! Naive n-way unicast does not scale. ! IP multicast to the rescue. ! Extends IP architecture for efficient multi-point delivery. !

Size: px
Start display at page:

Download "! Naive n-way unicast does not scale. ! IP multicast to the rescue. ! Extends IP architecture for efficient multi-point delivery. !"

Transcription

1 Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination ACM NOSSDAV 001 Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, John D. Kubiatowicz {shelleyz, ravenben, adj, randy, IP! Naive n-way unicast does not scale! IP multicast to the rescue! Extends IP architecture for efficient multi-point delivery! Packets travel on common parts of the network only once to reach receivers -> reducing bandwidth! Sender transmits packets only once for any number of receivers -> reducing server load! Problems! Absence of a good inter-domain multicast routing protocol! Only best-effort packet delivery! root, core, RP discovery remains difficult The Problem! Internet broadcast applications! E.g. Mars Polar Lander mission! Application demands! One-to-many communication! Fault-resilient delivery despite common faults! Large scale issues:! Efficient routing: minimize delivery delay! Packet duplication: minimize unnecessary b/w usage! Ease of management as a Higher-Level Service?! Application-level multicast! Offers multi-point delivery as an application-level service! Removes many of IP multicast deployment barriers! Maintains the simplicity of the underlying IP layer! Allows for application-specific adaptation to deal with heterogeneity! Delay and bandwidth penalty are low! Limitations! Do not address fault-resilient packet delivery! -way tradeoff: scalability, delay, bandwidth efficiency! Do not solve root discovery problem 1

2 Our Approach! View multicast as an application-level infrastructure service! How to construct efficient and robust spanning tree?! Tapestry (Zhao, Kubiatowicz, Joseph U.C. Berkeley)! Overlay location and unicast routing infrastructure! Locates nearest copy of replicated objects! Efficient and fault-resilient routing! Bayeux! group addressing! E.g. <MarsPolarLander, NASA>! root discovery via object location! forwarding algorithm! Tree maintenance algorithm Basic Tapestry Mesh Incremental suffix-based routing 05E FE 555E 09E 9FE FE E 7FE 1FE FE 9E 1 0FE 99E F990 Outline Use of Tapestry Mesh Randomization and Locality Location

3 Outline Tree Maintenance 05E FE 555E 09E 9FE TREE FE E 7FE 1FE TREE FE 9E 0FE TREE JOIN 99E 9990 F990 ing with Bayeux 05E FE 555E 09E 9FE FE E 7FE 1FE FE 9E 0FE 99E 9990 F990 Outline

4 Simulation Setup! Implemented Tapestry routing and Bayeux tree protocol as a packet-level simulator! Focus on delay and bandwidth metrics! Delay is measured in terms of network hops! Do not model the effects of cross traffic or queuing delays! Four topologies: AS, MBone, GT-ITM, TIERS Performance Analysis - PLS! Physical Link Stress: measure of effectiveness in distributing network load across physical links PLS = # of identical copies of a packet carried by a physical link! With Unicast, two links carry 09 copies! With Bayeux, worse link carry 8 copies Performance Analysis - RDP! Relative Delay Penalty: measure of overlay routing overhead # physical hops traveled via overlay RDP = # physical hops traveled via shortest IP route 90% < Outline

5 Scalability Enhancements Tree Partitioning JOIN FE 05E 555E 09E 9FE JOIN FE E 7FE 1FE FE 9E JOIN 0FE 99E 9990 F990 Outline Scalability Enhancements Tree Partitioning! Eliminates JOIN/LEAVE implosion at root (R)! s will join a nearby multicast root via the Tapestry location service Can We Use Tapestry s Redundancy for Adaptive Fault-Resilience?! Yes!! IP routes via Border Gateway Protocol (BGP)! Convergence time ~ O(minutes)! Fault-detection/reroute occur on macro timescale! Routing decisions do not consider path performance! Tapestry fault-resilient packet delivery! Explicit redundant paths! History window of UDP beacons gauges link quality! Reroute to alternate paths when appropriate 5

