1. INTRODUCTION. Saravanan.A 1 and Dr.Sunitha Abburu 2

Size: px
Start display at page:

Download "1. INTRODUCTION. Saravanan.A 1 and Dr.Sunitha Abburu 2"

Transcription

1 365 Computing Conditional Intermeeting Time in Conditional Shortest Path Routing Saravanan.A 1 and Dr.Sunitha Abburu 2 1 Adhiyamaan College of Engineering, Department of Computer Application, Hosur 2 Professor and Director, Adhiyamaan College of Engineering, Department of Computer Application, Hosur ABSTRACT Delay tolerant networks are characterized by the sporadic connectivity between their nodes. The Sporadic connectivity leads to lack of stable end-to-end paths from source to destination. Since the future node connections are mostly unknown in these networks, opportunistic forwarding is used to deliver messages. In Intermeeting time, to making effective forwarding decisions using only the network characteristics (i.e. average intermeeting time between nodes) but contact history extracted from previous node is a challenging problem. In this paper, we introduce a new method called conditional intermeeting time, which computes the average intermeeting time between two nodes relative to a meeting with a third node using only the local knowledge of the past contacts. Advantage of using conditional intermeeting time is time efficiency. Experimental results are discussed at the end. Finally conclusion and future work discussed at the end. Keywords: Intermeeting Time, Conditional Intermeeting Time, Shortest Path Routing, Roller net Traces, Cambridge traces. 1. INTRODUCTION Delay-tolerant networking (DTN) is an approach to computer network architecture that seeks to address the technical issues in heterogeneous networks that may lack continuous network connectivity. Routing in delay tolerant networks (DTN) is a challenging problem because at any given time instance, the probability that there is an end-to-end path from a source to a destination is low. Since the routing algorithms for conventional networks assume that the links between nodes are stable most of the time and do not fail frequently, they do not generally work in DTN s. Therefore, the routing problem is still an active research area in DTN s. In this paper introducing concept which is conditional intermeeting time. We redefine the intermeeting time concept between nodes and introduce a new link metric called conditional intermeeting time. The intermeeting time between two nodes given that one of the nodes has previously met a certain other node.so intermeeting time is not a time efficiency. 2. CURRENT RESEARCH In Delay Tolerant networks, the probability that there is an end to end path from a source to destination is low. Since the routing algorithms for conventional networks assume that the links between nodes are stable most of the time and do not fail frequently, they do not generally work in DTN s. So that, the routing problem is still an active Research area in DTN s [1]. Routing algorithms in DTN s make use of a method called store-carry-and-forward. If a node receives a message from one of its contacts, the node stores the message in its buffer and carries the message until it encounters another node which is at least as useful (in terms of the delivery) as itself. Then the message is forwarded to another node. Based on this example, several routing algorithms with different objectives (high delivery rate etc.) and different routing techniques have been proposed [2][3].. In Intermeeting time, ignored some information readily available at transfer decisions. When two nodes (e.g., A and B) communicate, the message forwarding decision is made according to a delivery metric (encounter frequency, time elapsed since last encounter [4] [5], social similarity etc.) of these two nodes with the destination node (D) of the message. However, all these metrics depend on the separate meeting histories of nodes A and B with destination node D1. Nodes A and B do not consider their transition with each other while computing their

2 366 delivery metrics with D. More formally, if X is the random variable representing the intermeeting time between two nodes, the probability is P(X > s + t X > t) _= P(X > s) for s, t > From above formula, the residual time until the next transition of two nodes can be predicted well if the node knows that it has not communicate the other node for t time units [6]. Two common metrics used to define the link costs are minimum expected delay[7] and minimum estimated expected delay[8]. The two metrics are compute the expected waiting time plus the transmission delay between each pair of nodes. 3. COMPUTING THE CONDITIONAL INTERMEETING TIME 3.1 INTERMEETING TIME In intermeeting time, at the transfer decisions unobserved some information readily available. When two nodes (e.g., A and B) communicate, the message forwarding decision is made according to a delivery metric (encounter frequency, time elapsed since last encounter, social similarity etc.) of these two nodes with the destination node (D) of the message. However, all these measures depend on the separate communication histories of nodes A and B with destination node D1. Nodes A and B do not consider their communication with each other while computing their delivery metrics with D. Recent analysis on real mobility traces comprise verified that models assuming the exponential distribution of intermeeting times between pairs of nodes do not match real data well. Instead up to 99% of intermeeting times in many datasets is log-normal distribution if X is the random variable representing the intermeeting time between two nodes, the probability is, P(X > s + t X > t) _= P(X > s) for s, t > From above formula, the remaining time until the next meeting of two nodes can be predicted well if the node knows that it has not communicate the other node for t time units.to take advantage, we propose a new metric called conditional intermeeting time. 3.2 CONDITIONAL INTERMEETING TIME The measures the intermeeting time between two nodes relative to a meeting with a third node using only the local knowledge of the past contacts. In a DTN, each node can compute the average of its standard and conditional intermeeting times with other nodes using its contact history. Such measure is particularly beneficial if the nodes move in a cyclic so-called MobiSpace in which if two nodes contact frequently at particular time in previous cycles, they will probably be in contact around the same time in the next cycle. The common motion cycle is 12 time units, so the discrete probabilistic contact between A and B happen in every 12 time units (1, 13, 25,) and between B and C in every 6 time units (2, 8, 14,). The average intermeeting time between nodes B and C indicates that node B can forward its message to node C in 6 time units. However, the conditional intermeeting time of B with C relative to prior meeting of node A indicates that the message can be forwarded to node C within one time unit. 3.3 CONDITIONAL SHORTEST PATH ROUTING Routing decisions can be made at three different points in an SP based routing: i) at source, ii) at each hop, and iii) at each contact. In the source routing, SP of the message is decided at the source node and the message follows that path. In the per-hop routing, when a message arrives at an intermediate node, the node determines the next hop for the message towards the destination and the message waits for that node. Finally, in the per-contact routing, the routing table is recomputed at each contact with other nodes and the forwarding decision is made accordingly. We define the CSP from a node n0 to a node nd as follows: CSP (n0, nd) = {n0, n1... nd 1, nd _n0 (n1 t) +d 1_i=1τni (Ni+1 ni 1) is minimized.} Here, t represents the time that has passed since the last meeting of node n0 with n1 and _n0 (n1 t) is the expected residual time for node n0 to meet with node n1 given that they have not met in the last t time units. _n0 (n1 t) can be computed as in with parameters of distribution representing the intermeeting time between n0 and nd. τa(b): Average time between two consecutive meetings of nodes A and B. Obviously when the node connections are bidirectional, τa(b) = τb(a). τa (B C): Average time it takes for node A to meet node B after it meets node C. Note that, τa (B C) and τb(a C) are not necessarily equal.

