POWER FLOW ANALYSIS AND PROTECTION COORDINATION OF REAL TIME SYSTEM

Size: px
Start display at page:

Download "POWER FLOW ANALYSIS AND PROTECTION COORDINATION OF REAL TIME SYSTEM"

Transcription

1 POWER FLOW ANALYSIS AND PROTECTION COORDINATION OF REAL TIME SYSTEM Thanigaivel M PG Scholar Power Systems Engineering Sri Muthukumaran Institute of Technology Chennai, India Azeezur Rahman A Assistant Professor : Electrical and Electronics Engineering Sri Muthukumaran Institute of Technology Chennai, India Abstract: This paper studies about the Power Flow and Protection Coordination of Sri Muthukumaran Institute of Technlogy (SMIT) system. Power flow studies is to plan ahead and account for various hypothetical situations. For instance, what if a transmission line with in the power system properly supplying loads must be taken offline for maintenance, then remaining line in the system must handle the required loads without exceeding the rated parameters For this project ETAP is used to calculate the voltage profile in the SMIT system. Load Flow Analysis is useful in solving power flow problems and calculate the unknown quantities. Protection Coordination is the sequence in which the devices operate to trip the circuit during faulty conditions. Circuit Breakers are the devices used in SMIT system and they are coordinated in a downstream sequence in order to avoid the blackout condition. The Circuit Breakers are sized in this system using the fault current obtained from the Short Circuit Analysis. Short Circuit Analysis is performed by faulting all the buses in order to find the fault current through all the buses. The various data collected from SMIT are used to construct the Single Line Diagram to study the Load Flow and Protection Coordination of the system. problems and to make correct decisions in planning upgrades or extensions in the power system, which lead to reduced operating cost, increased availability and minimized equipment or system failure. The analysis consists of load flow, short circuit, and Protection Coordination. The engineer should perform the analysis with a well-defined list of electrical distribution system performance criteria in mind, as follows: To design an inherently safe system. To standardize equipment sizing practices and protection methods. To improve the efficiency of the system by designing suitable protective devices for various faults. To set devices and protect the equipment from damage and to selectively shut down sections of the power system in response to a system disturbance. The proposed flow chart for this paper is as follows Keyword: ETAP, Load Flow, Short Circuit, Protection Coordination, Circuit Breakers. I. INTRODUCTION The power system infrastructure, grid to on- premise wiring and from generation resources to the electric electrical equipment, is a complex system that requires extensive analysis to operate efficiently and effectively. Every new load, upgrade, extension, and reconfiguration of the network can create unexpected stresses and interactions to the original power system which was not designed for. Power system studies provide information that allows to understand the root of present or future power system Fig. 1. Flow Diagram ISSN: Page 57

2 II.LOAD FLOW ANALYSIS ETAP provides four load flow calculation methods: Adaptive Newton-Raphson, Newton-Raphson, Fast- Decoupled, and Accelerated Gauss-Seidel. They possess different convergent characteristics, and sometimes one is more favorable in terms of achieving the best performance. You can select any one of them depending on your system configuration, generation, loading condition, and the initial bus voltages. Newton-Raphson Method The Newton-Raphson method formulates and solves iteratively the following load flow equation: where P and Q are specified bus real and reactive power mismatch vectors between specified value and calculated value, respectively; V and δ represents bus voltage magnitude and angle vectors in an incremental form; and J1 through J4 are called Jacobian matrices. The Newton-Raphson method possesses a unique quadratic convergence characteristic. It usually has a very fast convergence speed compared to other load flow calculation methods. It also has the advantage that the convergence criteria are specified to ensure convergence for bus real power and reactive power mismatches. This criterion gives you direct control of the accuracy you want to specify for the load flow solution. The convergence criteria for the Newton- Raphson method are typically set to MW and Mvar. The Newton-Raphson method is highly dependent on the bus voltage initial values. A careful selection of bus voltage initial values is strongly recommended. Before running load flow using the Newton-Raphson method, ETAP makes a few Gauss-Seidel iterations to establish a set of sound initial values for the bus voltages. The Newton-Raphson method is recommended for use with any system as a first choice. Adaptive Newton-Raphson Method This improved Newton-Raphson Method introduces a set of smaller steps for iterations where a potential divergence condition is encountered. The smaller increments may help to reach a load flow solution for some systems where the regular Newton-Raphson method might fail to reach one. The Newton-Raphson method is based on the Taylor series approximation. For simplicity and incremental steps a linear interpolation/extrapolation of the additional time step increments is performed to improve the solution. The incremental steps are controlled by adjusting the value of ak to find a possible solution for the following solution step. The test results prove that the adaptive load flow method can improve the convergence for distribution and transmission systems with significant series capacitance effects (i.e. negative series reactance). It is also considered to possibly improve convergence for systems with very small impedance values, but that is not guaranteed. One drawback of using this method is reduced calculation speed because of the incremental steps in the solution. Fast-Decoupled Method The Fast-Decoupled method is derived from the Newton-Raphson method. It takes the fact that a small change in the magnitude of bus voltage does not vary the real power at the bus appreciably, and likewise, for a small change in the phase angle of the bus voltage, the reactive power does not change appreciably. Thus the load flow equation from the Newton-Raphson method can be simplified into two separate decoupled sets of load flow equations, which can be solved iteratively: The Fast-Decoupled method reduces computer memory storage by approximately half, compared to the Newton-Raphson method. It also solves the load flow equations using significantly less computer time than that required by the Newton-Raphson method, since the Jacobian matrices are constant. As with the Newton-Raphson method, convergence criteria of the Fast-Decoupled method is based on real power and reactive power mismatches, which are typically set to in the order of MW and Mvar. Although for a fixed number of iterations it is not as accurate as the Newton-Raphson method, the savings in computer time and the more favorable convergence criteria makes for a very good overall performance. In general, the Fast-Decoupled method can be used as an alternative to the Newton-Raphson method, and it should definitely be given a try if the Newton-Raphson method has failed when dealing with long radial systems or systems that have long transmission lines or cables. ISSN: Page 58

