Nios Soft Core. Development Board User s Guide. Altera Corporation 101 Innovation Drive San Jose, CA (408)

Size: px
Start display at page:

Download "Nios Soft Core. Development Board User s Guide. Altera Corporation 101 Innovation Drive San Jose, CA (408)"

Transcription

1 Nios Soft Core Development Board User s Guide Altera Corporation 101 Innovation Drive San Jose, CA (408)

2 Nios Soft Core Development Board User s Guide Version 1.1 August 2000 Altera, AMPP, APEX, APEX 20K, Atlas, BitBlaster, ByteBlaster, ByteBlasterMV, MAX+PLUS II, MegaCore, MegaLAB, OpenCore, Quartus, SignalTap are trademarks and/or service marks of Altera Corporation in the United States and other countries. Product design elements and mnemonics used by Altera Corporation are protected by copyright and/or trademark laws. Altera Corporation acknowledges the trademarks of other organizations for their respective products or services mentioned in this document, including the following: Verilog is a registered trademark of Cadence Design Systems, Incorporated. IBM and AT are registered trademarks and IBM PC-AT is a trademark of International Business Machines Corporation. Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document. Altera advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is current. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera s standard warranty. Testing and other quality control techniques are used to the extent Altera deems such testing necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not necessarily performed. In the absence of written agreement to the contrary, Altera assumes no liability for Altera applications assistance, customer s product design, or infringement of patents or copyrights of third parties by or arising from use of semiconductor devices described herein. Nor does Altera warrant or represent any patent right, copyright, or other intellectual property right of Altera covering or relating to any combination, machine, or process in which such semiconductor devices might be or are used. Altera products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of Altera Corporation. As used herein: 1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Products mentioned in this document are covered by one or more of the following U.S. patents: 5,892,683; 5,880,725; 5,880,597; 5,880,596; 5,878,250; 5,875,112; 5,873,113; 5,872,463; 5,870,410; 5,861,760; 5,859,544; 5,850,365; 5,850,152; 5,850,151; 5,848,005; 5,847,617; 5,845,385; 5,844,854; 5,835,977; 5,838,628; 5,838,584; 5,835,998; 5,834,849; 5,828,229; 5,825,197; 5,821,787: 5,821,773; 5,821,771; 5,815,726; 5,815,024; 5,815,003; 5,812,479; 5,812,450; 5,809,281; 5,809,034; 5,805,516; 5,802,540; 5,801,541; 5,796,267; 5,793,246; 5,790,469; 5,787,009; 5,771,264; 5,768,562; 5,768,372; 5,767,734; 5,764,583; 5,764,569; 5,764,080; 5,764,079; 5,761,099; 5,760,624; 5,757,207; 5,757,070; 5,744,991; 5,744,383; 5,740,110; 5,732,020; 5,729,495; 5,717,901; 5,705,939; 5,699,020; 5,699,312; 5,696,455; 5,693,540; 5,694,058; 5,691,653; 5,689,195; 5,668,771; 5,680,061; 5,672,985; 5,670,895; 5,659,717; 5,650,734; 5,649,163; 5,642,262; 5,642,082; 5,633,830; 5,631,576; 5,621,312; 5,614,840; 5,612,642; 5,608,337; 5,606,276; 5,606,266; 5,604,453; 5,598,109; 5,598,108; 5,592,106; 5,592,102; 5,590,305; 5,583,749; 5,581,501; 5,574,893; 5,572,717; 5,572,148; 5,572,067; 5,570,040; 5,567,177; 5,565,793; 5,563,592; 5,561,757; 5,557,217; 5,555,214; 5,550,842; 5,550,782; 5,548,552; 5,548,228; 5,543,732; 5,543,730; 5,541,530; 5,537,295; 5,537,057; 5,525,917; 5,525,827; 5,523,706; 5,523,247; 5,517,186; 5,498,975; 5,495,182; 5,493,526; 5,493,519; 5,490,266; 5,488,586; 5,487,143; 5,486,775; 5,485,103; 5,485,102; 5,483,178; 5,477,474; 5,473,266; 5,463,328, 5,444,394; 5,438,295; 5,436,575; 5,436,574; 5,434,514; 5,432,467; 5,414,312; 5,399,922; 5,384,499; 5,376,844; 5,375,086; 5,371,422; 5,369,314; 5,359,243; 5,359,242; 5,353,248; 5,352,940; 5,309,046; 5,350,954; 5,349,255; 5,341,308; 5,341,048; 5,341,044; 5,329,487; 5,317,212; 5,317,210; 5,315,172; 5,301,416; 5,294,975; 5,285,153; 5,280,203; 5,274,581; 5,272,368; 5,268,598; 5,266,037; 5,260,611; 5,260,610; 5,258,668; 5,247,478; 5,247,477; 5,243,233; 5,241,224; 5,237,219; 5,220,533; 5,220,214; 5,200,920; 5,187,392; 5,166,604; 5,162,680; 5,144,167; 5,138,576; 5,128,565; 5,121,006; 5,111,423; 5,097,208; 5,091,661; 5,066,873; 5,045,772; 4,969,121; 4,930,107; 4,930,098; 4,930,097; 4,912,342; 4,903,223; 4,899,070; 4,899,067; 4,871,930; 4,864,161; 4,831,573; 4,785,423; 4,774,421; 4,713,792; 4,677,318; 4,617,479; 4,609,986; 4,020,469 and certain foreign patents. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Copyright 2000 Altera Corporation. All rights reserved.