3 367 S: N N matrix where S(i, j) shows the sum of all samples of conditional intermeeting times with node j relative to the meeting with node i. Here, N is the neighbor count of current node. Data Sent C: N N matrix where C(i, j) shows the total number of conditional intermeeting time samples with node j relative to its meeting with node i. βi: Total meeting count with node i. Algorihm1 is used to find and update the conditional intermeeting time between two nodes. Algorithm 1 update (node m, time t) if m is seen first time then firsttimeat[m] t else increment βm by 1 lasttimeat[m] t end if for each neighbor j N and j _= m do start a timer tmj for each neighbor j N and j _= m do for each timer tjm running do S[j][m] += time on tjm increment C[j][m] by 1 delete all timers tjm for each neighbor i N do for each neighbor j N and j _= i do if S[j][i] _= 0 then τs(i j) S[j][i] / C[j][i] end if τs(i) (lasttimeat[i] firsttimeat[i] ) / βi In above algorithm, each node first adds up times expired between repeating meetings of one neighbor and the meeting of another neighbor. Then it divides this total by the number of times it has communicate the first neighbor prior to communicate the second one. 4. PERFORMANCE EVALUTION In Intermeeting time, When two nodes communicate, the message forwarding decision is depends on the delivery metric(frequency, Time elapsed since last encounter, Social Similarity) of these nodes with the designation node message. Client User Get Source Ipaddress and Port No Find the shortest path between source and designation Computing Conditional intermeeting time between nodes Generating Reports Server Data Received Fig.1 System Architecture of conditional time All the delivery metric depend on the separate transfer histories of nodes A and B with designation node D. Nodes A and B do not consider their communication with each other util computing their delivery metrics with D. All the delivery metric depend on the separate transfer histories of nodes A and B with designation node D. Nodes A and B do not consider their communication with each other util computing their delivery metrics with D. By using Conditional Intermeeting Time, we refine the intermeeting time. In Conditional Intermeeting

4 368 Time, computes the average intermeeting time between two nodes relative to a meeting with third node using only the knowledge of the past contacts. By redefine the intermeeting time, all nodes having histories of contacts. In Conditional Intermeeting time, it is very time efficiency while transferring message from source to designation. 3 : Socket ws=(socket)m_ws[clientnum-1] 4 : ws.send(bydata) 4.2 SIMULATION Prog.1 shows to send message to client. Initially Source wil get Ipaddress and Port Number. Then made a decision for shortest path and computing condional intermeeting time. 4.1 ALGORITHM TO SEND MESSAGE TO CLIENT Table 1 : Algorithm1 GetIpAddress 2 : String strhostname=dns.gethostname() 3 : IPHostEntry iph =dns.gethostname(strhostname) 4 : For each IPAdress ipaddress in iph.addresslist 5 : IPStr = ipaddress 6 : endfor 7 : Print IPStr 8 : Stop From the simulations, we compare the proposed Conditional Shortest Path Routing (CSPR) algorithm with standard Shortest Path Routing (SPR). Moreover, in our results we also show the performance of upper and lower performance limits with Epidemic Routing and Direct Delivery. For a simulation run, we generated 50 messages from a random source node to a random destination node at each t seconds. In Roller Net, since the duration of experiment is short, we set t = 1s, but for Cambridge data set, we set t = 1 min. We assume that the nodes have enough buffer space to store every message they receive, the bandwidth is high and the contact durations of nodes are long enough to allow the exchange of all messages between nodes. The Following figure shows the Roller net Trace and Cambridge traces. Table 2 : Algorithm2 To List out Computers in Network 2 : Networkbrowser nb = new NetworkBrowser() 3 : ArrayList arr= nb.getnetworkcomputers(server.sv_ty _Server) 4 : Print ServerType.ar.count 5 : for each string name in arr 6 : Print name 7 : Endfor 8 : Stop Table 3 : Algorithm3 To send message to Client Time(min) Fig. 2. Message delivery ratio vs. time in RollerNet traces. 2 : byte[] bydata = msg

5 369 mobile networks: The single-copy case, IEEE/ACM Transactions on Networking. [3] T.Spyropoulos,K. Psounis,C. S. Raghavendra, Efficient routing in intermittently connected mobile networks: The multi-copy case, IEEE/ACM Transactions on Networking, [4]. H. Dubois-Ferriere, M. Grossglauser, and M.Vetterli, Age Matters: Efficient Route Discovery in Mobile Ad Hoc Networks Using Encounter Ages, Time (min) Fig. 3. Message delivery ratio vs. time in Cambridge traces. 5. CONCLUSION AND FUTURE WORK In Delay Tolerant Networks are irregular connectivity between their nodes. In this paper, we introduced a new metric called conditional Intermeeting time. By the Result of recent studies showing Delay tolerant networks nodes intermeeting time are not memory less. While forwarding message extracted from contact history is challenging problem. Then, we looked at the effects of this metric on shortest path based routing in DTN s. For this purpose, we updated the shortest path based routing algorithms using conditional intermeeting times and proposed to route the messages over conditional shortest paths. Finally in Experimental result shown the Simulation. [5] T. Spyropoulos, K. Psounis, and C. Raghavendra, Spray and Focus: Efficient Mobility-Assisted Routing for Heterogeneous and Correlated Mobility [6] S. Srinivasa and S. Krishnamurthy, CREST: An Opportunistic Forwarding Protocol Based on Conditional Residual Time, in Proceedings of IEEE SECON, [7] S. Jain, K. Fall, and R. Patra, Routing in a delay tolerant network, in Proceedings of ACM SIGCOMM, Aug [8] E. P. C. Jones, L. Li, and P. A. S. Ward, Practical routing in delay tolerant networks, Networking (WDTN), In future work, we will look at the performance of the proposed algorithm in different data sets to see the effect of conditional intermeeting time in different environments. Moreover, we will consider extending our CSPR algorithm by using more information from the contact history while deciding conditional intermeeting times. 6.REFERENCES [1]. Delay tolerant networking research group, [2] T. Spyropoulos, K. Psounis,C. SRaghavendra, Efficient routing in intermittently connected