6 Path Redundancy! Each entry in the Tapestry neighbor map maintains secondary neighbors in addition to the closest primary neighbor A D C B E Shows maximum connectivity compared to IP routing as link failures increase A B C D E IP Tapestry No path exists to dest. First Reachable Link Selection (FRLS) A D C B E Shows reachability using FRLS versus IP routing as link failures increase! Fault-resiliency approaches the maximum resiliency provided by Tapestry s routing redundancy First Reachable Link Selection (FRLS) 9FE 1FE 9E " Periodic UDP packets to gauge link condition " Packets routed to shortest good link " Relevant membership state forwarded to backup routes 0FE Related Work! IP! EXPRESS/SSM, REUNITE! Application-Level! Narada, Yallcast, Scattercast, Overcast! Wide-area Location Services! Content-Addressable Networks (CAN), ACIRI/UCB! Chord, MIT/UCB! Pastry, Microsoft Research! Tapestry: explicit correlation between overlay distance and underlying network distance 6

7 Conclusion! Advantages of Bayeux! Resilient to failures in routers and network links! Efficient support for large-scale data dissemination! Transparent discovery of multicast roots! Service model simple to implement and manage! Future work! Study the performance and tradeoffs in alternative fault-resilient delivery protocols! Deployment on real networks and applications Tapestry Neighbor Map Example: Hexadecimal base, 16 namespace F90 Neighbor map for node x090 x190 x90 x90 x590 x690 xf90 xx00 xx10 xx0 xx0 xx0 xx50 xx60 xxf0 xxx1 xxx xxx xxx xxx5 xxx6 xxxf 1 Routing levels Performance Analysis - PLS Backup slides! Physical Link Stress, measure of effectiveness in distributing network load across physical links PLS = # of identical copies of a packet carried by a physical link 7

8 Fault-Resilient Packet Delivery Protocols Hierarchical Path Convergence 1. First Reachable Link Selection. Explicit Knowledge Path Selection. Proactive Duplication. Application-specific Duplication 5. Prediction-based Selective Duplication! Alternate path converge quickly to primary path! Packet duplication protocols can have low b/w overhead with duplicate suppression Hierarchical Path Convergence Duplicate Suppression 9FE 1FE! Protocols,, 5 actively duplicate packets! Will duplicates converge & allow duplicate suppression?! Alternate path convergence! # of candidates for next hop decreases quickly! Primary route of an alternate path is on the original primary path with high probability! Will not flood network with duplicate packets 9E 8

Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination

Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination By Shelley Zhuang,Ben Zhao,Anthony Joseph, Randy Katz,John Kubiatowicz Introduction Multimedia Streaming typically involves

More information

Challenges in the Wide-area. Tapestry: Decentralized Routing and Location. Key: Location and Routing. Driving Applications

Challenges in the Wide-area. Tapestry: Decentralized Routing and Location. Key: Location and Routing. Driving Applications Challenges in the Wide-area Tapestry: Decentralized Routing and Location SPAM Summer 00 Ben Y. Zhao CS Division, U. C. Berkeley! Trends: Exponential growth in CPU, b/w, storage Network expanding in reach

More information

Brocade: Landmark Routing on Peer to Peer Networks. Ling Huang, Ben Y. Zhao, Yitao Duan, Anthony Joseph, John Kubiatowicz

Brocade: Landmark Routing on Peer to Peer Networks. Ling Huang, Ben Y. Zhao, Yitao Duan, Anthony Joseph, John Kubiatowicz Brocade: Landmark Routing on Peer to Peer Networks Ling Huang, Ben Y. Zhao, Yitao Duan, Anthony Joseph, John Kubiatowicz State of the Art Routing High dimensionality and coordinate-based P2P routing Decentralized

More information

Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination

Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, John D. Kubiatowicz Computer Science Division University

More information

Challenges in the Wide-area. Tapestry: Decentralized Routing and Location. Global Computation Model. Cluster-based Applications

Challenges in the Wide-area. Tapestry: Decentralized Routing and Location. Global Computation Model. Cluster-based Applications Challenges in the Wide-area Tapestry: Decentralized Routing and Location System Seminar S 0 Ben Y. Zhao CS Division, U. C. Berkeley Trends: Exponential growth in CPU, b/w, storage Network expanding in

More information

Overlay Networks for Multimedia Contents Distribution

Overlay Networks for Multimedia Contents Distribution Overlay Networks for Multimedia Contents Distribution Vittorio Palmisano vpalmisano@gmail.com 26 gennaio 2007 Outline 1 Mesh-based Multicast Networks 2 Tree-based Multicast Networks Overcast (Cisco, 2000)