3 Table of Contents Features...1 APEX EP20K200E...2 Memory...2 SRAM...3 Flash Memory...3 SDRAM...3 Configuration Controller...4 Daughter Cards...4 SDRAM SODIMM Socket...5 PMC Connectors...5 JTAG Circuit...5 Power Supply...6 Serial Port...7 Switches and Other Features...7 SW1: User-Specific Functions...7 SW2: Reset Function...8 SW3: Clear Function...8 SW4 - SW7: User-Specific Functions...8 LEDs...8 Clocks...9 i

4 Development Board User s Guide ii

5 Features The Nios Development Board (see Figure 1 on page 2) has the following features: One APEX EP20K200E device (U1) Two 1 Mbit (64K x 16) SRAM devices (U14, U15) One MAX7064PLD (U4) Factory programed as configuration controller Configures APEX device from flash data One 8Mbit (512K x 16) flash memory device (U9) One serial-port connector (J3) and RS-232 level-shifter (U13) One JTAG connector (JP3) for device programming and debugging Three switches (SW8, SW9, SW10) connecting the configuration controller, APEX EP20K200E device, and the PCI mezzanine card (PMC) peripheral to the JTAG chain Four user-definable push button switches (SW4, SW5, SW6, SW7) One user-definable 8-bit DIP switch block (SW1) SDRAM SODIMM socket (J2) Two PMC connectors (IEEE-1386 JN1 and JN2) Headers for prototype daughter 3.3 volts (JP8, JP9, JP10) 5.0 volts (JP11, JP12, JP13) Two special-purpose push button switches (defined by the default configuration): Reset (SW2): Clears the APEX EP20K200E device and reloads from configuration controller Clear (SW3): Clears the embedded processor (CPU reset) Four LEDs: Two user-definable LEDs (LED1, LED2) Two special-purpose LEDs: power and flash_byte (LED7, LED3) One 2-digit 7-segment LED (D1) Power supply circuitry (+9V unregulated input, center-negative J1) 1

6 Development Board User s Guide Figure 1. Development Board LED7 TP1 LED1 LED2 SW2 SW3 SW1 TP2 JP11 J1 SW7 SW6 SW5 SW4 JP2 SW10 SW9 JP3 SW8 JP12 JP13 PMCJN2 PMCJN1 $ 3 ( ; EP20K200E JP8 J3 JP14 J2 LED3 JP9 JP10 TP4 APEX EP20K200E The Nios Development Board has one APEX EP20K200EFC484 device, which you can use to configure and evaluate a Nios embedded processor. Memory The Nios Development Board has two 64K x 16 SRAM devices, one 8- Mbit flash memory device, and 144-pin SODIMM memory expansion socket. 2

7 SRAM The two 64K x 16 SRAM devices may be configured for use with either 16- bit (64K x 16) or 32-bit (64K x 32) applications. Because of the addressing limitations, the Nios 16-bit processor may only access a single SRAM. To use both SRAM chips as a single bank of 32-bit wide memory, the A1/ A17 signal is used as A17 and sram1_cs should be asserted coincident with sram0_cs. To use the SRAM as two individual banks of 16-bit words, the A1/A17 signal is used as A1 and BE#2 and BE#3 should be used as BE#0 and BE#1 for sram1. Flash Memory The Nios Development Board contains one 512K x 16 (AM29LV800B) flash memory device. The APEX EP20K200E device and the Nios embedded processor share the flash memory. Flash memory allocation is listed in Table 1. Table 1. Flash Memory Allocation Flash Address Size Comments 0x1C0000 0x1FFFFF 256 KByte Factory-default APEX configuration See Configuration Controller on page 4. 0x x1BFFFF 256 KByte User-defined APEX configuration data 0x x17FFFF 512 KByte Nios instruction and nonvolatile data space SDRAM The Nios Development Board contains a 144-pin SODIMM socket that holds single-data-rate, 64-bit, SDRAM modules. The signals routed to the SODIMM socket are connected to normal APEX I/O pins, and may be configured to the user s unique application. (See SDRAM SODIMM Socket on page 5. for more details.) 3

8 Development Board User s Guide Configuration Controller The MAX7064 device (U4) is factory programed as a configuration controller. The configuration controller loads configuration data from the flash (U3) and clocks it into the APEX device (U1). User-created configurations are loaded by shorting JP2; the factory default configuration is loaded by leaving JP2 open. The configuration controller is started by the rising edge of reset#. Pressing the Reset button (SW2) forces reset# low. The outputs of the configuration controller are placed into a high-impedance state when configuration and initialization are complete. 1 Although the configuration controller is accessible and programmable from the JTAG chain, Altera does not recommend that you reprogram the configuration controller. Reprogramming the configuration controller may result in an inoperable board. Daughter Cards A daughter card may be connected to Nios Development Board. The Nios Development Board supports the connection of either a 3.3 volts or 5.0 volt daughter card. Headers JP11, JP12 and JP13 support the 5.0 volt daughter card; headers JP8, JP9 and JP10 support the 3.3 volt daughter card. The Nios Development Board includes the necessary circuitry to accommodate the 5.0 volt daughter card signals and regulated 3.3 and 5.0 volt power (500 milliwatts). The Altera daughter card interface also accommodates user-specific designs. Refer to accompanying Nios Development Board schematics for specific pinout and interface details. 4

9 SDRAM SODIMM Socket The Nios Development Board provides a 144-pin SODIMM socket to support single-data-rate, 64-bit, SDRAM SODIMM modules. The SDRAM controller for the SODIMM socket can be either an Altera intellectual property (IP) or user-devised logic residing in the APEX device. The signals routed to the SODIMM socket are compliant with those required to support a SDRAM module. With the exception of ground, power and clock pins, the connector pins are connected to normal APEX I/O pins, and may be configured to whatever application the user wishes. (Refer to the schematic for pinouts.) PMC Connectors The Nios Development Board provides two PMC connectors (JN1 and JN2) that conform with the IEEE Std specification for Common Mezzanine Card. JTAG Circuit The Nios Development Board has a standard JTAG header (JP3) for use with the MasterBlaster or ByteBlasterMV cables. Each of the three devices in the JTAG chain may be connected or disconnected by using switch SW8, SW9 or SW10. These switches control the connection of the APEX EP20K200E device, the configuration controller, and the PMC connector, respectively. 5

10 Development Board User s Guide Each switch has two positions: Connect or Bypass. The Connect position places the selected device into the JTAG chain; the Bypass position removes the device from the JTAG chain. Although all three devices can be connected to the JTAG configuration chain during programming, Altera recommends connecting only those devices being programmed. APEX 20KE device SW7 SW6 SW5 Configuration controller SW10 SW8 SW9 PMC Connect Bypass Slide switch to one of these positions 1 The configuration controller should not be reprogrammed. Changing the configuration controller program will alter the functionality of the Nios Development Board and possibly make it inoperable. Power Supply A modular plug-in power supply accompanies the Nios Development Board. This 9 volt power supply plugs into connector J1 (negativecentered) and supplies the input power for the on-board power management. The on-board power management produces the following three voltages: 3.3 volts Used by the majority of the components on the board, including all APEX IO banks. 1.8 volts Used as the core voltage for the APEX EP20K200E device. 6

