site are not yet up (will take a few more weeks according to reliable sources ) Perfect fit: intended to foster innovation Has significant implication on wide area experimentation especially with SDRs and nontraditional front-ends. (the rule also includes two other experimental licenses: the Medical Testing License and the Compliance Testing License)

20 Missing Link : Outdoor Deployable SDR Wireless Units? Modest power amplifier Wideband Antenna Firewall (GENI) Rack SDR front-end Local processing (Open Programmable) COTS BS/AP

21 More wiser.orbit-lab.org wimax.orbit-lab.org metis-ii.5g-ppp.eu

ORBIT Pilot September 24 th, 2017 Ivan Seskar WINLAB

ORBIT Pilot September 24 th, 2017 Ivan Seskar WINLAB IEEE 5G and Beyond Testbed Workshop ORBIT Pilot September 24 th, 2017 Ivan Seskar Department of ECE Rutgers, The State University of New Jersey seskar (at) winlab (dot) Rutgers (dot) edu IEEE 5G Testbeds

More information

Open, Programmable Wireless Networks

Open, Programmable Wireless Networks Open, Programmable Wireless Networks Ivan Seskar Rutgers, The State University of New Jersey METIS-II (Key Innovation Pillars) Common control and user plane framework Control / user plane integration on

More information

Challenges in Data-Center Technologies for Distributed Radio Signal Processing. Raymond Knopp EURECOM, Communication Systems Department

Challenges in Data-Center Technologies for Distributed Radio Signal Processing. Raymond Knopp EURECOM, Communication Systems Department Challenges in Data-Center Technologies for Distributed Radio Signal Processing Raymond Knopp EURECOM, Communication Systems Department Some visions of 5G and beyond 5G and beyond is not only New Radio

More information

Split Options for 5G Radio Access Networks. Paul Arnold, Nico Bayer, Jakob Belschner, Gerd Zimmermann Technology Innovation Deutsche Telekom AG

Split Options for 5G Radio Access Networks. Paul Arnold, Nico Bayer, Jakob Belschner, Gerd Zimmermann Technology Innovation Deutsche Telekom AG Split Options for 5G Radio Access Networks Paul Arnold, Nico Bayer, Jakob Belschner, Gerd Zimmermann Technology Innovation Deutsche Telekom AG Introduction Two splits envisioned in the 5G RAN Control-Plane

More information

Towards 5G RAN Virtualization Enabled by Intel and ASTRI*

Towards 5G RAN Virtualization Enabled by Intel and ASTRI* white paper Communications Service Providers C-RAN Towards 5G RAN Virtualization Enabled by Intel and ASTRI* ASTRI* has developed a flexible, scalable, and high-performance virtualized C-RAN solution to

More information

Visionary Technology Presentations

Visionary Technology Presentations Visionary Technology Presentations The path toward C-RAN and V-RAN Philippe Chanclou, 5G WORLD 5G LIVE! THEATRE - DAY ONE JUNE 29th 2016 29th 30 th June 2016 London U-K Co-Ax The Radio Access Network architecture

More information

Software defined radio networking: Opportunities and challenges

Software defined radio networking: Opportunities and challenges Software defined radio networking: Opportunities and challenges Navid Nikaein Putting more IT/SW to the network EURECOM, Mobile Communication Department Eurecom Graduate school and research center in the

More information

The path toward C-RAN and V-RAN: benefits and challenges from operator perspective

The path toward C-RAN and V-RAN: benefits and challenges from operator perspective TELECOM ITALIA GROUP 5G World Summit London, 29-30 June 2016 : benefits and challenges from operator perspective Marco Caretti Telecom Italia Engineering & TiLAB Agenda The drivers for the RAN evolution

More information

Examining the Fronthaul Network Segment on the 5G Road Why Hybrid Optical WDM Access and Wireless Technologies are required?

Examining the Fronthaul Network Segment on the 5G Road Why Hybrid Optical WDM Access and Wireless Technologies are required? Examining the Fronthaul Network Segment on the 5G Road Why Hybrid Optical WDM Access and Wireless Technologies are required? Philippe Chanclou, Sebastien Randazzo, 18th Annual Next Generation Optical Networking

More information

OpenAirInterface (OAI): A flexible open-source 4G/5G SDR Platform. Giovanni Rigazzi Andrea Tassi

OpenAirInterface (OAI): A flexible open-source 4G/5G SDR Platform. Giovanni Rigazzi Andrea Tassi OpenAirInterface (OAI): A flexible open-source 4G/5G SDR Platform Giovanni Rigazzi Andrea Tassi Summary Introduction Popular SDR platforms OAI Software and Hardware platforms 5G experimentations Next steps

More information

ORBIT 10 Years Later WINLAB. Ivan Seskar, Associate Director WINLAB

ORBIT 10 Years Later WINLAB. Ivan Seskar, Associate Director WINLAB ORBIT 10 Years Later Ivan Seskar, Associate Director Rutgers, The State University of New Jersey Contact: seskar (at) winlab (dot) rutgers (dot) edu Orbit Project Rationale Wireless testbeds motivated