More information

Exploiting Route Redundancy via Structured Peer to Peer Overlays

Exploiting Route Redundancy via Structured Peer to Peer Overlays Exploiting Route Redundancy ia Structured Peer to Peer Oerlays Ben Y. Zhao, Ling Huang, Jeremy Stribling, Anthony D. Joseph, and John D. Kubiatowicz Uniersity of California, Berkeley Challenges Facing

More information

Overlay Multicast/Broadcast

Overlay Multicast/Broadcast Overlay Multicast/Broadcast Broadcast/Multicast Introduction Structured Overlays Application Layer Multicast Flooding: CAN & Prefix Flood. Unstructured Overlays Centralised Distributed Tree-based: Scribe/

More information

Lecture 9. Network Layer (cont d) Network Layer 1-1

Lecture 9. Network Layer (cont d) Network Layer 1-1 Lecture 9 Network Layer (cont d) Network Layer 1-1 Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest

More information

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals What is Multicasting? Multicasting Fundamentals Unicast transmission transmitting a packet to one receiver point-to-point transmission used by most applications today Multicast transmission transmitting

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer V Dmitri Loguinov Texas A&M University April 17, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross Chapter 4:

More information

Lecture 4. The Network Layer (cont d)

Lecture 4. The Network Layer (cont d) Lecture 4 The Network Layer (cont d) Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest Path First Protocols

More information

Brocade: Landmark Routing on Overlay Networks

Brocade: Landmark Routing on Overlay Networks Abstract Brocade: Landmark Routing on Overlay Networks CS262A Fall 2001 Yitao Duan, Ling Huang University of California, Berkeley duan@cs.berkeley.edu, hlion@newton.berkeley.edu Peer-to-peer networks offer

More information

A DNS-aided Application Layer Multicast Protocol

A DNS-aided Application Layer Multicast Protocol A Application Layer Multicast Protocol Sze-Horng Lee, Chun-Chuan Yang, and Hsiu-Lun Hsu Sze-Horng Lee: Department of Computer Science & Information Engineering National Chi Nan University, Puli, Taiwan,

More information

Application Layer Multicast For Efficient Peer-to-Peer Applications

Application Layer Multicast For Efficient Peer-to-Peer Applications Application Layer Multicast For Efficient Peer-to-Peer Applications Adam Wierzbicki 1 e-mail: adamw@icm.edu.pl Robert Szczepaniak 1 Marcin Buszka 1 1 Polish-Japanese Institute of Information Technology

More information

Multicast Communications

Multicast Communications Multicast Communications Multicast communications refers to one-to-many or many-tomany communications. Unicast Broadcast Multicast Dragkedja IP Multicasting refers to the implementation of multicast communication

More information

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Switching 2 Page 1 Objectives MAC address table Describe the features

More information

Overlay and P2P Networks. Introduction and unstructured networks. Prof. Sasu Tarkoma

Overlay and P2P Networks. Introduction and unstructured networks. Prof. Sasu Tarkoma Overlay and P2P Networks Introduction and unstructured networks Prof. Sasu Tarkoma 14.1.2013 Contents Overlay networks and intro to networking Unstructured networks Overlay Networks An overlay network

More information

Arvind Krishnamurthy Fall 2003

Arvind Krishnamurthy Fall 2003 Overlay Networks Arvind Krishnamurthy Fall 003 Internet Routing Internet routing is inefficient: Does not always pick the lowest latency paths Does not always pick paths with low drop rates Experimental

More information

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Original slides by Cisco Press & Priscilla Oppenheimer Selection Criteria for Switching and Routing Protocols Network traffic

More information

Hybrid Overlay Structure Based on Random Walks

Hybrid Overlay Structure Based on Random Walks Hybrid Overlay Structure Based on Random Walks Ruixiong Tian 1,, Yongqiang Xiong 2, Qian Zhang 2,BoLi 3, Ben Y. Zhao 4, and Xing Li 1 1 Department of Electronic Engineering, Tsinghua University 2 Microsoft

More information

Data Replication under Latency Constraints Siu Kee Kate Ho

Data Replication under Latency Constraints Siu Kee Kate Ho Data Replication under Latency Constraints Siu Kee Kate Ho (siho@cs.brown.edu) Abstract To maintain good quality of service, data providers have to satisfy requests within some specified amount of time.