Opportunistic Routing Algorithms in Delay Tolerant Networks

Opportunistic Routing Algorithms in Delay Tolerant Networks Opportunistic Routing Algorithms in Delay Tolerant Networks Eyuphan Bulut Rensselaer Polytechnic Institute Department of Computer Science and Network Science and Technology (NeST) Center PhD Thesis Defense

More information

DATA FORWARDING IN OPPORTUNISTIC NETWORK USING MOBILE TRACES

DATA FORWARDING IN OPPORTUNISTIC NETWORK USING MOBILE TRACES DATA FORWARDING IN OPPORTUNISTIC NETWORK USING MOBILE TRACES B.Poonguzharselvi 1 and V.Vetriselvi 2 1,2 Department of Computer Science and Engineering, College of Engineering Guindy, Anna University Chennai,

More information

Performance of Efficient Routing Protocol in Delay Tolerant Network: A Comparative Survey. Namita Mehta 1 and Mehul Shah 2

Performance of Efficient Routing Protocol in Delay Tolerant Network: A Comparative Survey. Namita Mehta 1 and Mehul Shah 2 , pp.151-158 http://dx.doi.org/10.14257/ijfgcn.2014.7.1.15 Performance of Efficient Routing Protocol in Delay Tolerant Network: A Comparative Survey Namita Mehta 1 and Mehul Shah 2 1 Student, Department

More information

Capacity-Aware Routing Using Throw-Boxes

Capacity-Aware Routing Using Throw-Boxes Capacity-Aware Routing Using Throw-Boxes Bo Gu, Xiaoyan Hong Department of Computer Science University of Alabama, Tuscaloosa, AL 35487 {bgu,hxy}@cs.ua.edu Abstract Deploying the static wireless devices

More information

A Joint Replication-Migration-based Routing in Delay Tolerant Networks

A Joint Replication-Migration-based Routing in Delay Tolerant Networks A Joint -Migration-based Routing in Delay Tolerant Networks Yunsheng Wang and Jie Wu Dept. of Computer and Info. Sciences Temple University Philadelphia, PA 19122 Zhen Jiang Dept. of Computer Science West

More information

Improvement of Buffer Scheme for Delay Tolerant Networks

Improvement of Buffer Scheme for Delay Tolerant Networks Improvement of Buffer Scheme for Delay Tolerant Networks Jian Shen 1,2, Jin Wang 1,2, Li Ma 1,2, Ilyong Chung 3 1 Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science

More information

Routing in a Delay Tolerant Network Sushant Jain, Kevin Fall and Rabin Patra SIGCOMM Presented by Xun Gong

Routing in a Delay Tolerant Network Sushant Jain, Kevin Fall and Rabin Patra SIGCOMM Presented by Xun Gong Routing in a Delay Tolerant Network Sushant Jain, Kevin Fall and Rabin Patra SIGCOMM 2004 Presented by Xun Gong Outline Delay Tolerant Networks Routing Problem in DTNs Multiple-copy Approach Flooding and

More information

Comparing Delay Tolerant Network Routing Protocols for Optimizing L-Copies in Spray and Wait Routing for Minimum Delay

Comparing Delay Tolerant Network Routing Protocols for Optimizing L-Copies in Spray and Wait Routing for Minimum Delay Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) Comparing Delay Tolerant Network Routing Protocols for Optimizing L-Copies in Spray and Wait Routing for Minimum Delay Anjula

More information

Impact of Social Networks in Delay Tolerant Routing

Impact of Social Networks in Delay Tolerant Routing Impact of Social Networks in Delay Tolerant Routing Eyuphan Bulut, Zijian Wang and Boleslaw K. Szymanski Department of Computer Science and Center for Pervasive Computing and Networking Rensselaer Polytechnic

More information

Archna Rani [1], Dr. Manu Pratap Singh [2] Research Scholar [1], Dr. B.R. Ambedkar University, Agra [2] India

Archna Rani [1], Dr. Manu Pratap Singh [2] Research Scholar [1], Dr. B.R. Ambedkar University, Agra [2] India Volume 4, Issue 3, March 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Performance Evaluation

More information

Routing Protocol Approaches in Delay Tolerant Networks

Routing Protocol Approaches in Delay Tolerant Networks Routing Protocol Approaches in Delay Tolerant Networks Shivi Shukla 1, Amit Munjal 2 and Y. N. Singh 2 AIM & ACT Dept., Banasthali Vidyapith, Rajasthan 1 EE Dept., Indian Institute of Technology, Kanpur

More information

Routing in Delay Tolerant Networks (2)

Routing in Delay Tolerant Networks (2) Routing in Delay Tolerant Networks (2) Primary Reference: E. P. C. Jones, L. Li and P. A. S. Ward, Practical Routing in Delay-Tolerant Networks, SIGCOMM 05, Workshop on DTN, August 22-26, 2005, Philadelphia,

More information

Energy Consumption and Performance of Delay Tolerant Network Routing Protocols under Different Mobility Models

Energy Consumption and Performance of Delay Tolerant Network Routing Protocols under Different Mobility Models 2016 7th International Conference on Intelligent Systems, Modelling and Simulation Energy Consumption and Performance of Delay Tolerant Network Routing Protocols under Different Mobility Models Bhed Bahadur

More information

Simulation and Analysis of Opportunistic Routing Protocols

Simulation and Analysis of Opportunistic Routing Protocols Simulation and Analysis of Opportunistic Routing Protocols 1 The Purpose The purpose of this assignment is to gain familiarity with a network simulation tool and to get experience in basic data analysis.