11 5 volts Provided for optional use with the 5V-tolerant Altera daughter card connectors. Four ground points (TP1 TP4) provide a ground plane reference. Serial Port The Nios Development Board contains one serial port connector (J3) for communications between the APEX EP20K200E and an external device. The serial port connects via a DB-9 type connector through an RS-232 transceiver (U13). The board has an unstuffed 6-pin header at location JP14 to assist in debugging the serial signals. Switches and Other Features The Nios Development Board contains several switches and LEDs. The Reset switch and switches SW8, SW9 and SW10 have fixed (unchangeable) function; the function of the Power LED (LED7) and LED3 are also fixed. The Clear switch is activated as part of the Nios Development Board's default program. However, the other switches and LEDS may be used by the developer to provide various inputs or for simulating real-world interaction in an embedded system. Two types of clock signals are also provided. The purpose and functionality of these assets are described below: SW1: User-Specific Functions SW1 is a dual in-line package (DIP) of eight single-pole switches connected to the APEX EP20K200E device I/O pins that can be used for user-specific functions. The signals are logic 1 when open. 7

12 Development Board User s Guide SW2: Reset Function Reset clears the APEX EP20K200E device and causes the configuration controller to load a new configuration from the on-board flash memory. The new configuration may be either the factory default (stored beginning at address 0x1C0000) or a user defined configuration (stored beginning at address 0x180000). SW3: Clear Function The clear function is defined by the factory default configuration (JP2 open) as a CPU reset for the Nios embedded processor. A specific user configuration (JP2 shorted) may define a function to this switch. SW4 - SW7: User-Specific Functions These four push-button switches, connected to APEX I/O pins, are available for user-specific functions. The signals are logic 0 when pressed. LEDs The board includes two user LEDs and two special purpose LEDs. LED1 and LED2 are available as user-defined LEDs, and are connected to APEX EP20K200E device I/O pins. LED7 indicates the presence of 3.3 volt power on the board. LED3 indicates that the configuration controller has finished configuring the APEX EP20K200E device. 1 LED3 does not indicate successful configuration of the APEX EP20K200E device, but only that the configuration controller has finished sending data to the APEX device. 8

13 Clocks The Nios Development Board has the following two types of clock networks: The first clock network is generated by the oscillator (Y1), and driven to components by the clock distribution chip (U5). Y1 is a MHz oscillator. The oscillator frequency is driven to the APEX CLK2 (pin L6), the two prototype daughter cards, and the configuration controller. The second type of clock network carries a signal produced by the phase-locked loop circuitry on the APEX EP20K200E device. The user has the option of producing a clock with the PLL circuit by use of the altcklock megafunction in the Quartus software, which may be driven off-chip via pin P5 (CLKLK_OUT1p). This signal is fed to the clock distribution chip (U5), and fed to both Altera daughter cards, the SODIMM connector, and the PMC connectors. The oscillator may be replaced at the user s discretion, but the configuration controller design may fail to successfully configure the APEX EP20K200E device if the clock frequency is greater than 66.8MHz. 9

14 Development Board User s Guide 10

15 11

16 Development Board User s Guide 12

Nios Embedded Processor Development Board

Nios Embedded Processor Development Board Nios Embedded Processor Development Board July 2003, ver. 2.2 Data Sheet Introduction Development Board Features Functional Overview This data sheet describes the features and functionality of the Nios

More information

Nios Soft Core. Nios Timer Peripheral. Altera Corporation 101 Innovation Drive San Jose, CA (408)

Nios Soft Core. Nios Timer Peripheral. Altera Corporation 101 Innovation Drive San Jose, CA (408) Nios Soft Core Nios Timer Peripheral Altera Corporation 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Nios Soft Core Nios Timer Peripheral Version 1.1 August 2000 Altera,

More information

System-on-a-Programmable-Chip (SOPC) Development Board

System-on-a-Programmable-Chip (SOPC) Development Board System-on-a-Programmable-Chip (SOPC) Development Board Solution Brief 47 March 2000, ver. 1 Target Applications: Embedded microprocessor-based solutions Family: APEX TM 20K Ordering Code: SOPC-BOARD/A4E

More information

ByteBlaster II Parallel Port Download Cable

ByteBlaster II Parallel Port Download Cable ByteBlaster II Parallel Port Download Cable December 2002, Version 1.0 Data Sheet Features Allows PC users to perform the following functions: Program MAX 9000, MAX 7000S, MAX 7000AE, MAX 7000B, MAX 3000A,

More information

AN 547: Putting the MAX II CPLD in Hibernation Mode to Achieve Zero Standby Current

AN 547: Putting the MAX II CPLD in Hibernation Mode to Achieve Zero Standby Current AN 547: Putting the MAX II CPLD in Hibernation Mode to Achieve Zero Standby Current January 2009 AN-547-10 Introduction To save power, the MAX II CPLD can be completely powered down into hibernation mode

More information

Nios Soft Core Embedded Processor

Nios Soft Core Embedded Processor Nios Soft Core Embedded Processor June 2000, ver. 1 Data Sheet Features... Preliminary Information Part of Altera s Excalibur TM embedded processor solutions, the Nios TM soft core embedded processor is

More information

APEX DSP Development Board

APEX DSP Development Board APEX DSP Development Board (Starter Version) April 2002, ver. 1.3 Data Sheet Features Powerful development board for digital signal processing (DSP) designs featuring the APEX EP20K200E-1X device in a

More information

DSP Development Kit, Stratix II Edition

DSP Development Kit, Stratix II Edition DSP Development Kit, Stratix II Edition August 2005, Development Kit version 1.1.0 Errata Sheet This document addresses known errata and documentation changes the DSP Development Kit, Stratix II Edition

More information

Exercise 1 In this exercise you will review the DSSS modem design using the Quartus II software.