More information

Early Measurements of a Cluster-based Architecture for P2P Systems

Early Measurements of a Cluster-based Architecture for P2P Systems Early Measurements of a Cluster-based Architecture for P2P Systems Balachander Krishnamurthy, Jia Wang, Yinglian Xie I. INTRODUCTION Peer-to-peer applications such as Napster [4], Freenet [1], and Gnutella

More information

IP Multicast. Overview. Casts. Tarik Čičić University of Oslo December 2001

IP Multicast. Overview. Casts. Tarik Čičić University of Oslo December 2001 IP Multicast Tarik Čičić University of Oslo December 00 Overview One-to-many communication, why and how Algorithmic approach (IP) multicast protocols: host-router intra-domain (router-router) inter-domain

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

IP Multicast Technology Overview

IP Multicast Technology Overview IP multicast is a bandwidth-conserving technology that reduces traffic by delivering a single stream of information simultaneously to potentially thousands of businesses and homes. Applications that take

More information

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations.

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations. Goals CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University of California, Berkeley

More information

Survey of ALM, OM, Hybrid Technologies

Survey of ALM, OM, Hybrid Technologies Survey of ALM, OM, Hybrid Technologies John Buford Panasonic Princeton Laboratory July 13, 2006 1 Topics Problem statement Terminology ALM OM Hybrid Summary of ALM and OM Next steps 2 Problem Statement

More information

Multicast Quick Start Configuration Guide

Multicast Quick Start Configuration Guide Multicast Quick Start Configuration Guide Document ID: 9356 Contents Introduction Prerequisites Requirements Components Used Conventions Dense Mode Sparse Mode with one RP Sparse Mode with Multiple RPs

More information

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals.

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals. Overlay Networks: Motivations CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University

More information

Application Layer Multicast with Proactive Route Maintenance over Redundant Overlay Trees

Application Layer Multicast with Proactive Route Maintenance over Redundant Overlay Trees 56893792 Application Layer Multicast with Proactive Route Maintenance over Redundant Overlay Trees Yohei Kunichika, Jiro Katto and Sakae Okubo Department of Computer Science, Waseda University {yohei,

More information

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions Tuomo Karhapää tuomo.karhapaa@otaverkko.fi Otaverkko Oy Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

More information

ITEC310 Computer Networks II

ITEC310 Computer Networks II ITEC310 Computer Networks II Chapter 22 Network Layer:, and Routing Department of Information Technology Eastern Mediterranean University Objectives 2/131 After completing this chapter you should be able

More information

IP Multicast Technology Overview

IP Multicast Technology Overview IP multicast is a bandwidth-conserving technology that reduces traffic by delivering a single stream of information simultaneously to potentially thousands of businesses and homes. Applications that take

More information

Proactive Route Maintenance and Overhead Reduction for Application Layer Multicast

Proactive Route Maintenance and Overhead Reduction for Application Layer Multicast Proactive Route Maintenance and Overhead Reduction for Application Layer Multicast Tetsuya Kusumoto, Yohei Kunichika, Jiro Katto and Sakae Okubo Graduated school of Science and Engineering, Waseda University

More information

Virtual Multi-homing: On the Feasibility of Combining Overlay Routing with BGP Routing

Virtual Multi-homing: On the Feasibility of Combining Overlay Routing with BGP Routing Virtual Multi-homing: On the Feasibility of Combining Overlay Routing with BGP Routing Zhi Li, Prasant Mohapatra, and Chen-Nee Chuah University of California, Davis, CA 95616, USA {lizhi, prasant}@cs.ucdavis.edu,

More information

Peer-to-Peer Overlay Multicast for Scalable Audiovisual Services over Converging Wired and Wireless Networks

Peer-to-Peer Overlay Multicast for Scalable Audiovisual Services over Converging Wired and Wireless Networks Peer-to-Peer Overlay Multicast for Scalable Audiovisual Services over Converging Wired and Wireless Networks Ahmed Mehaoua 1, Li Fang 1, George Kormentzas 2, and Dominique Seret 1 1 University Paris Descartes

More information

IP Multicast. What is multicast?