More information

Elimination Of Redundant Data using user Centric Data in Delay Tolerant Network

Elimination Of Redundant Data using user Centric Data in Delay Tolerant Network IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 9 February 2015 ISSN (online): 2349-6010 Elimination Of Redundant Data using user Centric Data in Delay Tolerant

More information

Simulation of Epidemic, Spray and Wait and First Contact Routing Protocols in Delay Tolerant Network

Simulation of Epidemic, Spray and Wait and First Contact Routing Protocols in Delay Tolerant Network Simulation of, Spray and Wait and First Contact Routing Protocols in Delay Tolerant Network 1 Monika Aneja, 2 Vishal Garg 1 (P.G. Student JMIT, Radaur, Yamunanagar) 2 (Assistant Professor JMIT Radaur Yamunanagar)

More information

Exploiting Heterogeneity in Mobile Opportunistic Networks: An Analytic Approach

Exploiting Heterogeneity in Mobile Opportunistic Networks: An Analytic Approach Exploiting Heterogeneity in Mobile Opportunistic Networks: An Analytic Approach 7 th Annual IEEE Communication Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (IEEE SECON 10)

More information

Impact of Social Networks on Delay Tolerant Routing

Impact of Social Networks on Delay Tolerant Routing Impact of Social Networks on Delay Tolerant Routing Eyuphan Bulut, Zijian Wang and Boleslaw K. Szymanski Department of Computer Science and Center for Pervasive Computing and Networking Rensselaer Polytechnic

More information

COMPARATIVE ANALYSIS OF DIFFERENT ROUTING PROTOCOLS IN DELAY TOLERANT NETWORKS

COMPARATIVE ANALYSIS OF DIFFERENT ROUTING PROTOCOLS IN DELAY TOLERANT NETWORKS COMPARATIVE ANALYSIS OF DIFFERENT ROUTING PROTOCOLS IN DELAY TOLERANT NETWORKS Chintan B. Desai PG Student, Electronics and Communication Department, Charotar University of Science & Technology, Changa,

More information

Heterogeneous Community-based Routing in Opportunistic Mobile Social Networks

Heterogeneous Community-based Routing in Opportunistic Mobile Social Networks Heterogeneous Community-based Routing in Opportunistic Mobile Social Networks Yunsheng Wang Kettering University Jie Wu Temple University Mingjun Xiao University of Science and Tech. of China Daqiang Zhang

More information

Design and Implementation of Improved Routing Algorithm for Energy Consumption in Delay Tolerant Network

Design and Implementation of Improved Routing Algorithm for Energy Consumption in Delay Tolerant Network IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 07 December 2016 ISSN (online): 2349-6010 Design and Implementation of Improved Routing Algorithm for Energy

More information

Message Forwarding in Cyclic MobiSpace: the Multi-copy Case

Message Forwarding in Cyclic MobiSpace: the Multi-copy Case Message Forwarding in Cyclic MobiSpace: the Multi-copy Case Cong Liu Shenzhen Institute of Advanced Technology Chinese Academy of Science gzcong@gmail.com Jie Wu Dept. of Computer & Information Sciences

More information

Routing Issues & Performance Of Different Opportunistic Routing Protocols In Delay Tolerant Network

Routing Issues & Performance Of Different Opportunistic Routing Protocols In Delay Tolerant Network Routing Issues & Performance Of Different Opportunistic Routing Protocols In Delay Tolerant Network Ankur Upadhyay Department of Computer Science & Engineering School of Engineering & Technology, IFTM

More information

A ROUTING MECHANISM BASED ON SOCIAL NETWORKS AND BETWEENNESS CENTRALITY IN DELAY-TOLERANT NETWORKS

A ROUTING MECHANISM BASED ON SOCIAL NETWORKS AND BETWEENNESS CENTRALITY IN DELAY-TOLERANT NETWORKS A ROUTING MECHANISM BASED ON SOCIAL NETWORKS AND BETWEENNESS CENTRALITY IN DELAY-TOLERANT NETWORKS ABSTRACT Zhang Huijuan and Liu Kai School of Software Engineering, Tongji University, Shanghai, China

More information

Routing with Multi-Level Social Groups in Mobile Opportunistic Networks

Routing with Multi-Level Social Groups in Mobile Opportunistic Networks Routing with Multi-Level Social Groups in Mobile Opportunistic Networks Lunan Zhao Fan Li Chao Zhang Yu Wang School of Computer Science, Beijing Institute of Technology, Beijing, 100081, China. Department

More information

On Multicopy Opportunistic Forwarding Protocols in Nondeterministic Delay Tolerant Networks

On Multicopy Opportunistic Forwarding Protocols in Nondeterministic Delay Tolerant Networks On Multicopy Opportunistic Forwarding Protocols in Nondeterministic Delay Tolerant Networks Cong Liu Jie Wu Sun Yat-sen University Temple University gzcong@gmail.com jiewu@temple.edu Abstract Delay Tolerant

More information

Social-Aware Routing in Delay Tolerant Networks

Social-Aware Routing in Delay Tolerant Networks Social-Aware Routing in Delay Tolerant Networks Jie Wu Dept. of Computer and Info. Sciences Temple University Challenged Networks Assumptions in the TCP/IP model are violated DTNs Delay-Tolerant Networks

More information

Performance Analysis of Delay Tolerant Network Routing Protocols in Different Mobility Environments

Performance Analysis of Delay Tolerant Network Routing Protocols in Different Mobility Environments Performance Analysis of Delay Tolerant Network Routing Protocols in Different Mobility Environments Bhed Bahadur Bista Faculty of Software and Information Science Iwate Prefectural University Takizawa

More information

Energy Efficient Social-Based Routing for Delay Tolerant Networks

Energy Efficient Social-Based Routing for Delay Tolerant Networks Energy Efficient Social-Based Routing for Delay Tolerant Networks Chenfei Tian,FanLi,, Libo Jiang,ZeyeWang, and Yu Wang 2, School of Computer Science, Beijing Institute of Technology, Beijing, 8, China

More information

A Multi-Copy Delegation Forwarding Based On Short-term and Long-Term Speed in DTNs

A Multi-Copy Delegation Forwarding Based On Short-term and Long-Term Speed in DTNs A Multi-Copy Delegation Forwarding Based On Short-term and Long-Term Speed in DTNs En Wang, 1,2 Yongjian Yang, 1 Jie Wu, 2 and Wenbin Liu 3 1 Department of Computer Science and Technology, Jilin University,

More information

PeopleRank: Social Opportunistic Forwarding

PeopleRank: Social Opportunistic Forwarding PeopleRank: Social Opportunistic Forwarding Abderrahmen Mtibaa Martin May Christophe Diot Mostafa Ammar Thomson, Paris, France Georgia Institute of Technology firstname.lastname@thomson.net ammar@cc.gatech.edu

More information

International Journal of Computer Engineering and Applications, Volume XII, Special Issue, August 18, ISSN