Exercise 1 In this exercise you will review the DSSS modem design using the Quartus II software. White Paper DSSS Modem Lab Background The direct sequence spread spectrum (DSSS) digital modem reference design is a hardware design that has been optimized for the Altera APEX DSP development board (starter

More information

Introduction to the Altera SOPC Builder Using Verilog Design

Introduction to the Altera SOPC Builder Using Verilog Design Introduction to the Altera SOPC Builder Using Verilog Design This tutorial presents an introduction to Altera s SOPC Builder software, which is used to implement a system that uses the Nios II processor

More information

Estimating Nios Resource Usage & Performance

Estimating Nios Resource Usage & Performance Estimating Nios Resource Usage & Performance in Altera Devices September 2001, ver. 1.0 Application Note 178 Introduction The Excalibur Development Kit, featuring the Nios embedded processor, includes

More information

Introduction to the Altera SOPC Builder Using Verilog Designs. 1 Introduction

Introduction to the Altera SOPC Builder Using Verilog Designs. 1 Introduction Introduction to the Altera SOPC Builder Using Verilog Designs 1 Introduction This tutorial presents an introduction to Altera s SOPC Builder software, which is used to implement a system that uses the

More information

Practical Hardware Debugging: Quick Notes On How to Simulate Altera s Nios II Multiprocessor Systems Using Mentor Graphics ModelSim

Practical Hardware Debugging: Quick Notes On How to Simulate Altera s Nios II Multiprocessor Systems Using Mentor Graphics ModelSim Practical Hardware Debugging: Quick Notes On How to Simulate Altera s Nios II Multiprocessor Systems Using Mentor Graphics ModelSim Ray Duran Staff Design Specialist FAE, Altera Corporation 408-544-7937

More information

ByteBlaster II Download Cable User Guide

ByteBlaster II Download Cable User Guide ByteBlaster II Download Cable User Guide 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com UG-BBII81204-1.1 P25-10324-00 Document Version: 1.1 Document Date: December 2004 Copyright

More information

Figure 1. Device Package Ordering Information for Stratix, Stratix GX, Cyclone, APEX 20KC, APEX II, Mercury & Excalibur Devices EP1S 25 F 780 C 5 N

Figure 1. Device Package Ordering Information for Stratix, Stratix GX, Cyclone, APEX 20KC, APEX II, Mercury & Excalibur Devices EP1S 25 F 780 C 5 N April 2003, ver. 15 Altera Devices Figures 1 and 2 explain the ordering codes for Altera devices. Devices that have multiple pin counts for the same package include the pin count in their ordering codes.

More information

DDR and DDR2 SDRAM Controller Compiler User Guide

DDR and DDR2 SDRAM Controller Compiler User Guide DDR and DDR2 SDRAM Controller Compiler User Guide 101 Innovation Drive San Jose, CA 95134 www.altera.com Operations Part Number Compiler Version: 8.1 Document Date: November 2008 Copyright 2008 Altera

More information

Using MAX II & MAX 3000A Devices as a Microcontroller I/O Expander

Using MAX II & MAX 3000A Devices as a Microcontroller I/O Expander Using MAX II & MAX 3000A Devices as a Microcontroller I/O Expander March 2004, ver 2.0 Application Note 265 Introduction Advantages of Using MAX II & MAX 3000A Devices Many microcontroller and microprocessors

More information

Design Verification Using the SignalTap II Embedded

Design Verification Using the SignalTap II Embedded Design Verification Using the SignalTap II Embedded Logic Analyzer January 2003, ver. 1.0 Application Note 280 Introduction The SignalTap II embedded logic analyzer, available exclusively in the Altera

More information

System-on-a- Programmable Chip

System-on-a- Programmable Chip System-on-a- Programmable Chip Development Board User Guide October 2001 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com A-UG-SOPC-1.3 Copyright Copyright 2001 Altera Corporation.

More information

Design Tools for 100,000 Gate Programmable Logic Devices

Design Tools for 100,000 Gate Programmable Logic Devices esign Tools for 100,000 Gate Programmable Logic evices March 1996, ver. 1 Product Information Bulletin 22 Introduction The capacity of programmable logic devices (PLs) has risen dramatically to meet the

More information

Toolflow for ARM-Based Embedded Processor PLDs

Toolflow for ARM-Based Embedded Processor PLDs Toolflow for ARM-Based Embedded Processor PLDs December 2000, ver. 1 Application Note Introduction The Excalibur embedded processor devices achieve a new level of system integration from the inclusion

More information

Arria II GX FPGA Development Kit HSMC Loopback Tests Rev 0.1

Arria II GX FPGA Development Kit HSMC Loopback Tests Rev 0.1 Arria II GX FPGA Development Kit HSMC Loopback Tests Rev 0.1 High Speed Design Team, San Diego Thursday, July 23, 2009 1 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions

More information

F2MC MB90385 series Evaluation Board Documentation. Revision Date Comment V New document

F2MC MB90385 series Evaluation Board Documentation. Revision Date Comment V New document F2MC MB90385 series Evaluation Board Documentation Revision Date Comment V1.0 08.25.02 New document 1 Warranty and Disclaimer To the maximum extent permitted by applicable law, Fujitsu Microelectronics

More information

Using the SDRAM on Altera s DE1 Board with Verilog Designs. 1 Introduction. For Quartus II 13.0

Using the SDRAM on Altera s DE1 Board with Verilog Designs. 1 Introduction. For Quartus II 13.0 Using the SDRAM on Altera s DE1 Board with Verilog Designs For Quartus II 13.0 1 Introduction This tutorial explains how the SDRAM chip on Altera s DE1 Development and Education board can be used with

More information

Stratix FPGA Family. Table 1 shows these issues and which Stratix devices each issue affects. Table 1. Stratix Family Issues (Part 1 of 2)

Stratix FPGA Family. Table 1 shows these issues and which Stratix devices each issue affects. Table 1. Stratix Family Issues (Part 1 of 2) January 2007, ver. 3.1 Errata Sheet This errata sheet provides updated information on Stratix devices. This document addresses known issues and includes methods to work around the issues. Table 1 shows