IP Multicast. What is multicast? IP Multicast 1 What is multicast? IP(v4) allows a host to send packets to a single host (unicast), or to all hosts (broadcast). Multicast allows a host to send packets to a subset of all host called a

More information

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University Daniel Zappala CS 460 Computer Networking Brigham Young University 2/20 Scaling Routing for the Internet scale 200 million destinations - can t store all destinations or all prefixes in routing tables

More information

EE122: Multicast. Kevin Lai October 7, 2002

EE122: Multicast. Kevin Lai October 7, 2002 EE122: Multicast Kevin Lai October 7, 2002 Internet Radio www.digitallyimported.com (techno station) - sends out 128Kb/s MP3 music streams - peak usage ~9000 simultaneous streams only 5 unique streams

More information

Rendezvous Point Engineering

Rendezvous Point Engineering Rendezvous Point Engineering Last updated: November 2008 Introduction A Rendezvous Point (RP) is a router in a multicast network domain that acts as a shared root for a multicast shared tree. Any number

More information

EE122: Multicast. Internet Radio. Multicast Service Model 1. Motivation

EE122: Multicast. Internet Radio. Multicast Service Model 1. Motivation Internet Radio EE122: Multicast Kevin Lai October 7, 2002 wwwdigitallyimportedcom (techno station) - sends out 128Kb/s MP music streams - peak usage ~9000 simultaneous streams only 5 unique streams (trance,

More information

What is the difference between unicast and multicast? (P# 114)

What is the difference between unicast and multicast? (P# 114) 1 FINAL TERM FALL2011 (eagle_eye) CS610 current final term subjective all solved data by eagle_eye MY paper of CS610 COPUTER NETWORKS There were 30 MCQs Question no. 31 (Marks2) Find the class in 00000001.001011.1001.111

More information

Path Optimization in Stream-Based Overlay Networks

Path Optimization in Stream-Based Overlay Networks Path Optimization in Stream-Based Overlay Networks Peter Pietzuch, prp@eecs.harvard.edu Jeff Shneidman, Jonathan Ledlie, Mema Roussopoulos, Margo Seltzer, Matt Welsh Systems Research Group Harvard University

More information

Contents. Overview Multicast = Send to a group of hosts. Overview. Overview. Implementation Issues. Motivation: ISPs charge by bandwidth

Contents. Overview Multicast = Send to a group of hosts. Overview. Overview. Implementation Issues. Motivation: ISPs charge by bandwidth EECS Contents Motivation Overview Implementation Issues Ethernet Multicast IGMP Routing Approaches Reliability Application Layer Multicast Summary Motivation: ISPs charge by bandwidth Broadcast Center

More information

INF5071 Performance in distributed systems: Distribution Part III

INF5071 Performance in distributed systems: Distribution Part III INF5071 Performance in distributed systems: Distribution Part III 5 November 2010 Client-Server Traditional distributed computing Successful architecture, and will continue to be so (adding proxy servers)

More information

Simultaneous Insertions in Tapestry

Simultaneous Insertions in Tapestry Simultaneous Insertions in Tapestry Kris Hildrum, UC Berkeley hildrum@cs.berkeley.edu Joint work with John Kubiatowicz, Satish Rao, and Ben Y. Zhao This is going to be different Please stop me if I m confusing.

More information

Routing protocols in WSN

Routing protocols in WSN Routing protocols in WSN 1.1 WSN Routing Scheme Data collected by sensor nodes in a WSN is typically propagated toward a base station (gateway) that links the WSN with other networks where the data can

More information

Chapter 4: outline. Network Layer 4-1

Chapter 4: outline. Network Layer 4-1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link

More information

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting Outline Routing Fundamentals of Computer Networks Guevara Noubir Introduction Broadcasting and Multicasting Shortest Path Unicast Routing Link Weights and Stability F2003, CSG150 Fundamentals of Computer

More information

Distributed Core Multicast (DCM): a multicast routing protocol for many groups with few receivers

Distributed Core Multicast (DCM): a multicast routing protocol for many groups with few receivers Distributed Core Multicast (DCM): a multicast routing protocol for many groups with few receivers Ljubica Blazević Jean-Yves Le Boudec Institute for computer Communications and Applications (ICA) Swiss

More information

Part I. Wireless Communication

Part I. Wireless Communication 1 Part I. Wireless Communication 1.5 Topologies of cellular and ad-hoc networks 2 Introduction Cellular telephony has forever changed the way people communicate with one another. Cellular networks enable

More information

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services:

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services: NET 331 Computer Networks Lecture 12 Internet Routing Protocols Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and Ross, (c) Pearson Education

More information

Internet2 Multicast Workshop

Internet2 Multicast Workshop Internet2 Multicast Workshop University of British Columbia Vancouver, BC May, 2004 Acknowledgements Greg Shepherd Beau Williamson Marshall Eubanks Bill Nickless Caren Litvanyi Patrick Dorn Leonard Giuliano