International Journal of Computer Engineering and Applications, Volume XII, Special Issue, August 18,   ISSN International Journal of Computer Engineering and Applications, ANALYZING IMPACT OF FACTORS ON ROUTING DECISIONS IN OPPORTUNISTIC MOBILE NETWORKS Sonam Kumari 1, Dr. Itu Snigdh 2 Department of Computer

More information

Estimation based Erasure-coding Routing in Delay Tolerant Networks

Estimation based Erasure-coding Routing in Delay Tolerant Networks Estimation based Erasure-coding Routing in Delay Tolerant Networks Yong Liao, Kun Tan, Zhensheng Zhang, Lixin Gao Dep. of Electrical & Computer Eng. Microsoft Research Asia San Diego Research Center University

More information

Modeling Redundancy-based Routing in Delay Tolerant Networks

Modeling Redundancy-based Routing in Delay Tolerant Networks Modeling Redundancy-based Routing in Delay Tolerant Networks Yong Liao, Kun Tan, Zhensheng Zhang, Lixin Gao Dep. of Electrical & Computer Eng. Microsoft Research Asia San Diego Research Center University

More information

Geographic information based Replication and Drop Routing (GeoRaDR): A Hybrid Message Transmission Approach for DTNs

Geographic information based Replication and Drop Routing (GeoRaDR): A Hybrid Message Transmission Approach for DTNs Geographic information based Replication and Drop Routing (GeoRaDR): A Hybrid Message Transmission Approach for DTNs Dr. Santhi Kumaran Associate Professor, Dept of Computer Engineering,

More information

Friendship Based Routing in Delay Tolerant Mobile Social Networks

Friendship Based Routing in Delay Tolerant Mobile Social Networks Friendship Based Routing in Delay Tolerant Mobile Social Networks Eyuphan Bulut and Boleslaw K. Szymanski Department of Computer Science and Center for Pervasive Computing and Networking Rensselaer Polytechnic

More information

Timely Information Dissemination with Distributed Storage in Delay Tolerant Mobile Sensor Networks

Timely Information Dissemination with Distributed Storage in Delay Tolerant Mobile Sensor Networks 27 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): 27 IEEE Infocom MiseNet Workshop Timely Information Dissemination with Distributed Storage in Delay Tolerant Mobile Sensor Networks

More information

Probability Delegation Forwarding in Delay Tolerant Networks

Probability Delegation Forwarding in Delay Tolerant Networks Probability Delegation Forwarding in Delay Tolerant etworks Xiao Chen Dept. of Comp. Sci. Texas State University San Marcos, TX 78666 xc10@txstate.edu Jian Shen Dept. of Math. Texas State University San

More information

Improving the Estimation of Residual Delay based Forwarding Method in Opportunistic Vehicular Networks

Improving the Estimation of Residual Delay based Forwarding Method in Opportunistic Vehicular Networks 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing Improving the Estimation of Residual Delay based Forwarding

More information

Routing in a Delay Tolerant Network

Routing in a Delay Tolerant Network Routing in a Delay Tolerant Network Vladislav Marinov Jacobs University Bremen March 31st, 2008 Vladislav Marinov Routing in a Delay Tolerant Network 1 Internet for a Remote Village Dial-up connection

More information

CFP: Integration of Fountain Codes and Optimal Probabilistic Forwarding in DTNs

CFP: Integration of Fountain Codes and Optimal Probabilistic Forwarding in DTNs : Integration of Fountain Codes and Optimal Probabilistic Forwarding in DTNs Ying Dai Software Institute Nanjing University dy06@software.nju.edu.cn Panlong Yang, Guihai Chen Dept. of Computer Sci. and

More information

NEW STRATEGY TO OPTIMIZE THE PERFORMANCE OF SPRAY AND WAIT ROUTING PROTOCOL

NEW STRATEGY TO OPTIMIZE THE PERFORMANCE OF SPRAY AND WAIT ROUTING PROTOCOL NEW STRATEGY TO OPTIMIZE THE PERFORMANCE OF SPRAY AND WAIT ROUTING PROTOCOL Mohamed Ababou 1, Rachid Elkouch 2, Mostafa Bellafkih 3 and Nabil Ababou 4 1 National Institute of Posts and Telecommunications

More information

An Optimal Probabilistic Forwarding Protocol in Delay Tolerant Networks

An Optimal Probabilistic Forwarding Protocol in Delay Tolerant Networks An Optimal Probabilistic Forwarding Protocol in Delay Tolerant Networks Cong Liu and Jie Wu Department of Computer Science and Engineering Florida Atlantic University Boca Raton, FL 3343 {cliu8@, jie@cse}.fau.edu

More information

Spray and Dynamic: Advanced Routing in Delay Tolerant Networks

Spray and Dynamic: Advanced Routing in Delay Tolerant Networks Int. J. Communications, Network and System Sciences, 2012, 5, 98-104 http://dx.doi.org/10.4236/ijcns.2012.52013 Published Online February 2012 (http://www.scirp.org/journal/ijcns) Spray and Dynamic: Advanced

More information

Overhead Reduction In Delay Tolerant Networks

Overhead Reduction In Delay Tolerant Networks Overhead Reduction In Delay Tolerant Networks Azadeh Omidvar School of Electrical Engineering Iran University of Science and Technology Tehran, Iran omidvar@elec.iust.ac.ir Karim Mohammadi School of Electrical

More information

Density-Aware Routing in Highly Dynamic DTNs: The RollerNet Case

Density-Aware Routing in Highly Dynamic DTNs: The RollerNet Case Density-Aware Routing in Highly Dynamic DTNs: The RollerNet Case Pierre-Ugo Tournoux, Student Member, IEEE, Je re mie Leguay, Farid Benbadis, John Whitbeck, Student Member, IEEE, Vania Conan, and Marcelo

More information

Spray and forward: Efficient routing based on the Markov location prediction model for DTNs

Spray and forward: Efficient routing based on the Markov location prediction model for DTNs . RESEARCH PAPER. SCIENCE CHINA Information Sciences February 2012 Vol. 55 No. 2: 433 440 doi: 10.1007/s11432-011-4345-1 Spray and forward: Efficient routing based on the Markov location prediction model

More information

TRUST FRAMEWORK FOR DATA FORWARDING IN OPPORTUNISTIC NETWORKS USING MOBILE TRACES

TRUST FRAMEWORK FOR DATA FORWARDING IN OPPORTUNISTIC NETWORKS USING MOBILE TRACES TRUST FRAMEWORK FOR DATA FORWARDING IN OPPORTUNISTIC NETWORKS USING MOBILE TRACES B.Poonguzharselvi 1 and V.Vetriselvi 2 1,2 Department of Computer Science and Engineering, College of Engineering Guindy,