More information

9. SEU Mitigation in Cyclone IV Devices

9. SEU Mitigation in Cyclone IV Devices 9. SEU Mitigation in Cyclone IV Devices May 2013 CYIV-51009-1.3 CYIV-51009-1.3 This chapter describes the cyclical redundancy check (CRC) error detection feature in user mode and how to recover from soft

More information

Using Flexible-LVDS I/O Pins in

Using Flexible-LVDS I/O Pins in Using Flexible-LVDS I/O Pins in APEX II Devices August 2002, ver. 1.1 Application Note 167 Introduction Recent expansion in the telecommunications market and growth in Internet use have created a demand

More information

Excalibur Solutions DPRAM Reference Design

Excalibur Solutions DPRAM Reference Design Excalibur Solutions DPRAM Reference Design August 22, ver. 2.3 Application Note 173 Introduction The Excalibur devices are excellent system development platforms, offering flexibility, performance, and

More information

Using the Serial FlashLoader With the Quartus II Software

Using the Serial FlashLoader With the Quartus II Software Using the Serial FlashLoader With the Quartus II Software July 2006, ver. 3.0 Application Note 370 Introduction Using the Joint Test Action Group () interface, the Altera Serial FlashLoader (SFL) is the

More information

Implementing LED Drivers in MAX Devices

Implementing LED Drivers in MAX Devices Implementing LE rivers in MAX evices ecember 2002, ver. 1.0 Application Note 286 Introduction Commercial LE river Chips iscrete light-emitting diode (LE) driver chips are common on many system boards.

More information

Implementing LED Drivers in MAX and MAX II Devices. Introduction. Commercial LED Driver Chips

Implementing LED Drivers in MAX and MAX II Devices. Introduction. Commercial LED Driver Chips Implementing LE rivers in MAX and MAX II evices October 2008 AN-286-2.3 Introduction iscrete LE driver chips are common on many system boards. Altera MAX II, MAX 7000B, MAX 7000A, MAX 3000A, and MAX 7000S

More information

MasterBlaster Serial/USB Communications Cable User Guide

MasterBlaster Serial/USB Communications Cable User Guide MasterBlaster Serial/USB Communications Cable User Guide 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Document Version: 1.0 Document Date: July 2004 P25-10322-00 Copyright

More information

E3 Mapper MegaCore Function (E3MAP)

E3 Mapper MegaCore Function (E3MAP) MegaCore Function (E3MAP) March 9, 2001; ver. 1.0 Data Sheet Features Easy-to-use MegaWizard Plug-In generates MegaCore variants Quartus TM II software and OpenCore TM feature allow place-androute, and

More information

Using the Nios Development Board Configuration Controller Reference Designs

Using the Nios Development Board Configuration Controller Reference Designs Using the Nios Development Board Controller Reference Designs July 2006 - ver 1.1 Application Note 346 Introduction Many modern embedded systems utilize flash memory to store processor configuration information

More information

Enhanced Configuration Devices

Enhanced Configuration Devices Enhanced Configuration Devices October 2007, Version 1.2 Errata Sheet Introduction Intel-Flash- Based EPC Device Protection f This errata sheet provides updated information on enhanced configuration devices

More information

Simulating the Reed-Solomon Model

Simulating the Reed-Solomon Model July 2000, ver. 1 Simulating the Reed-Solomon Model with the Visual IP Software User Guide Introduction Altera intellectual property (IP) MegaCore functions are developed and pre-tested by Altera, and

More information

Using I/O Standards in the Quartus Software

Using I/O Standards in the Quartus Software White Paper Using I/O Standards in the Quartus Software This document shows how to implement and view the selectable I/O standards for APEX TM 20KE devices in the Quartus TM software and give placement

More information

Simple Excalibur System

Simple Excalibur System Excalibur Solutions Simple Excalibur System August 2002, ver. 1.0 Application Note 242 Introduction This application note describes a simple Excalibur system design that consists of software running on

More information

Implementing LVDS in Cyclone Devices

Implementing LVDS in Cyclone Devices Implementing LVDS in Cyclone Devices March 2003, ver. 1.1 Application Note 254 Introduction Preliminary Information From high-speed backplane applications to high-end switch boxes, LVDS is the technology

More information

Evaluation Board for CS5351

Evaluation Board for CS5351 Features Evaluation Board for CS5351 Demonstrates recommended layout and grounding arrangements CS8406 generates S/PDIF, and EIAJ-340 compatible digital audio Requires only an analog signal source and

More information

Stratix II FPGA Family

Stratix II FPGA Family October 2008, ver. 2.1 Errata Sheet Introduction This errata sheet provides updated information on Stratix II devices. This document addresses known device issues and includes methods to work around the

More information

PCI to SH-3 AN Hitachi SH3 to PCI bus

PCI to SH-3 AN Hitachi SH3 to PCI bus PCI to SH-3 AN Hitachi SH3 to PCI bus Version 1.0 Application Note FEATURES GENERAL DESCRIPTION Complete Application Note for designing a PCI adapter or embedded system based on the Hitachi SH-3 including:

More information

FPGAs Provide Reconfigurable DSP Solutions

FPGAs Provide Reconfigurable DSP Solutions FPGAs Provide Reconfigurable DSP Solutions Razak Mohammedali Product Marketing Engineer Altera Corporation DSP processors are widely used for implementing many DSP applications. Although DSP processors

More information

Simulating the PCI MegaCore Function Behavioral Models

Simulating the PCI MegaCore Function Behavioral Models Simulating the PCI MegaCore Function Behavioral Models August 2001, ver. 1.0 Application Note 169 Introduction Altera intellectual property (IP) MegaCore functions are developed and pre-tested by Altera,

More information

9. Hot Socketing and Power-On Reset in Stratix IV Devices

9. Hot Socketing and Power-On Reset in Stratix IV Devices February 2011 SIV51009-3.2 9. Hot Socketing and Power-On Reset in Stratix IV Devices SIV51009-3.2 This chapter describes hot-socketing specifications, power-on reset (POR) requirements, and their implementation