More information

Broadcast and Multicast Routing

Broadcast and Multicast Routing Broadcast and Multicast Routing Daniel Zappala CS 460 Computer Networking Brigham Young University Group Communication 2/34 How can the Internet provide efficient group communication? send the same copy

More information

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 Lecture 6: Overlay Networks CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 1 Overlay networks: Motivations Protocol changes in the network happen very slowly Why? Internet is shared

More information

Ossification of the Internet

Ossification of the Internet Ossification of the Internet The Internet evolved as an experimental packet-switched network Today, many aspects appear to be set in stone - Witness difficulty in getting IP multicast deployed - Major

More information

Decentralized Object Location In Dynamic Peer-to-Peer Distributed Systems

Decentralized Object Location In Dynamic Peer-to-Peer Distributed Systems Decentralized Object Location In Dynamic Peer-to-Peer Distributed Systems George Fletcher Project 3, B649, Dr. Plale July 16, 2003 1 Introduction One of the key requirements for global level scalability

More information

Course Routing Classification Properties Routing Protocols 1/39

Course Routing Classification Properties Routing Protocols 1/39 Course 8 3. Routing Classification Properties Routing Protocols 1/39 Routing Algorithms Types Static versus dynamic Single-path versus multipath Flat versus hierarchical Host-intelligent versus router-intelligent

More information

Internet Indirection Infrastructure (i3) Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Sonesh Surana. UC Berkeley SIGCOMM 2002

Internet Indirection Infrastructure (i3) Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Sonesh Surana. UC Berkeley SIGCOMM 2002 Internet Indirection Infrastructure (i3) Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Sonesh Surana UC Berkeley SIGCOMM 2002 Motivations Today s Internet is built around a unicast pointto-point

More information

Distributed Core Multicast (DCM): a multicast routing protocol for many groups with few receivers

Distributed Core Multicast (DCM): a multicast routing protocol for many groups with few receivers Distributed Core Multicast (DCM): a multicast routing protocol for many groups with few receivers Ljubica Blazević Jean-Yves Le Boudec Institute for computer Communications and Applications (ICA) Swiss

More information

Multicast EECS 122: Lecture 16

Multicast EECS 122: Lecture 16 Multicast EECS 1: Lecture 16 Department of Electrical Engineering and Computer Sciences University of California Berkeley Broadcasting to Groups Many applications are not one-one Broadcast Group collaboration

More information

Scalable Application Layer Multicast

Scalable Application Layer Multicast Scalable Application Layer Multicast Suman Banerjee Bobby Bhattacharjee Christopher Kommareddy http://www.cs.umd.edu/projects/nice Group Communication A C A C 1 2 1 2 B D B D Network-layer Multicast Replication

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [P2P SYSTEMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Byzantine failures vs malicious nodes

More information

Internet Indirection Infrastructure

Internet Indirection Infrastructure Motivations Internet Indirection Infrastructure Modified version of Ion Stoica s talk at ODU Nov 14, 05 Today s Internet is built around a unicast point-to-point communication abstraction: Send packet

More information

Scribe: A Large-Scale and Decentralized Application-Level Multicast Infrastructure

Scribe: A Large-Scale and Decentralized Application-Level Multicast Infrastructure IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002 1489 Scribe: A Large-Scale and Decentralized Application-Level Multicast Infrastructure Miguel Castro, Peter Druschel, Anne-Marie

More information

Multicast Communications. Tarik Čičić, 4. March. 2016

Multicast Communications. Tarik Čičić, 4. March. 2016 Multicast Communications Tarik Čičić, 4. March. 06 Overview One-to-many communication, why and how Algorithmic approach: Steiner trees Practical algorithms Multicast tree types Basic concepts in multicast

More information

A Contemporary Study of Application Layer Multicast Protocols in aid of Effective Communication

A Contemporary Study of Application Layer Multicast Protocols in aid of Effective Communication A Contemporary Study of Application Layer Multicast Protocols in aid of Effective Communication M. Anitha #1, P. Yogesh *2 # Department of Computer Science and Engineering, * Department of Information

More information

INF5070 media storage and distribution systems. to-peer Systems 10/

INF5070 media storage and distribution systems. to-peer Systems 10/ INF5070 Media Storage and Distribution Systems: Peer-to to-peer Systems 10/11 2003 Client-Server! Traditional distributed computing! Successful architecture, and will continue to be so (adding proxy servers)!