More information

Design of Simulator for Finding the Delay Distribution in Delay Tolerant Networking

Design of Simulator for Finding the Delay Distribution in Delay Tolerant Networking Global Journal of Computer Science and Technology Network, Web & Security Volume 12 Issue 14 Version 1. Year 212 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Studies with ns-2 and ns-3 based DTN Simulators

Studies with ns-2 and ns-3 based DTN Simulators Studies with and based DTN Simulators Epidemic Routing, Spray and Wait DTN Congestion Control Jani Lakkakorpi Department of Communications and Networking (Comnet) 2.11.2012 Simulators.34 With alternative

More information

Integrated Routing Protocol for Opportunistic Networks

Integrated Routing Protocol for Opportunistic Networks Integrated Routing Protocol for Opportunistic Networks Anshul Verma Computer Science and Engineering Dept. ABV-Indian Institute of Information Technology and Management, Gwalior, India E-mail: anshulverma87@gmail.com

More information

IJSER. 1. Introduction. 1.1 Routing in DTN: Sukhpreet Kaur

IJSER. 1. Introduction. 1.1 Routing in DTN: Sukhpreet Kaur International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1717 A Review of Energy Consumption on DTN Routing Protocols Sukhpreet Kaur Abstract: DTN is net of similar nets.

More information

Application of Graph Theory in DTN Routing

Application of Graph Theory in DTN Routing Application of Graph Theory in DTN Routing Madan H. T. 1, Shabana Sultana 2 1 M. Tech. (CNE), NIE, Mysuru 2 Associate Professor, Dept. of Computer Science & Eng., NIE, Mysuru Abstract: Delay tolerant network

More information

DTN-based Delivery of Word-of-Mouth Information with Priority and Deadline

DTN-based Delivery of Word-of-Mouth Information with Priority and Deadline DTN-based Delivery of Word-of-Mouth Information with Priority and Deadline Yasuhiro Ishimaru *, Weihua Sun *, Keiichi Yasumoto * and Minoru Ito * * Graduate School of Information Science, Nara Institute

More information

A Genetic-Neural Approach for Mobility Assisted Routing in a Mobile Encounter Network

A Genetic-Neural Approach for Mobility Assisted Routing in a Mobile Encounter Network A Genetic-Neural Approach for obility Assisted Routing in a obile Encounter Network Niko P. Kotilainen, Jani Kurhinen Abstract--obility assisted routing (AR) is a concept, where the mobility of a network

More information

Community-Based Adaptive Buffer Management Strategy in Opportunistic Network

Community-Based Adaptive Buffer Management Strategy in Opportunistic Network Community-Based Adaptive Buffer Management Strategy in Opportunistic Network Junhai Zhou, Yapin Lin ( ), Siwang Zhou, and Qin Liu College of Computer Science and Electronic Engineering, Hunan University,

More information

Constructing Time-Varying Contact Graphs for Heterogeneous Delay Tolerant Networks

Constructing Time-Varying Contact Graphs for Heterogeneous Delay Tolerant Networks Globecom 2012 - Wireless Networking Symposium Constructing Time-Varying Contact Graphs for Heterogeneous Delay Tolerant Networks Xiaoyan Hong, Bo Gu, Yuguang Zeng, Jingyuan Zhang Department of Computer

More information

ROUTING IN DELAY TOLERANT NETWORKS

ROUTING IN DELAY TOLERANT NETWORKS ROUTING IN DELAY TOLERANT NETWORKS A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology in Computer Science and Engineering By Md. RAIYAN ALAM Roll: 108CS024

More information

Hierarchical Trust Management for Delay Tolerant Networks Using Stochastic Petrinet for Secure Routing

Hierarchical Trust Management for Delay Tolerant Networks Using Stochastic Petrinet for Secure Routing International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Hierarchical Trust Management for Delay Tolerant Networks Using Stochastic Petrinet for Secure Routing Chithra M. 1, Mr. Vimalathithan

More information

Buffer Aware Network Coded Routing Protocol for Delay Tolerant Networks

Buffer Aware Network Coded Routing Protocol for Delay Tolerant Networks Middle-East Journal of Scientific Research 23 (Sensing, Signal Processing and Security): 291-296, 2015 ISSN 1990-9233 IDOSI Publications, 2015 DOI: 10.5829/idosi.mejsr.2015.23.ssps.111 Buffer Aware Network

More information

TOUR: Time-sensitive Opportunistic Utility-based Routing in Delay Tolerant Networks

TOUR: Time-sensitive Opportunistic Utility-based Routing in Delay Tolerant Networks : Time-sensitive Opportunistic Utility-based Routing in Delay Tolerant Networks Mingjun Xiao, Jie Wu, Cong Liu, and Liusheng Huang School of Computer Science and Technology / Suzhou Institute for Advanced

More information

Routing in a Cyclic MobiSpace

Routing in a Cyclic MobiSpace Routing in a Cyclic MobiSpace Cong Liu and Jie Wu Department of Computer Science and Engineering Florida Atlantic University Boca Raton, FL 3343 {cliu8@, jie@cse}.fau.edu ABSTRACT A key challenge of routing

More information

COMFA: Exploiting Regularity of People Movement for Message Forwarding in Community-based Delay Tolerant Networks

COMFA: Exploiting Regularity of People Movement for Message Forwarding in Community-based Delay Tolerant Networks COMFA: Exploiting Regularity of People Movement for Message Forwarding in Community-based Delay Tolerant Networks Long Vu, Quang Do, Klara Nahrstedt Department of Computer Science, University of Illinois

More information

PROFICIENT CLUSTER-BASED ROUTING PROTOCOL USING EBSA AND LEACH APPROACHES

PROFICIENT CLUSTER-BASED ROUTING PROTOCOL USING EBSA AND LEACH APPROACHES PROFICIENT CLUSTER-BASED ROUTING PROTOCOL USING EBSA AND LEACH APPROACHES E SELVADIVYA divyacharlez@gmail.com GREETA PRIYADARSHINI greetasam@gmail.com ABSTRACT In this research we deal with delay-tolerant