More information

5G: an IP Engineer Perspective

5G: an IP Engineer Perspective 5G: an Engineer Perspective Igor Giangrossi Principal Consulting Engineer /Optical Networks igor.giangrossi@nokia.com 1 NANOG 75 A Brief History of Mobile Networks From analog voice to high speed Internet

More information

COSMOS Architecture and Key Technologies. June 1 st, 2018 COSMOS Team

COSMOS Architecture and Key Technologies. June 1 st, 2018 COSMOS Team COSMOS Architecture and Key Technologies June 1 st, 2018 COSMOS Team COSMOS: System Architecture (2) System design based on three levels of SDR radio node (S,M,L) with M,L connected via fiber to optical

More information

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Anna Tzanakaki (University of Bristol, NKUA) Bristol 5G city testbed with 5G-XHaul extensions www.5g-xhaul-project.eu 1. CONSORTIUM OVERVIEW IHP GmbH (Coordinator)

More information

5G-XHaul Dynamic Reconfigurable Optical-Wireless Backhaul / Fronthaul for 5G Small Cells and Cloud-RANs

5G-XHaul Dynamic Reconfigurable Optical-Wireless Backhaul / Fronthaul for 5G Small Cells and Cloud-RANs 5G-XHaul Dynamic Reconfigurable Optical-Wireless Backhaul / Fronthaul for 5G Small Cells and Cloud-RANs Presenter: Konstantinos Filis, Ph.D. R&D Senior Engineer 2/11/2016 5G-Xhaul Partners, Funding and

More information

ITSF - TIMING FOR 5G SYNCHRONISATION REQUIREMENTS FOR 5G

ITSF - TIMING FOR 5G SYNCHRONISATION REQUIREMENTS FOR 5G ITSF - TIMING FOR 5G SYNCHRONISATION REQUIREMENTS FOR 5G Agenda LTE A-PRO What defines 5G 5G use cases Use cases mapped to capabilities Network Slicing 5G New Radio timeline 5G new interfaces & RAN functional

More information

Dynamic spectrum allocation and energy efficiency in 5G systems. The SPEED-5G perspective

Dynamic spectrum allocation and energy efficiency in 5G systems. The SPEED-5G perspective Dynamic spectrum allocation and energy efficiency in 5G systems The SPEED-5G perspective CLEEN2016 Workshop @CROWNCOM 2016, 31.05.2016, Grenoble Benoit MISCOPEIN CEA-Leti www.speed-5g.eu on behalf of the

More information

Mobile Edge Network for Wireless 5G. Fang-Chu Chen / ITRI March Copyright 2016 ITRI 工業技術研究院

Mobile Edge Network for Wireless 5G. Fang-Chu Chen / ITRI March Copyright 2016 ITRI 工業技術研究院 Mobile Edge Network for Wireless 5G Fang-Chu Chen / ITRI March 2016 1 Keep Local Traffic in Local i.e. at the edge of the network with Direct Communications when possible and still in the control of the

More information

Cognitive radio technology and GENI project

Cognitive radio technology and GENI project Cognitive radio technology and GENI project Ivan Seskar Rutgers, The State University of New Jersey www.winlab.rutgers.edu Contact: seskar (at) winlab (dot) rutgers (dot) edu ORBIT Cognitive Capable Platforms

More information

Multi-Layer and Cloud-Ready Radio Evolution Towards 5G

Multi-Layer and Cloud-Ready Radio Evolution Towards 5G Multi-Layer and Cloud-Ready Radio Evolution Towards 5G Nokia white paper Multi-Layer and Cloud-Ready Radio Evolution Towards 5G White Paper Contents 1. Executive summary 3 2. The path towards 5G 3 3. Centralized

More information

Supported by the. 5G PPP Projects. Demos Abstracts for 5GCAR, 5GMoNarch, 5GXHaul, ONE5G

Supported by the. 5G PPP Projects. Demos Abstracts for 5GCAR, 5GMoNarch, 5GXHaul, ONE5G Supported by the 5G PPP Projects Demos Abstracts for 5GCAR, 5GMoNarch, 5GXHaul, ONE5G 5G PPP Projects Demos Abstracts for 5GCAR, 5GMoNarch, 5GXHaul, ONE5G Supported by the 5GCAR 4 5GMoNarch 6 5GXHaul 8

More information

Evolution of OAI Software for Data Center Deployments Communication Systems Department EURECOM

Evolution of OAI Software for Data Center Deployments Communication Systems Department EURECOM Evolution of OAI Software for Data Center Deployments Communication Systems Department EURECOM Unleashing the potential of open-source in the 5G arena Some visions of 5G and beyond 5G and beyond is not

More information

Transport Requirements for a 5G Broadband Use Case. Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon

Transport Requirements for a 5G Broadband Use Case. Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon Transport Requirements for a 5G Broadband Use Case Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards

More information

IEEE NetSoft 2016 Keynote. June 7, 2016

IEEE NetSoft 2016 Keynote. June 7, 2016 IEEE NetSoft 2016 Keynote June 7, 2016 0 Contents Introduction - Network Evolution & Operator Challenges Re-architecting the RAN SDRAN: Software-defined RAN - Overview & Enabling Features SDRAN Opportunities

More information

OPENAIR-CN Deployment

OPENAIR-CN Deployment OPENAIR-CN Deployment 4th OpenAirInterface Workshop, Fall 2017 November 7 th, 2017 70 ft m ( 20 nodes ) Orbit Testbed VPN Gateway to Wide-Area Testbed Gigabit backbone Front-end Servers 80 ft ( 20 nodes

More information

5GaaL: 5G as a LEGO. Sławomir Kukliński Orange Polska Venice, June 15, 2016

5GaaL: 5G as a LEGO. Sławomir Kukliński Orange Polska Venice, June 15, 2016 5GaaL: 5G as a LEGO 1 Sławomir Kukliński Orange Polska Venice, June 15, 2016 Introduction What we got (4G) What we want to achieve (5G) Which tools we want to use for 5G Which concepts do we have (C-RAN,

More information

Coordinated Control and Spectrum Management for 5G Heterogeneous Radio Access Networks

Coordinated Control and Spectrum Management for 5G Heterogeneous Radio Access Networks Coordinated Control and Spectrum Management for 5G Heterogeneous Radio Access Networks COHERENT control and coordination solution for 5G RAN Navid Nikaein Communication System, Eurecom The project is co-funded

More information

The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul. Jens Bartelt TU Dresden / 5G-XHaul

The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul. Jens Bartelt TU Dresden / 5G-XHaul The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul Jens Bartelt TU Dresden / 5G-XHaul Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board

More information

5G a Network Operator s Point of View. Tilemachos Doukoglou, Ph.D. Cosmote / OTE S.A. Labs

5G a Network Operator s Point of View. Tilemachos Doukoglou, Ph.D. Cosmote / OTE S.A. Labs 5G a Network Operator s Point of View Tilemachos Doukoglou, Ph.D. Cosmote / OTE S.A. Labs 11 July 2017 5G? Is 5G a solution to all our problems? or 5G is a solution waiting for the problem? From a different

More information

The importance of RAN to Core validation as networks evolve to support 5G

The importance of RAN to Core validation as networks evolve to support 5G The importance of RAN to Core validation as networks evolve to support 5G Stephen Hire Vice President Asia Pacific Cobham Wireless October 2017 Commercial in Confidence Cobham Wireless The industry standard

More information

Dali virtual Fronthaul Solution. Virtualizing the Fronthaul for 5G

Dali virtual Fronthaul Solution. Virtualizing the Fronthaul for 5G Dali virtual Fronthaul Solution The Dali virtual Fronthaul Solution gives operators, neutral hosts and enterprises a groundbreaking approach to meeting the intense demands placed on the network fronthaul

More information

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions OUTLINE 1) 5G-XHaul introduction 2) 5G-XHaul architectural aspects 3) Sample of data-plane

More information

4 th OSA Workshop Paris

4 th OSA Workshop Paris 4 th OSA Workshop Paris Mission ETRImakes contribution to the nation s economic and social development through research, development and distribution of industrial core technologies in the field of Information,

More information

Leading the Path to 5G

Leading the Path to 5G www.atis.org/5g2016 Follow us on Twitter @atisupdates Leading the Path to 5G Sanjeev Athalye Senior Director, Product Management, Qualcomm Dr. Arun Ghosh Director, Advanced Radio Group, AT&T 5G: From Concept

More information

Fronthaul and Backhaul for 5G and Beyond

Fronthaul and Backhaul for 5G and Beyond Fronthaul and Backhaul for 5G and Beyond Alain Mourad COST IRACON, Durham, October 2016 A Presence Focused on the World s Wireless Centers Asia, Seoul 2015 InterDigital, Inc. All Rights Reserved. InterDigital

More information

METIS II and Xhaul Projects in 5G PPP. Fang-Chu Chen ICL ITRI On behave of METIS II and Xhaul Consortia

METIS II and Xhaul Projects in 5G PPP. Fang-Chu Chen ICL ITRI On behave of METIS II and Xhaul Consortia METIS II and Xhaul Projects in 5G PPP Fang-Chu Chen ICL ITRI On behave of METIS II and Xhaul Consortia Sept 22, 2015 1 ITRI s Participation in ICT-14 5GPPP Projects - METIS II and Xhaul METIS II : 5G Radio