More information

Two challenges for building large self-organizing overlay networks

Two challenges for building large self-organizing overlay networks Two challenges for building large selforganizing overlay networks Jorg Liebeherr University of Virginia Two issues in multicast overlay networks 1. Why do we keep on proposing overlay networks for multicast?

More information

Evaluation and Comparison of Mvring and Tree Based Application Layer Multicast on Structured Peer-To-Peer Overlays

Evaluation and Comparison of Mvring and Tree Based Application Layer Multicast on Structured Peer-To-Peer Overlays Journal of Computer Science (): xx-xx, ISS 49-66 Science Publications Evaluation and Comparison of Mvring and Tree Based Application Layer Multicast on Structured Peer-To-Peer Overlays Surya Bahadur Kathayat,

More information

A Distributed Codec Placement Algorithm for Network-Embedded FEC

A Distributed Codec Placement Algorithm for Network-Embedded FEC A Distributed Codec Placement Algorithm for Network-Embedded FEC Mingquan Wu and Hayder Radha Department of Electrical and Computer Engineering Michigan State University East Lansing, MI 48823 {wumingqu,

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

Fairness Example: high priority for nearby stations Optimality Efficiency overhead

Fairness Example: high priority for nearby stations Optimality Efficiency overhead Routing Requirements: Correctness Simplicity Robustness Under localized failures and overloads Stability React too slow or too fast Fairness Example: high priority for nearby stations Optimality Efficiency

More information

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks Unicast Routing in Mobile Ad Hoc Networks 1 Routing problem 2 Responsibility of a routing protocol Determining an optimal way to find optimal routes Determining a feasible path to a destination based on

More information

Internetworking. Problem: There is more than one network (heterogeneity & scale)

Internetworking. Problem: There is more than one network (heterogeneity & scale) Internetworking Problem: There is more than one network (heterogeneity & scale) Hongwei Zhang http://www.cs.wayne.edu/~hzhang Internetworking: Internet Protocol (IP) Routing and scalability Group Communication

More information

Lecture 4: Intradomain Routing. CS 598: Advanced Internetworking Matthew Caesar February 1, 2011

Lecture 4: Intradomain Routing. CS 598: Advanced Internetworking Matthew Caesar February 1, 2011 Lecture 4: Intradomain Routing CS 598: Advanced Internetworking Matthew Caesar February 1, 011 1 Robert. How can routers find paths? Robert s local DNS server 10.1.8.7 A 10.1.0.0/16 10.1.0.1 Routing Table

More information

Configuring a Rendezvous Point

Configuring a Rendezvous Point Version History Version Number Date Notes 1 03/15/2002 This document was created. The purpose of this document is to outline four recommended methods for configuring a rendezvous point (RP) in a Protocol

More information

Many-to-Many Communications in HyperCast

Many-to-Many Communications in HyperCast Many-to-Many Communications in HyperCast Jorg Liebeherr University of Virginia Jörg Liebeherr, 2001 HyperCast Project HyperCast is a set of protocols for large-scale overlay multicasting and peer-to-peer

More information

Multicast Technology White Paper

Multicast Technology White Paper Multicast Technology White Paper Keywords: Multicast, IGMP, IGMP Snooping, PIM, MBGP, MSDP, and SSM Mapping Abstract: The multicast technology implements high-efficiency point-to-multipoint data transmission

More information

Multicast as an ISP service

Multicast as an ISP service Multicast as an ISP service Lecture slides for S-38.3192 15.2.2007 Mika Ilvesmäki Networking laboratory Goals of this lecture After this lecture you will be able to Give an overall technical view of multicast

More information

Overlay Networks. Behnam Momeni Computer Engineering Department Sharif University of Technology

Overlay Networks. Behnam Momeni Computer Engineering Department Sharif University of Technology CE443 Computer Networks Overlay Networks Behnam Momeni Computer Engineering Department Sharif University of Technology Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer

More information

Configuring Bidirectional PIM

Configuring Bidirectional PIM Configuring Bidirectional PIM This chapter describes how to configure the Bidirectional PIM (bidir-pim) feature. Bidir-PIM is a variant of the Protocol Independent Multicast (PIM) suite of routing protocols

More information

Routing in the Internet

Routing in the Internet Routing in the Internet Daniel Zappala CS 460 Computer Networking Brigham Young University Scaling Routing for the Internet 2/29 scale 200 million destinations - can t store all destinations or all prefixes