More information

Center for Networked Computing

Center for Networked Computing Concept of mobile social networks (MSNs): People walk around with smartphones and communicate with each other via Bluetooth or Wi-Fi when they are within transmission range of each other. Characters: No

More information

Impact of Selective Dropping Attacks on Network Coding Performance in DTNs and a Potential Mitigation Scheme

Impact of Selective Dropping Attacks on Network Coding Performance in DTNs and a Potential Mitigation Scheme 1 Impact of Selective Dropping Attacks on Network Coding Performance in DTNs and a Potential Scheme M. Chuah, P. Yang Department of Computer Science & Engineering Lehigh University chuah@cse.lehigh.edu,

More information

PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS FOR DELAY TOLERANT NETWORKS

PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS FOR DELAY TOLERANT NETWORKS PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS FOR DELAY TOLERANT NETWORKS Sanjay Kumar, K. Suraj and Sudhakar Pandey Department of Information Technology, National Institute of Technology Raipur, India E-Mail:

More information

Routing Performance Analysis in Delay Tolerant Networks

Routing Performance Analysis in Delay Tolerant Networks Routing Performance Analysis in Delay Tolerant Networks Presenter: Hao Liang Main References: [1] G. Resta and P. Santi, A framework for routing performance analysis in delay tolerant networks with application

More information

ERASURE-CODING DEPENDENT STORAGE AWARE ROUTING

ERASURE-CODING DEPENDENT STORAGE AWARE ROUTING International Journal of Mechanical Engineering and Technology (IJMET) Volume 9 Issue 11 November 2018 pp.2226 2231 Article ID: IJMET_09_11_235 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

Cost Efficient Erasure Coding based Routing in Delay Tolerant Networks

Cost Efficient Erasure Coding based Routing in Delay Tolerant Networks Cost Efficient Erasure Coding based Routing in Delay Tolerant Networks Eyuphan Bulut, Zijian Wang and Boleslaw K. Szymanski Department of Computer Science and Center for Pervasive Computing and Networking

More information

Message Transmission with User Grouping for Improving Transmission Efficiency and Reliability in Mobile Social Networks

Message Transmission with User Grouping for Improving Transmission Efficiency and Reliability in Mobile Social Networks , March 12-14, 2014, Hong Kong Message Transmission with User Grouping for Improving Transmission Efficiency and Reliability in Mobile Social Networks Takuro Yamamoto, Takuji Tachibana, Abstract Recently,

More information

A DTN Packet Forwarding Scheme Inspired by Thermodynamics

A DTN Packet Forwarding Scheme Inspired by Thermodynamics A DTN Packet Forwarding Scheme Inspired by Thermodynamics Mehdi Kalantari and Richard J. La Department of Electrical and Computer Engineering University of Maryland {mehkalan, hyongla}@umd.edu Abstract

More information

Energy and Power Aware Stable Routing Strategy for Ad hoc Wireless Networks based on DSR

Energy and Power Aware Stable Routing Strategy for Ad hoc Wireless Networks based on DSR Energy and Power Aware Stable Routing Strategy for Ad hoc Wireless Networks based on Mr. Nirav Bhatt, Dr. Dhaval Kathiriya Reaserch Scholar, School of Computer Science, RK University, Rajkot Director IT,

More information

InterestSpread: An Efficient Method for Content Transmission in Mobile Social Networks

InterestSpread: An Efficient Method for Content Transmission in Mobile Social Networks : An Efficient Method for Content Transmission in Mobile Social Networks ABSTRACT Ning Wang Dept. of Computer and Information Sciences Temple University Philadelphia PA 9 ning.wang@temple.edu In Mobile

More information

Buffer Management in Delay Tolerant Networks

Buffer Management in Delay Tolerant Networks Buffer Management in Delay Tolerant Networks Rachana R. Mhatre 1 And Prof. Manjusha Deshmukh 2 1,2 Information Technology, PIIT, New Panvel, University of Mumbai Abstract Delay tolerant networks (DTN)

More information

Comparative Study of Routing Protocols for Opportunistic Networks

Comparative Study of Routing Protocols for Opportunistic Networks Comparative Study of Routing Protocols for Opportunistic Networks Majeed Alajeely School of Information Technology Deakin University Melbourne, Australia Email: malajeel@deakin.edu.au Asma a Ahmad School

More information

Probabilistic Routing With Multi-copies in Delay Tolerant Networks

Probabilistic Routing With Multi-copies in Delay Tolerant Networks Probabilistic Routing With Multi-copies in Delay Tolerant Networks Ze Li and Haiying Shen Department of Computer Science and Computer Engineering University of Arkansas, Fayetteville, AR 7701 {zxl008,

More information

Research Article Probabilistic Routing Based on Two-Hop Information in Delay/Disruption Tolerant Networks

Research Article Probabilistic Routing Based on Two-Hop Information in Delay/Disruption Tolerant Networks Journal of Electrical and Computer Engineering Volume 215, Article ID 91865, 11 pages http://dx.doi.org/1.1155/215/91865 Research Article Probabilistic Routing Based on Two-Hop Information in Delay/Disruption

More information

Self Adaptive Utility-Based Routing Protocol (SAURP)

Self Adaptive Utility-Based Routing Protocol (SAURP) Self Adaptive Utility-Based Routing Protocol (SAURP) Rakhi S. Belokar Dept. of CSE, MSS CET Jalna Aurangabad University, INDIA Abstract This report introduces a novel multi-copy routing protocol, called

More information

Keywords: Detection, Disruption Tolerant Networks, Mitigation, Routing Misbehavior, Security.