More information

IMPACT OF 5G RAN ARCHITECTURE IN TRANSPORT

IMPACT OF 5G RAN ARCHITECTURE IN TRANSPORT IMPACT OF 5G RAN ARCHITECTURE IN TRANSPORT NETWORKS Daniel Camps (i2cat) ONDM 2018 Optical Technologies in the 5G era (Workshop) Bristol 5G city testbed with 5G-XHaul extensions OUTLINE From 4G to 5G architecture

More information

Mobile-CORD Enable 5G. ONOS/CORD Collaboration

Mobile-CORD Enable 5G. ONOS/CORD Collaboration Mobile-CORD Enable 5G ONOS/CORD Collaboration http://opencord.org/ M-CORD Drivers = Operator Challenges In the last 5 years 100,000% Increase in Wireless Data Traffic $50 Billion Spectrum investment (~50

More information

Future Glimpses: Two Next Generation Applications of SDN and NFV. Alan Carlton. VP, InterDigital Europe. June G World, London

Future Glimpses: Two Next Generation Applications of SDN and NFV. Alan Carlton. VP, InterDigital Europe. June G World, London Future Glimpses: Two Next Generation Applications of SDN and NFV Alan Carlton VP, InterDigital Europe June 29-30 5G World, London 2015 InterDigital, Inc. All Rights Reserved. 1 InterDigital Europe Open

More information

The Open-Source SDR LTE Platform for First Responders. Software Radio Systems

The Open-Source SDR LTE Platform for First Responders. Software Radio Systems The Open-Source SDR LTE Platform for First Responders Software Radio Systems www.softwareradiosystems.com www.github.com/srslte Outline SRS - Software Radio Systems NIST PSIAP and OpenFirst srslte The

More information

POWDER: Platform for Open Wireless Data-driven Experimental Research RENEW: Reconfigurable Ecosystem for Next-gen End-to-end Wireless

POWDER: Platform for Open Wireless Data-driven Experimental Research RENEW: Reconfigurable Ecosystem for Next-gen End-to-end Wireless POWDER: Platform for Open Wireless Data-driven Experimental Research RENEW: Reconfigurable Ecosystem for Next-gen End-to-end Wireless powderwireless.net renew.rice.edu 1 City scale living lab, for novices

More information

5G Cloud-RAN and Fronthaul 5G-KS 2018 (IITM Research Park)

5G Cloud-RAN and Fronthaul 5G-KS 2018 (IITM Research Park) 5G Cloud-RAN and Fronthaul 5G-KS 2018 (IITM Research Park) RaviKanth Pasumarthy, AVP Technology Vinesh Varghese, Director Technology 5G Use-cases & Requirements Ultra Reliable Low Latency Communication

More information

The 5G Infrastructure Public-Private Partnership

The 5G Infrastructure Public-Private Partnership The 5G Infrastructure Public-Private Partnership Francesco Mauro (TIM) From Research To Standardization (ETSI), Sophia Antipolis (France), 2016 May 11th 1 C-RAN and the Virtualization path toward The drivers

More information

Towards 5G: Advancements from IoT to mmwave Communcations. Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015

Towards 5G: Advancements from IoT to mmwave Communcations. Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015 Towards 5G: Advancements from IoT to mmwave Communcations Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015 5G requirements and challenges 1000x network capacity 10x higher data rate,

More information

xran and C-RAN Integration in M-CORD

xran and C-RAN Integration in M-CORD xran and C-RAN Integration in M-CORD Dr. Sassan Ahmadi Director of 5G Wireless Systems and Standards Xilinx Inc. November 8, 2017 Outline Cloud RAN Integration in M-CORD 4G to 5G Technology Evolution 3GPP

More information

5G Three UK s View. Prof Dr Erol Hepsaydir Head of RAN and Device Strategy & Architecture Three UK

5G Three UK s View. Prof Dr Erol Hepsaydir Head of RAN and Device Strategy & Architecture Three UK 5G Three UK s View Prof Dr Erol Hepsaydir Head of RAN and Device Strategy & Architecture Three UK Coverage Operational Performance Capacity Speed Spectrum Deployment Operations Technology Bandwidth Site

More information

NFV and SDN: The enablers for elastic networks

NFV and SDN: The enablers for elastic networks NFV and SDN: The enablers for elastic networks Kashif Mahmood, Next Generation Network Technology (NGNT) Group, Telenor Research, Norway UNIK Guest Lecture, 8 th May 2014 Outline Challenges What is coming

More information

Packet-based fronthaul - a critical enabler of 5G

Packet-based fronthaul - a critical enabler of 5G Packet-based fronthaul - a critical enabler of 5G Comcores a leading supplier of IP-solutions takes a significant step towards workable 5G with Radio over Ethernet/5G NR demonstrator Comcores Authors:

More information

View on 5G Architecture

View on 5G Architecture 5G PPP Architecture Working Group This document will be updated after a public consultation, pls download the final version after the EuCNC 2016 conference (July 1 st ) from the following link: https://5g-ppp.eu/white-papers/