More information

MAX II/MAX IIZ Development Board

MAX II/MAX IIZ Development Board MAX II/MAX IIZ Development Board Reference Manual, Inc. (USA) 14100 Murphy Avenue San Martin, CA 95046 (408) 852-0067 http://www.slscorp.com Board Version: r2a Document Version: 1.4 Document Date: Copyright

More information

Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide

Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide 101 Innovation Drive San Jose, CA 95134 www.altera.com

More information

FLEX 10K PCI Prototype Board

FLEX 10K PCI Prototype Board FLEX 10K PCI Prototype Board February 1998, ver. 1 Data Sheet Features Peripheral component interconnect (PCI) standard form factor expansion card Supports in-circuit reconfiguration with an EPC1 Configuration

More information

System Debugging Tools Overview

System Debugging Tools Overview 9 QII53027 Subscribe About Altera System Debugging Tools The Altera system debugging tools help you verify your FPGA designs. As your product requirements continue to increase in complexity, the time you

More information

4. Hot Socketing and Power-On Reset in MAX V Devices

4. Hot Socketing and Power-On Reset in MAX V Devices December 2010 MV51004-1.0 4. Hot Socketing and Power-On Reset in MAX V Devices MV51004-1.0 This chapter provides information about hot-socketing specifications, power-on reset (POR) requirements, and their

More information

StrongARM** SA-110/21285 Evaluation Board

StrongARM** SA-110/21285 Evaluation Board StrongARM** SA-110/21285 Evaluation Board Brief Datasheet Product Features Intel offers a StrongARM** SA-110/21285 Evaluation Board (EBSA-285) that provides a flexible hardware environment to help manufacturers

More information

Implementing PLL Reconfiguration in Stratix & Stratix GX Devices

Implementing PLL Reconfiguration in Stratix & Stratix GX Devices December 2005, ver. 2.0 Implementing PLL Reconfiguration in Stratix & Stratix GX Devices Application Note 282 Introduction Phase-locked loops (PLLs) use several divide counters and delay elements to perform

More information

ZBT SRAM Controller Reference Design

ZBT SRAM Controller Reference Design ZBT SRAM Controller Reference Design for APEX II Devices December 2001, ver. 1.0 Application Note 183 Introduction As communication systems require more low-latency, high-bandwidth interfaces for peripheral

More information

ALTDQ_DQS2 Megafunction User Guide

ALTDQ_DQS2 Megafunction User Guide ALTDQ_DQS2 Megafunction ALTDQ_DQS2 Megafunction 101 Innovation Drive San Jose, CA 95134 www.altera.com UG-01089-2.2 Feedback Subscribe 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE,

More information

ARM-Based Embedded Processor Device Overview

ARM-Based Embedded Processor Device Overview ARM-Based Embedded Processor Device Overview February 2001, ver. 1.2 Data Sheet Features... Industry-standard ARM922T 32-bit RISC processor core operating at up to 200 MHz, equivalent to 210 Dhrystone

More information

DYNAMIC ENGINEERING. 150 DuBois St. #3, Santa Cruz Ca Fax Est

DYNAMIC ENGINEERING. 150 DuBois St. #3, Santa Cruz Ca Fax Est DYNAMIC ENGINEERING 150 DuBois St. #3, Santa Cruz Ca. 95060 831-457-8891 Fax 831-457-4793 sales@dyneng.com www.dyneng.com Est. 1988 User Manual PC104p2PMC Alternate Name: PCI1042PMC Adapt a 32 bit PMC

More information

Cyclone II FPGA Family

Cyclone II FPGA Family ES-030405-1.3 Errata Sheet Introduction This errata sheet provides updated information on Cyclone II devices. This document addresses known device issues and includes methods to work around the issues.

More information

HYDRA-X10. Power Application Controllers TM. PAC HYDRA-X User s Guide. Copyright 2014 Active-Semi, Inc.

HYDRA-X10. Power Application Controllers TM. PAC HYDRA-X User s Guide.   Copyright 2014 Active-Semi, Inc. HYDRA-X10 Power Application Controllers TM PAC5210 - HYDRA-X User s Guide www.active-semi.com Copyright 2014 Active-Semi, Inc. CONTENTS Contents...2 Overview...3 HYDRA-X10 Body Resources...5 Header Descriptions...5

More information

CHAPTER 1 Introduction of the tnano Board CHAPTER 2 tnano Board Architecture CHAPTER 3 Using the tnano Board... 8

CHAPTER 1 Introduction of the tnano Board CHAPTER 2 tnano Board Architecture CHAPTER 3 Using the tnano Board... 8 CONTENTS CHAPTER 1 Introduction of the tnano Board... 2 1.1 Features...2 1.2 About the KIT...4 1.3 Getting Help...4 CHAPTER 2 tnano Board Architecture... 5 2.1 Layout and Components...5 2.2 Block Diagram

More information

Supporting Custom Boards with DSP Builder

Supporting Custom Boards with DSP Builder Supporting Custom Boards with DSP Builder April 2003, ver. 1.0 Application Note 221 Introduction As designs become more complex, verification becomes a critical, time consuming process. To address the

More information

Excalibur Solutions Using the Expansion Bus Interface. Introduction. EBI Characteristics

Excalibur Solutions Using the Expansion Bus Interface. Introduction. EBI Characteristics Excalibur Solutions Using the Expansion Bus Interface October 2002, ver. 1.0 Application Note 143 Introduction In the Excalibur family of devices, an ARM922T processor, memory and peripherals are embedded

More information

Transient Voltage Protection for Stratix GX Devices

Transient Voltage Protection for Stratix GX Devices White Paper Devices Introduction This document addresses the phenomenon known as transient voltage in a system using Stratix GX devices. Hot socketing is identified as the major source of transient voltage.