Keywords: Detection, Disruption Tolerant Networks, Mitigation, Routing Misbehavior, Security. IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY An Efficient Selfishness Aware Routing in Delay Tolerant Networks N.Senthilkumar *1, Dr. T.V U. Kiran Kumar 2 *1,2,3,4 Bharath

More information

Prediction Assisted Single-copy Routing in Underwater Delay Tolerant Networks

Prediction Assisted Single-copy Routing in Underwater Delay Tolerant Networks 1 Prediction Assisted Single-copy Routing in Underwater Delay Tolerant Networks Zheng Guo, Bing Wang and Jun-Hong Cui Computer Science & Engineering Department, University of Connecticut, Storrs, CT, 6269

More information

On Exploiting Transient Contact Patterns for Data Forwarding in Delay Tolerant Networks

On Exploiting Transient Contact Patterns for Data Forwarding in Delay Tolerant Networks On Exploiting Transient Contact Patterns for Data Forwarding in Delay Tolerant Networks Wei Gao and Guohong Cao Dept. of Computer Science and Engineering Pennsylvania State University Outline Introduction

More information

Optimal Buffer Management Policies for Delay Tolerant Networks

Optimal Buffer Management Policies for Delay Tolerant Networks Optimal Buffer Management Policies for Delay Tolerant Networks Chadi BARAKAT INRIA Sophia Antipolis, France Planète research group Joint work with Amir Krifa and Thrasyvoulos Spyropoulos Email: Chadi.Barakat@sophia.inria.fr

More information

Network Routing Without Delay Using Message Scheduling

Network Routing Without Delay Using Message Scheduling ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Using local speed information as routing metric for delay tolerant networks

Using local speed information as routing metric for delay tolerant networks Using local speed information as routing metric for delay tolerant networks FUQUAN ZHANG 1, INWHEE JOE, DEMIN GAO 1 AND YUNFEI LIU 1 1 College of Information and Sciences NanJing Forestry University NanJing

More information

Adaptive Backbone-based Routing in Delay Tolerant Networks

Adaptive Backbone-based Routing in Delay Tolerant Networks Adaptive Backbone-based Routing in Delay Tolerant Networks Shuhui Yang Department of Math, Computer Science, and Statistics Purdue University Calumet, Hammond, USA Email: yang@purdue.edu Jie Wu Department

More information

BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks

BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks 1 BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks Pan Hui, Jon Crowcroft, Eiko Yoneki Presented By: Shaymaa Khater 2 Outline Introduction. Goals. Data Sets. Community Detection Algorithms

More information

Computer Communications

Computer Communications Computer Communications 48 (2014) 20 29 Contents lists available at ScienceDirect Computer Communications journal homepage: www.elsevier.com/locate/comcom GAR: Group aware cooperative routing protocol

More information

On Exploiting Transient Contact Patterns for Data Forwarding in Delay Tolerant Networks

On Exploiting Transient Contact Patterns for Data Forwarding in Delay Tolerant Networks On Exploiting Transient Contact Patterns for Data Forwarding in Delay Tolerant Networks Wei Gao and Guohong Cao Department of Computer Science and Engineering The Pennsylvania State University, University

More information

ChitChat: An Effective Message Delivery Method in Sparse Pocket-Switched Networks

ChitChat: An Effective Message Delivery Method in Sparse Pocket-Switched Networks ChitChat: An Effective Message Delivery Method in Sparse Pocket-Switched Networks Douglas McGeehan Dan Lin Sanjay Madria Department of Computer Science Missouri University of Science and Technology Rolla,

More information

Keywords: Store and carry networks, Forwarding strategies, routing, DTN, Minimum hop transmission

Keywords: Store and carry networks, Forwarding strategies, routing, DTN, Minimum hop transmission Global Journal of Computer Science and Technology Volume 11 Issue 9 Version 1.0 May 2011 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) ISSN: 0975-4172

More information

I. INTRODUCTION. Keywords-disruption tolerant networks; custody transfer; route discovery; message ferry

I. INTRODUCTION. Keywords-disruption tolerant networks; custody transfer; route discovery; message ferry Performance Comparison of Unicast Routing Schemes in DTNs Mooi Choo Chuah, Peng Yang, Brian D. Davison, Liang Cheng {chuah, pey204, davison, cheng}@cse.lehigh.edu Lehigh University Abstract Delay and disruption

More information

IMPROVING THE SCALABILITY BY CONTACT INFORMATION COMPRESSION IN ROUTING

IMPROVING THE SCALABILITY BY CONTACT INFORMATION COMPRESSION IN ROUTING IMPROVING THE SCALABILITY BY CONTACT INFORMATION COMPRESSION IN ROUTING V.Karthikeyan 1 and V.J.Vijayalakshmi 2 1 Department of ECE, SVS College of Engineering, Coimbatore, India 2 Department of EEE, Sri

More information

Optimal Transmission and Scheduling in Delay Tolerant Network

Optimal Transmission and Scheduling in Delay Tolerant Network Optimal Transmission and Scheduling in Delay Tolerant Network 1 C.Bhanu Prakash, 2 K.sireesha 3 K.Suma Latha 1 Assistant Professor, AITS College, JNTUA, Tirupati, AP, India, 2 M.Tech student, Dept of CSE,

More information

WaterChat: A Group Chat Application Based on Opportunistic Mobile Social Networks

WaterChat: A Group Chat Application Based on Opportunistic Mobile Social Networks WaterChat: A Group Chat Application Based on Opportunistic Mobile Social Networks Tzu-Chieh Tsai, Ting-Shen Liu, and Chien-Chun Han Department of Computer Science, National Chengchi University, Taipei,

More information

OS-multicast: On-demand Situation-aware Multicasting in Disruption Tolerant Networks

OS-multicast: On-demand Situation-aware Multicasting in Disruption Tolerant Networks OS-multicast: On-demand Situation-aware Multicasting in Disruption Tolerant Networks Qing Ye, Liang Cheng, Mooi Choo Chuah, and Brian D. Davison Department of Computer Science and Engineering, Lehigh University

More information

Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14

Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14 Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14 Routing Algorithms Link- State algorithm Each node maintains a view of the whole network topology Find the shortest path

More information

A Qualitative Survey on Multicast Routing in Delay Tolerant Networks

A Qualitative Survey on Multicast Routing in Delay Tolerant Networks A Qualitative Survey on Multicast Routing in Delay Tolerant Networks Sushovan Patra 1, Sujoy Saha 2, Vijay Shah 1, Satadal Sengupta 1, Konsam Gojendra Singh 1, and Subrata Nandi 1 1 Department of Computer

More information

Research Article ISSN:

Research Article ISSN: International Journal of Computer Science & Mechatronics A peer reviewed International Journal Article Available online www.ijcsm.in smsamspublications.com Vol.1.Issue 2.2015 Boosting Performance of Data

More information

An Analysis of Onion-Based Anonymous Routing in Delay Tolerant Networks

An Analysis of Onion-Based Anonymous Routing in Delay Tolerant Networks An Analysis of Onion-Based Anonymous Routing in Delay Tolerant Networks Kazuya Sakai, Tokyo Metropolitan University Min-Te Sun, National Central University Wei-Shinn Ku, Auburn University Jie Wu, Temple

More information