More information

Summary of WP5 Integration and Validation Second Year. FP7 ICT Objective 1.1 The Network of the Future

Summary of WP5 Integration and Validation Second Year. FP7 ICT Objective 1.1 The Network of the Future Summary of WP5 Integration and Validation Second Year FP7 ICT Objective 1.1 The Network of the Future 1 Outline WP5 Outlook Testbed 1 Testbed 2 Testbed 3 Road map 2 WP5 Outlook Year 1 Year 2 Year 3 Testbeds

More information

RAN slicing as enabler for low latency services

RAN slicing as enabler for low latency services RAN slicing as enabler for low latency services Presented by A. Maeder, NOKIA Bell Labs Contributions by Z. Li, P. Rost, C. Sartori, A. Prasad, C. Mannweiler ITG 5.2.4 Fachgruppentreffen Dresden, June

More information

Advanced Concepts 5G

Advanced Concepts 5G Advanced Concepts 5G Background Applications & Requirements Radio Technology Candidates Networking Trends Status and Timeline Parts of the presentation are taken from material that has been provided by

More information

From virtualization, thru multivendor sharing to 5G RAN modularization. Mark Grayson Distinguished Engineer 7/8 November 2017

From virtualization, thru multivendor sharing to 5G RAN modularization. Mark Grayson Distinguished Engineer 7/8 November 2017 From virtualization, thru multivendor sharing to 5G RAN modularization Mark Grayson Distinguished Engineer 7/8 November 2017 Radio Network Evolution Hyper Dense Outdoor Network Coverage and capacity for

More information

The Living Network: Leading the Path to 5G. Robert Olesen Director, InterDigital Inc InterDigital, Inc. All rights reserved.

The Living Network: Leading the Path to 5G. Robert Olesen Director, InterDigital Inc InterDigital, Inc. All rights reserved. The Living Network: Leading the Path to 5G Robert Olesen Director, InterDigital Inc. 1 Outline: 5G Requirements Use cases 5G WiFi EdgeHaul : mmw Small Cell 2 5G Requirements Identifying Capabilities for

More information

5G Concept. IMT-2020 (5G) Promotion Group

5G Concept. IMT-2020 (5G) Promotion Group 5G Concept IMT-2020 (5G) Promotion Group 2015-03-10 5G has been a global R&D focus 1980s 1990s 2000s 2010s 2020s 1G 2G 3G 4G 5G? FDMA TDMA CDMA OFDMA Analog voice Digital voice Low-data-rate 2 ~ Tens of

More information

5G the next major wireless standard

5G the next major wireless standard 5G the next major wireless standard Klaus Doppler Director, Radio Communications Nokia Technologies, LABS DREAMS Seminar, Jan. 13, 2015 1 Nokia 2015 International activities on 5G Strong academic & government

More information

Questions about LAA deployment scenarios

Questions about LAA deployment scenarios Questions about LAA deployment scenarios Document IEEE 802.19-15-0060-00-0000 Submitted 2015-07-14 Source Roger B. Marks BaiCells r.b.marks@ieee.org +1-802-capable Abstract Purpose This document discusses

More information

IEEE 1914 NGFI (xhaul): efficient and scalable fronthaul transport for 5G

IEEE 1914 NGFI (xhaul): efficient and scalable fronthaul transport for 5G : efficient and scalable fronthaul transport for 5G Aleksandra Checko, PhD Editor of IEEE 1914.1/MTI Radiocomp BackNets 2017 In conjunction with IEEE VTC Fall 2017 Toronto, Canada September 24, 2017 Base

More information

King s Research Portal

King s Research Portal King s Research Portal DOI: 1.119/WCNC.217.792577 Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Mountaser, G., Lema Rosas,

More information

Dr. Evaldas Stankevičius, Regulatory and Security Expert.

Dr. Evaldas Stankevičius, Regulatory and Security Expert. 2018-08-23 Dr. Evaldas Stankevičius, Regulatory and Security Expert Email: evaldas.stankevicius@tele2.com 1G: purely analog system. 2G: voice and SMS. 3G: packet switching communication. 4G: enhanced mobile

More information

ITU Arab Forum on Future Networks: "Broadband Networks in the Era of App Economy", Tunis - Tunisia, Feb. 2017

ITU Arab Forum on Future Networks: Broadband Networks in the Era of App Economy, Tunis - Tunisia, Feb. 2017 On the ROAD to 5G Ines Jedidi Network Products, Ericsson Maghreb ITU Arab Forum on Future Networks: "Broadband Networks in the Era of App Economy", Tunis - Tunisia, 21-22 Feb. 2017 agenda Why 5G? What

More information

REQUEST FOR PROPOSAL 1. BACKGROUND

REQUEST FOR PROPOSAL 1. BACKGROUND REQUEST FOR PROPOSAL This is a Request for Proposal (RFP) for procurement of equipment for setting-up a cellular network at the IISc campus. Our requirements include enbs (2 nos), a gateway core, and multiple