More information

Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices

Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices December 1999, ver. 1.02 Application Note 116 Introduction APEX TM 20K, FLEX 10K, and FLEX 6000 devices can be configured using one of six configuration

More information

Intel Cyclone 10 LP Device Family Pin Connection Guidelines

Intel Cyclone 10 LP Device Family Pin Connection Guidelines Intel Cyclone 10 LP Device Family Pin Connection Guidelines Subscribe Send Feedback Latest document on the web: PDF HTML Contents Contents... 3 Intel Cyclone 10 LP Pin Connection Guidelines...4 Clock and

More information

11. SEU Mitigation in Stratix IV Devices

11. SEU Mitigation in Stratix IV Devices 11. SEU Mitigation in Stratix IV Devices February 2011 SIV51011-3.2 SIV51011-3.2 This chapter describes how to use the error detection cyclical redundancy check (CRC) feature when a Stratix IV device is

More information

Altera I/O Phase-Locked Loop (Altera IOPLL) IP Core User Guide

Altera I/O Phase-Locked Loop (Altera IOPLL) IP Core User Guide 2015.05.04 Altera I/O Phase-Locked Loop (Altera IOPLL) IP Core User Guide UG-01155 Subscribe The Altera IOPLL megafunction IP core allows you to configure the settings of Arria 10 I/O PLL. Altera IOPLL

More information

Excalibur Device Overview

Excalibur Device Overview May 2002, ver. 2.0 Data Sheet Features... Combination of a world-class RISC processor system with industryleading programmable logic on a single device Industry-standard ARM922T 32-bit RISC processor core

More information

HYDRA-X23/X23S. Power Application Controllers. PAC HYDRA-X User s Guide. Copyright 2014 Active-Semi, Inc.

HYDRA-X23/X23S. Power Application Controllers. PAC HYDRA-X User s Guide.   Copyright 2014 Active-Semi, Inc. HYDRA-X23/X23S Power Application Controllers PAC5223 - HYDRA-X User s Guide www.active-semi.com Copyright 2014 Active-Semi, Inc. CONTENTS Contents...2 Overview...3 HYDRA-X23/X23S Body Resources...5 Header

More information

Video Input Daughter Card Reference Manual

Video Input Daughter Card Reference Manual Video Input Daughter Card Reference Manual 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Document Version 1.0 Document Date November 2006 Copyright 2006 Altera Corporation.

More information

Implementing the Top Five Control-Path Applications with Low-Cost, Low-Power CPLDs

Implementing the Top Five Control-Path Applications with Low-Cost, Low-Power CPLDs Implementing the Top Five Control-Path Applications with Low-Cost, Low-Power CPLDs WP-01146-1.2 White Paper Since their introduction in the mid-1980s and across all end markets, CPLDs have been design

More information

Active Serial Memory Interface

Active Serial Memory Interface Active Serial Memory Interface October 2002, Version 1.0 Data Sheet Introduction Altera Cyclone TM devices can be configured in active serial configuration mode. This mode reads a configuration bitstream

More information

Using MAX 3000A Devices as a Microcontroller I/O Expander

Using MAX 3000A Devices as a Microcontroller I/O Expander Using MAX 3000A Devices as a Microcontroller I/O Expander August 2003, Ver 1.0 Application Note 265 Introduction Advantages of Using MAX 3000A Devices Many microcontrollers and microprocessors limit I/O

More information

AIRbus Interface. Features Fixed width (8-, 16-, or 32-bit) data transfers (dependent on the width. Functional Description. General Arrangement

AIRbus Interface. Features Fixed width (8-, 16-, or 32-bit) data transfers (dependent on the width. Functional Description. General Arrangement AIRbus Interface December 22, 2000; ver. 1.00 Functional Specification 9 Features Fixed width (8-, 16-, or 32-bit) data transfers (dependent on the width of the data bus) Read and write access Four-way

More information

QDR II SRAM Board Design Guidelines

QDR II SRAM Board Design Guidelines 8 emi_dg_007 Subscribe The following topics provide guidelines for you to improve your system's signal integrity and layout guidelines to help successfully implement a QDR II or QDR II+ SRAM interface

More information

Errata Sheet for Cyclone IV Devices

Errata Sheet for Cyclone IV Devices Errata Sheet for Cyclone IV Devices ES-01027-2.3 Errata Sheet This errata sheet provides updated information on known device issues affecting Cyclone IV devices. Table 1 lists specific Cyclone IV issues,

More information

Connecting Spansion SPI Serial Flash to Configure Altera FPGAs

Connecting Spansion SPI Serial Flash to Configure Altera FPGAs Connecting SPI Serial Flash to Configure Altera s Application By Frank Cirimele 1. Introduction Altera s are programmable logic devices used for basic logic functions, chip-to-chip connectivity, signal

More information

SignalTap II with Verilog Designs. 1 Introduction. For Quartus II 13.1

SignalTap II with Verilog Designs. 1 Introduction. For Quartus II 13.1 SignalTap II with Verilog Designs For Quartus II 13.1 1 Introduction This tutorial explains how to use the SignalTap II feature within Altera s Quartus II software. The SignalTap II Embedded Logic Analyzer

More information

Nios II Performance Benchmarks

Nios II Performance Benchmarks Subscribe Performance Benchmarks Overview This datasheet lists the performance and logic element (LE) usage for the Nios II Classic and Nios II Gen2 soft processor, and peripherals. Nios II is configurable

More information

Arria II GX FPGA Development Board

Arria II GX FPGA Development Board Arria II GX FPGA Development Board DDR2 SODIMM Interface 2011 Help Document DDR2 SODIMM Interface Measurements were made on the DDR2 SODIMM interface using the Board Test System user interface. The Address,

More information

Quartus. Tutorial. Programmable Logic Development System

Quartus. Tutorial. Programmable Logic Development System Quartus Programmable Logic Development System Tutorial Altera Corporation 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Version 1999.10 Revision 2 November 1999 P25-04732-01

More information

Enhanced Configuration Devices

Enhanced Configuration Devices Enhanced Configuration Devices July 2008, Version 1.3 Errata Sheet Introduction Intel-Flash- Based EPC Device Protection f This errata sheet provides updated information on enhanced configuration devices

More information

PMC to PCI Express Adapter with JN4 Connector Breakout

PMC to PCI Express Adapter with JN4 Connector Breakout Innovative Integration Real time solutions! Mar 2009, Rev 1.1 PMC to PCI Express Adapter with JN4 Connector Breakout FEATURES Adapt one PMC to a PCI Express slot 4 lane PCI Express Host Interface PCI 64