More information

An Evaluation of Three Application-Layer Multicast Protocols

An Evaluation of Three Application-Layer Multicast Protocols An Evaluation of Three Application-Layer Multicast Protocols Carl Livadas Laboratory for Computer Science, MIT clivadas@lcs.mit.edu September 25, 2002 Abstract In this paper, we present and evaluate three

More information

THE original Internet architecture was designed to provide

THE original Internet architecture was designed to provide IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 2, APRIL 2004 205 Internet Indirection Infrastructure Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Fellow, IEEE, and Sonesh Surana Abstract

More information

Mobile Communications. Ad-hoc and Mesh Networks

Mobile Communications. Ad-hoc and Mesh Networks Ad-hoc+mesh-net 1 Mobile Communications Ad-hoc and Mesh Networks Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto Ad-hoc+mesh-net 2 What is an ad-hoc network? What are differences between

More information

OSPF Protocol Overview on page 187. OSPF Standards on page 188. OSPF Area Terminology on page 188. OSPF Routing Algorithm on page 190

OSPF Protocol Overview on page 187. OSPF Standards on page 188. OSPF Area Terminology on page 188. OSPF Routing Algorithm on page 190 Chapter 17 OSPF Protocol Overview The Open Shortest Path First (OSPF) protocol is an interior gateway protocol (IGP) that routes packets within a single autonomous system (AS). OSPF uses link-state information

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms

More information

QoS Enabled Multicast for Structured P2P Networks

QoS Enabled Multicast for Structured P2P Networks QoS Enabled Multicast for Structured P2P Networks Marc Brogle, Dragan Milic and Torsten Braun Computer Networks and Distributed Systems Institute of Computer Science and Applied Mathematics University

More information

M&Ms: CS Freshmen Experience Networks. Department of Computer Science The Johns Hopkins University. Yair Amir Spring 2017 / Week 3 1.

M&Ms: CS Freshmen Experience Networks. Department of Computer Science The Johns Hopkins University. Yair Amir Spring 2017 / Week 3 1. M&Ms: CS Freshmen Experience 600.105 Networks Department of Computer Science The Johns Hopkins University 1 Networks Reading: https://en.wikipedia.org/wiki/history_of_the_internet https://en.wikipedia.org/wiki/routing

More information

Path-aware Overlay Multicast

Path-aware Overlay Multicast Path-aware Overlay Multicast Minseok Kwon and Sonia Fahmy Department of Computer Sciences, Purdue University 250 N. University St. West Lafayette, IN 47907 2066, USA Tel: +1 (765) 494-6183, Fax: +1 (765)

More information

Announcements. EECS 122: Introduction to Computer Networks Multicast and Overlay Networks. Motivational Example: Streaming Media

Announcements. EECS 122: Introduction to Computer Networks Multicast and Overlay Networks. Motivational Example: Streaming Media Announcements EEC : Introduction to Computer Networks Multicast and Overlay Networks Ion toica (and Brighten Godfrey) TAs: Lucian Popa, David Zats and Ganesh Ananthanarayanan http://inst.eecs.berkeley.edu/~ee/

More information

CS 268: IP Multicast Routing

CS 268: IP Multicast Routing Motivation CS 268: IP Multicast Routing Ion Stoica April 8, 2003 Many applications requires one-to-many communication - E.g., video/audio conferencing, news dissemination, file updates, etc. Using unicast

More information

Peer-to-Peer Streaming Systems. Behzad Akbari

Peer-to-Peer Streaming Systems. Behzad Akbari Peer-to-Peer Streaming Systems Behzad Akbari 1 Outline Introduction Scaleable Streaming Approaches Application Layer Multicast Content Distribution Networks Peer-to-Peer Streaming Metrics Current Issues

More information

Building Low Delay Application Layer Multicast Trees

Building Low Delay Application Layer Multicast Trees Building Low Delay Application Layer Multicast Trees Su-Wei, Tan Gill Waters Computing Laboratory, University of Kent Email: {swt3,a.g.waters}@kent.ac.uk Abstract Application Layer Multicast (ALM) enables

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.15 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

A Survey of Peer-to-Peer Content Distribution Technologies

A Survey of Peer-to-Peer Content Distribution Technologies A Survey of Peer-to-Peer Content Distribution Technologies Stephanos Androutsellis-Theotokis and Diomidis Spinellis ACM Computing Surveys, December 2004 Presenter: Seung-hwan Baek Ja-eun Choi Outline Overview

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer IV Dmitri Loguinov Texas A&M University April 12, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information