More information

5G Small Cell Backhaul Networks using mmwave bands

5G Small Cell Backhaul Networks using mmwave bands 5G Small Cell Backhaul Networks using mmwave bands Andreas Kassler Karlstad University, Sweden 1 5G for Smart Cities 2 The 5G Vision Unified Connectivity Multi-Gigabits per second Extreme Datarates Software

More information

Network Vision: Preparing Telefónica for the next generation of services. Enrique Blanco Systems and Network Global Director

Network Vision: Preparing Telefónica for the next generation of services. Enrique Blanco Systems and Network Global Director Network Vision: Preparing Telefónica for the next generation of services Enrique Blanco Systems and Network Global Director 19.09.2017 Mobile Access Vision Increasing 4G coverage, features and network

More information

Towards RAN Slicing in 5G. Navid Nikaein Communication System Department, EURECOM

Towards RAN Slicing in 5G. Navid Nikaein Communication System Department, EURECOM Towards RAN Slicing in 5G Navid Nikaein Communication System Department, EURECOM 5GOAI Workshop, 25 November, 2016 Outline 5G will be a paradigm shift What is software-defined 5G network Network Slicing

More information

Virtualized 5G Air Interface Protocol Stack for Multi-Cell Coordination

Virtualized 5G Air Interface Protocol Stack for Multi-Cell Coordination Virtualized 5G Air Interface Protocol Stack for Multi-Cell Coordination Óscar Carrrasco, Salva Díez, Jordi Calabug Sistelbanda SA, Valencia, Spain Abstract This article proposes a novel virtualized air

More information

Enabling Technologies for Next Generation Wireless Systems

Enabling Technologies for Next Generation Wireless Systems Enabling Technologies for Next Generation Wireless Systems Dr. Amitava Ghosh Nokia Fellow Nokia Bell Labs 10 th March, 2016 1 Nokia 2015 Heterogeneous use cases diverse requirements >10 Gbps peak data

More information

Session 7: 5G networks and 3GPP Release 15

Session 7: 5G networks and 3GPP Release 15 Session 7: 5G networks and 3GPP Release 15 ITU Asia-Pacific Centre of Excellence Training On Traffic engineering and advanced wireless network planning 17-19 October 2018, Suva, Fiji Sami Tabbane 1 Objectives

More information

Draft /2/28 page 2 2 CONTENTS

Draft /2/28 page 2 2 CONTENTS Contents 1 Fronthauling for 5G and Beyond 3 1.1 RAN functional split options..................... 5 1.1.1 Splitting RAN air interface protocols............ 6 1.1.2 PDCP-RLC split.......................

More information

Bringing 5G into Reality

Bringing 5G into Reality Bringing 5G into Reality Dr. Wen Tong Huawei Fellow, CTO Huawei Wireless March 22 nd, 2016 www.huawei.com HUAWEI TECHNOLOGIES CO., LTD. Page 1 A Tip of Iceberg Paradigm for Connected People embb 3D Video,

More information

What is 5g? Next generation of wireless networks Will provide higher speeds, greater capacity, and lower latency Will be capable of supporting billions of connected devices and things Distributes intelligence

More information

Examining The C-RAN Business Case For Mobile Operators. RAN & Backhaul Networks, Berlin May 20, 2015

Examining The C-RAN Business Case For Mobile Operators. RAN & Backhaul Networks, Berlin May 20, 2015 Examining The C-RAN Business Case For Mobile Operators RAN & Backhaul Networks, Berlin May 20, 2015 Cloud RAN Defined Stage 1 Stage 2 Centralization Virtualization Distributed RAN Baseband processing in

More information

Latency, Cooperation, and Cloud in Radio Access Networks

Latency, Cooperation, and Cloud in Radio Access Networks Latency, Cooperation, and Cloud in Radio Access Networks Jury : Rapporteur: A. Duda Rapporteur: R. Tafazolli Rapporteur: L. Tassiulas * Examiner: R. Jantti Examiner: I. Moerman Examiner: T. Svensson* Examiner:

More information

Converged backhaul and fronthaul considerations. Jouni Korhonen Broadcom Ltd. 10/26-28/2016 IEEE TF

Converged backhaul and fronthaul considerations. Jouni Korhonen Broadcom Ltd. 10/26-28/2016 IEEE TF Converged backhaul and fronthaul considerations Jouni Korhonen Broadcom Ltd. 10/26-28/2016 IEEE 1914.1 TF Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards

More information

Multi-tenancy of network operators and edge cloud services using small cells

Multi-tenancy of network operators and edge cloud services using small cells Multi-tenancy of network operators and edge cloud services using small cells Emmanouil Kafetzakis, Ph.D. ORION Innovations P.C. mkafetz@orioninnovations.gr Infocom World 2017, 25-10-2017 Athens, Greece