More information

Lancelot. VGA video controller for the Altera Excalibur processors. v2.1. Marco Groeneveld May 1 st,

Lancelot. VGA video controller for the Altera Excalibur processors. v2.1. Marco Groeneveld May 1 st, Lancelot VGA video controller for the Altera Excalibur processors. v2.1 Marco Groeneveld May 1 st, 2003 http://www.fpga.nl 1. Description Lancelot is a VGA video controller for the Altera Nios and Excalibur

More information

CCD VIDEO PROCESSING CHAIN LPF OP AMP. ADS-93x 16 BIT A/D SAMPLE CLAMP TIMING GENERATOR ALTERA 7000S ISP PLD UNIT INT CLOCK MASTER CLOCK

CCD VIDEO PROCESSING CHAIN LPF OP AMP. ADS-93x 16 BIT A/D SAMPLE CLAMP TIMING GENERATOR ALTERA 7000S ISP PLD UNIT INT CLOCK MASTER CLOCK ADS-93X Timing Generator Board User's Manual Timing Generator Board Description This Timing Generator Board is designed to be part of a two board set, used in conjunction with an ON Semiconductor CCD Imager

More information

System Testability Using Standard Logic

System Testability Using Standard Logic System Testability Using Standard Logic SCTA037A October 1996 Reprinted with permission of IEEE 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue

More information

USB BitJetLite Download Cable

USB BitJetLite Download Cable USB BitJetLite Download Cable User Guide, Inc. (USA) 14100 Murphy Avenue San Martin, CA 95046 (408) 852-0067 http://www.slscorp.com Product Version: 1.0 Document Version: 1.0 Document Date: Copyright 2010,.All

More information

Interfacing Cyclone III Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems

Interfacing Cyclone III Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems Interfacing Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems April 2008 AN-447-1.1 Introduction Altera Cyclone III devices are compatible and support 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards. This application

More information

Using Flexible-LVDS Circuitry in Mercury Devices

Using Flexible-LVDS Circuitry in Mercury Devices Using Flexible-LVDS Circuitry in Mercury Devices November 2002, ver. 1.1 Application Note 186 Introduction With the ever increasing demand for high bandwidth and low power consumption in the telecommunications

More information

White Paper Configuring the MicroBlaster Passive Serial Software Driver

White Paper Configuring the MicroBlaster Passive Serial Software Driver White Paper Configuring the MicroBlaster Passive Serial Software Driver Introduction The MicroBlaster TM software driver is designed to configure Altera programmable logic devices (PLDs) through the ByteBlasterMV

More information

Simulating the PCI MegaCore Function Behavioral Models

Simulating the PCI MegaCore Function Behavioral Models Simulating the PCI MegaCore Function Behavioral Models February 2003, ver. 1.2 Application Note 169 Introduction Altera intellectual property (IP) MegaCore functions are developed and pre-tested by Altera,

More information

PCI Express Multi-Channel DMA Interface

PCI Express Multi-Channel DMA Interface 2014.12.15 UG-01160 Subscribe The PCI Express DMA Multi-Channel Controller Example Design provides multi-channel support for the Stratix V Avalon Memory-Mapped (Avalon-MM) DMA for PCI Express IP Core.

More information

Evaluation Board for CS5361

Evaluation Board for CS5361 Evaluation Board for CS5361 Features Demonstrates recommended layout and grounding arrangements CS8406 generates S/PDIF, and EIAJ-340 compatible digital audio Requires only an analog signal source and

More information

SERDES Transmitter/Receiver (ALTLVDS) Megafunction User Guide

SERDES Transmitter/Receiver (ALTLVDS) Megafunction User Guide SERDES Transmitter/Receiver (ALTLVDS) Megafunction User Guide 101 Innovation Drive San Jose, CA 95134 www.altera.com Software Version: 8.1 Document Version: 4.0 Document Date: November 2008 UG-MF9504-4.0

More information

EZ-USB FX3 Development Kit Guide

EZ-USB FX3 Development Kit Guide CYUSB3KIT-001 EZ-USB FX3 Development Kit Guide Doc. #: 001-70237 Rev. *A Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

DDR & DDR2 SDRAM Controller Compiler

DDR & DDR2 SDRAM Controller Compiler DDR & DDR2 SDRAM Controller Compiler May 2006, Compiler Version 3.3.1 Errata Sheet This document addresses known errata and documentation issues for the DDR and DDR2 SDRAM Controller Compiler version 3.3.1.

More information

FPGA Design Security Solution Using MAX II Devices

FPGA Design Security Solution Using MAX II Devices White Paper FPGA Solution Using MAX II Devices Introduction SRAM-based FPGAs are volatile devices. They require external memory to store the configuration data that is sent to them at power up. It is possible

More information

Nios Embedded Processor UART Peripheral

Nios Embedded Processor UART Peripheral Nios Embedded Processor UART Peripheral March 2001, ver. 1.1 Data Sheet General Description The Nios universal asynchronous receiver/transmitter UART implements simple RS-232 asynchronous transmit and

More information

Nios II Embedded Design Suite 7.1 Release Notes

Nios II Embedded Design Suite 7.1 Release Notes Nios II Embedded Design Suite 7.1 Release Notes May 2007, Version 7.1 Release Notes This document contains release notes for the Nios II Embedded Design Suite (EDS) version 7.1. Table of Contents: New

More information

Introduction to the Altera Qsys System Integration Tool. 1 Introduction. For Quartus Prime 15.1

Introduction to the Altera Qsys System Integration Tool. 1 Introduction. For Quartus Prime 15.1 Introduction to the Altera Qsys System Integration Tool For Quartus Prime 15.1 1 Introduction This tutorial presents an introduction to Altera s Qsys system integration tool, which is used to design digital

More information

5. Using MAX V Devices in Multi-Voltage Systems

5. Using MAX V Devices in Multi-Voltage Systems June 2017 MV51005-2017.06.16 5. Using MAX V Devices in Multi-Voltage Systems MV51005-2017.06.16 This chapter describes how to implement Altera devices in multi-voltage systems without damaging the device

More information