3 III.SHORT CIRCUIT ANALYSIS Short-Circuit Analysis program analyzes the effect of 3-phase, line-to-ground, line-to-line, and double line-toground faults on electrical distribution systems. The program calculates the total short circuit currents as well as the contributions of individual motors, generators, and utility ties in the system. Fault duties are in compliance with the latest editions of the ANSI/IEEE Standards (C37 series) and IEC Standards (IEC and others). This chapter describes definitions and usage of different tools required to run short circuit studies. In order to give a better understanding of the standards applied to short circuit studies and to interpret output results more easily, some theoretical background, and standard information are also included. The ANSI/IEE Short-Circuit Toolbar and IEC Short- Circuit Toolbar sections explain how you can launch a short circuit calculation, open and view an output report, or select display options. The Short-Circuit Study Case Editor section explains how you can create a new study case, what parameters are required to specify a study case, and how to set them. The Display Options section explains what options are available for displaying some key system parameters and the output results on the one-line diagram, and how to set them. The ANSI/IEEE Calculation Methods section lists standard compliance information and both general and detailed descriptions of calculation methods used by ETAP. In particular, definitions and discussion of ½, 1.5-4, and 30 cycle networks, calculation of ANSI multiplying factors, and high voltage and low voltage circuit breaker momentary and interrupting duties are provided. The Required Data section describes what data are necessary to perform short circuit calculations and where to enter them. If you perform short circuit studies using IEC Standards, the IEC Calculation Methods section provides useful information on standard compliance, definitions on most commonly used IEC technical terms, and general and detailed descriptions of calculation methods for all important results, including initial symmetrical short circuit current, peak short circuit current, symmetrical short circuit breaking current, and steady-state short circuit current. Finally, the Short-Circuit Study Output Report section illustrates and explains output reports and their format. IV. PROTECTION COORDDINATTION ANALYSIS The Protection Coordination is represented by a star view in ETAP. A Star View is a presentation containing one-line diagram elements and their associated characteristic curves and diagrams. Star View provides a graphical user interface for viewing, coordinating, and customizing element curves and diagrams. Primary and Back-up Protection: For attaining higher reliability, quick action and improvements in operating flexibility of the protection schemes, separate elements of a power system, in addition to main or primary protection, are provided with a back-up and auxiliary protection. First in line of defense is main protection which ensures quick action and selective clearing of faults within the boundary of the circuit section or the element it protects. Main protection is essentially provided as a rule. Back up protection gives back up to the main protection, when the main protection fails to operate or is cut out for repairs etc. Failure of the main protection may be due to any of the following reasons:- A) D.C supply to the tripping circuit fails. B) Current or voltage supply to the relay fails. C) Tripping mechanism of the circuit breaker fails. D) Circuit breaker fails to operate. Back up protection may be provided either on the same circuit breakers which will be opened by the main protection or may use different circuit breakers. Usually, more than the faulty section is isolated when the backup protection operates. Very often the main protection of a circuit acts as back up protection for the adjacent circuit. Back up protection is provided where main protection of the adjacent circuit fails to back up the given circuit. For simplification, back up protection can have a lower sensitivity factor and be operative over a limited back up zone i.e. be operative for only part of the protected circuit. Methods of back up protection can be classified as follows:- A) Relay Back-up. B) Breaker Back-up. C) Remote Back-up. D) Centrally Co-ordinated Back-up. In this, current is measured at various points along the current path, for e.g., at source, intermediate locations, consumers end. The tripping time at these locations are graded in such a way that the circuit breaker nearest to the faulty section operates first, giving primary protection. The circuit breaker at the previous section operates only as a back-up. The tripping time at sections C, B and A are graded such that for a fault beyond C, breaker at C operates as ISSN: Page 59