More information

When ICN Meets C-RAN for HetNets: An SDN Approach C H E N C H E N Y A N G, Z H I Y O N G C H E N, B I N X I A, A N D J I A N G Z H O U W A N G

When ICN Meets C-RAN for HetNets: An SDN Approach C H E N C H E N Y A N G, Z H I Y O N G C H E N, B I N X I A, A N D J I A N G Z H O U W A N G When ICN Meets C-RAN for HetNets: An SDN Approach C H E N C H E N Y A N G, Z H I Y O N G C H E N, B I N X I A, A N D J I A N G Z H O U W A N G Motivation Mobile Internet and explosion of its applications,

More information

5G Techniques for Ultra Reliable Low Latency Communication. Dr. Janne Peisa Principal Researcher, Ericsson Research

5G Techniques for Ultra Reliable Low Latency Communication. Dr. Janne Peisa Principal Researcher, Ericsson Research 5G Techniques for Ultra Reliable Low Latency Communication Dr. Janne Peisa Principal Researcher, Ericsson Research 5G is use case driven Massive MTC Critical MTC LOGISTICS TRAFFIC SAFETY & CONTROL SMART

More information

System architecture and aspects of SESAME: Small cells coordination for Multi-tenancy and Edge services

System architecture and aspects of SESAME: Small cells coordination for Multi-tenancy and Edge services System architecture and aspects of SESAME: Small cells coordination for Multi-tenancy and Edge services Ioannis Giannoulakis, Ph.D. (NCSR Demokritos) giannoul@iit.demokritos.gr 2nd IEEE Conference on Network

More information

Opportunities and Challenges Driving C-RAN Forward Monday October 17th. 2016

Opportunities and Challenges Driving C-RAN Forward Monday October 17th. 2016 Opportunities and Challenges Driving C-RAN Forward Monday October 17th. 2016 Prepared by Sue Rudd Director Service Provider Analysis email: srudd@strategyanalytics.com Oct 17th.2016 Copyright 2016 Strategy

More information

GENI and ORBIT Experimental Infrastructure Projects

GENI and ORBIT Experimental Infrastructure Projects GENI and ORBIT Experimental Infrastructure Projects Ivan Seskar Rutgers, The State University of New Jersey www.winlab.rutgers.edu Contact: seskar (at) winlab (dot) rutgers (dot) edu GENI Projects Cluster

More information

5G in Reality. Mikael Höök, Director Radio Research Ericsson Research

5G in Reality. Mikael Höök, Director Radio Research Ericsson Research 5G in Reality Mikael Höök, Director Radio Research Ericsson Research FORECAST ~29 billion connected devices, 18 billion related to IoT 2018 2019 2020 2022 2021 ~550 million 5G subscriptions IoT devices

More information

Making 5G NR a reality

Making 5G NR a reality Making 5G NR a reality Silicon Valley 5G Summit Mountain View, CA October 19 th, 2017 Tingfang Ji Senior Director, Engineering Qualcomm Technologies, Inc. @qualcomm_tech NR Designing a unified, more capable

More information

Fronthaul architecture towards 5G

Fronthaul architecture towards 5G Fronthaul architecture towards 5G Multiplexing gains analysis Challenges/solutions for fronthaul network Aleksandra Checko, MTI 8/22-24/2016 In collaboration with: MTI Radiocomp: Andrijana Popovska Avramova,

More information

5G NR to high capacity and

5G NR to high capacity and July 11, 2018 @qualcomm Webinar How can CoMP extend 5G NR to high capacity and ultra-reliable communications? Dr. Durga Malladi SVP, Engineering & GM, 4G/5G Qualcomm Technologies, Inc. Enabler to the factory

More information

5G and Licensed/Unlicensed Convergence

5G and Licensed/Unlicensed Convergence 5G and Licensed/Unlicensed Convergence WBA Conference November 2016 Dave Wolter Wireless Trends Continued rapid growth of data demand IoT will drive growth in connected devices Wireless Everything Everywhere

More information

Front-Haul challenges for future radio access

Front-Haul challenges for future radio access ECOC2014 Sunday Workshop, WS5 Front-Haul challenges for future radio access Sep. 21 st, 2014 Shigeru Kuwano NTT Access Network Service Systems Laboratories, NTT Corporation kuwano.shigeru@lab.ntt.co.jp

More information

Laying the Foundation for 5G Cisco Knowledge Network. Tom Anderson Principal Engineer November 3, 2015

Laying the Foundation for 5G Cisco Knowledge Network. Tom Anderson Principal Engineer November 3, 2015 Laying the Foundation for 5G Cisco Knowledge Network Tom Anderson Principal Engineer November 3, 2015 Outline 5G Why is it needed? What is it? When is it? Review of 5G Technologies 5G RAN Evolution CRAN

More information

RANtoCoreTM. Delivering the most realistic test environments

RANtoCoreTM. Delivering the most realistic test environments RANtoCoreTM Delivering the most realistic test environments We can help propel your network to the next generation Ensuring a high quality, secure and consistent service The requirement for increased bandwidth,

More information

5G: from analysis to action

5G: from analysis to action GRUPPO TELECOM ITALIA 5G: from analysis to action Luigi Licciardi The road to 5G 2 5G will cover new use cases and requirements BroadBand access everywhere +50Mbps everywhere Seamless experience of connectivity

More information

5G E2E Slicing Technology Update

5G E2E Slicing Technology Update 5G E2E Slicing Technology Update Jianjun Wu Director, Future Arch. Lab, Huawei June 28 th, 2018 frequency Major Components of 5G Slicing EMBB time (( MEC MMTC 2 1 3 SDN 5G - UE URLLC other 5 5G air(s)

More information

5G in the Automotive Industry A Telecoms Manufacture's view Preben Mogensen, Nokia Networks Fellow & Professor at Aalborg University

5G in the Automotive Industry A Telecoms Manufacture's view Preben Mogensen, Nokia Networks Fellow & Professor at Aalborg University 5G for people and things Key to the programmable world i 5G in the Automotive Industry A Telecoms Manufacture's view Preben Mogensen, Nokia Networks Fellow & Professor at Aalborg University 1 Nokia Solutions

More information

NG Fronthaul Network Requirements and Architecture. Tony Tam Fujitsu Network Communications Peter K. Cho Actus Networks/HFR, Inc

NG Fronthaul Network Requirements and Architecture. Tony Tam Fujitsu Network Communications Peter K. Cho Actus Networks/HFR, Inc NG Fronthaul Network Requirements and Architecture Tony Tam Fujitsu Network Communications Peter K. Cho Actus Networks/HFR, Inc Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of

More information

Cloud-RAN in Support of URLLC

Cloud-RAN in Support of URLLC Cloud-RAN in Support of URLLC G. Mountaser, M. Condoluci, T. Mahmoodi, M. Dohler, Ian Mings Centre for Telecommunications Research, King s College London, UK British Telecom, Adastral Park, UK Abstract

More information

5G future networks: What? When? What for?... The view from 5G PPP

5G future networks: What? When? What for?... The view from 5G PPP 5G future networks: What? When? What for?... The view from 5G PPP Jean-Pierre Bienaimé Secretary General, 5G Infrastructure Association (5G-IA) Telecom ParisTech, 26 th September 2017 27/09/2017 1 5G PPP

More information

Sanjeev Athalye, Sr. Director, Product Management Qualcomm Technologies, Inc.

Sanjeev Athalye, Sr. Director, Product Management Qualcomm Technologies, Inc. Sanjeev Athalye, Sr. Director, Product Management Qualcomm Technologies, Inc. This presentation addresses potential use cases and views on characteristics of 5G technology and is not intended to reflect

More information

China Mobile s View on Next Generation Fronthaul Interface

China Mobile s View on Next Generation Fronthaul Interface China Mobile s View on Next Generation Fronthaul Interface 2 Challenges for future 5G networks Agility, openness, scalability, efficiency GSM/GPRS/ EDGE WiMax/WLAN TD- SCDMA TD- LTE So many issues for

More information

Network Automation. From 4G to 5G. Juan Carlos García López Global Director Technology and Architecture GCTIO, Telefonica. MWC 2018 Barcelona, Feb 27

Network Automation. From 4G to 5G. Juan Carlos García López Global Director Technology and Architecture GCTIO, Telefonica. MWC 2018 Barcelona, Feb 27 Network Automation From 4G to 5G Juan Carlos García López Global Director Technology and Architecture GCTIO, Telefonica MWC 2018 Barcelona, Feb 27 We choose it all Networks are increasingly complex 5G

More information

Service Vision. Ubiquitous Connectivity. Everything on Cloud. Immersive Experience. Telepresence. Giga-bit Data Rate. Massive Connectivity

Service Vision. Ubiquitous Connectivity. Everything on Cloud. Immersive Experience. Telepresence. Giga-bit Data Rate. Massive Connectivity Service Vision Everything on Cloud Immersive Experience Ubiquitous Connectivity Telepresence Giga-bit Data Rate Giga-bit Data Rate Massive Connectivity Giga-bit Data Rate Ultra Low Latency Ultra Low Latency

More information

Figure Potential 5G applications

Figure Potential 5G applications 6. 5G Key Concept 6.1 Key Concepts of 5G End-to-end (E2E) quality required by applications and/or users will be far more diversified in the 5G era than what we have seen in the preceding generations. For

More information

Flexible Ethernet Fronthaul. Philippos Assimakopoulos Communications Research Group, University of Kent, Canterbury, UK

Flexible Ethernet Fronthaul. Philippos Assimakopoulos Communications Research Group, University of Kent, Canterbury, UK Flexible Ethernet Fronthaul Philippos Assimakopoulos Communications Research Group, University of Kent, Canterbury, UK Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA

More information