4 a primary protection. Relays at A and B also may start operating but they are provided with enough time lags so that breaker at B operates only if breaker at C does not. Thus, for a fault beyond C, breaker at C will operate after 0.1 second. If it fails to operate, the breaker at B will operate after 0.6 second (Back-up for C) and if the breaker at B also fails to operate, breaker at A will operate after 1 second (Back-up for B and C). details about the flow of generated power according to the demand. A sample of the complete report is attached for the reference. The buses which are faulted are also represented in this report. The three important buses to be considered from the above result are Main Bus, Library Bus and CSE bus. Thus the Load Flow can be studied using the report and verified by using the SLD. V. SIMULATION RESULTS AND DISCUSSION In this project the systematic analysis of SMIT is analyzed using ETAP The various tests performed on the system are Load Flow Analysis Short Circuit Analysis Protection Coordination The single Line Diagrams and results of the above tests are discussed below SINGLE LINE DIAGRAM OF LOAD FLOW ANALYSIS The Single Line Diagram is drawn in One Line View and the existing ratings are given in detail. Load Flow Analysis module is selected and generator bus is made as swing bus for reference. RUN function is clicked and the analysis is performed. The SLD generated after running Load Flow Analysis is as shown in Figure 5.1. From Figure 2, it is observed that there is a voltage drop of 0.05p.u in CSE BUS. The CSE BUS is highlighted in violet colour as shown in Figure 2 which represents the voltage drop in the bus. The generator in the existing system is kept as backup. During power shut down this generator (320 kva) is used to supply power for the SMIT system. Fig 2: SLD of Load Flow Analysis Fig. 3.Load Flow Analysis Report. LOAD FLOW ANALYSIS REPORT The complete Load Flow Analysis report is as shown in Figure 3. The Load Flow analysis report gives the ISSN: Page 60

5 SINGLE LINE DIAGRAM OF SHORT CIRCUIT ANALYSIS Short Circuit Analysis is performed by selecting the Short Circuit module. Fault is created in all the buses in order to make use of the calculated fault current for protection coordination. Circuit Breaker is the protective device used in the existing system. From the SLD the fault current of various buses are found, based on which the coordination of protective devices are to be performed later. In this analysis all buses are faulted in order to obtain fault current for all buses. From the SLD the devices which are over loaded are highlighted. Similar to Load Flow Analysis a separate report is generated which gives the details regarding the various buses. The fault current value obtained in this test is used in the coordination of circuit breaker. The SLD is as shown in Figure 4. Fig 4: SLD of Short Circuit Analysis SHORT CIRCUIT ANALYSIS REPORT Similar to the Load Flow Report a report is generated for Short Circuit Analysis also. The report summarizes the fault current values in various buses and other equipment.the report is generated for all the buses present in the system in the Figure 5. The report for BUS 1 is given as a sample. From the report the fault current f all the buses are found. The Impedance/Resistance value is also found using this report. Fig. 5.Short Circuit Analysis Report PROTECTION COORDINATION Circuit breakers are the protective devices used in this system and they are coordinated with respect to time and represented in the Time Current Characteristic Curve (TCC Curve). The Circuit Breakers are coordinated from downstream in order to avoid the black out in the system. The coordination of breaker is shown for a particular section of the entire SMIT system. From Figure 6.CB 25 denotes the circuit breaker present in load side,cb7 is present in CSE BUS and CB2 is present in the main bus. The curve shows that the circuit breakers are operating from the low voltage side in order to avoid blackout condition. In the curve current is plotted along X-axis and time is plotted along Y-axis. Thus from curve the time at which device operates for fault current is found. A separate setting sheet for the circuit breaker is also generated. From this curve the coordination of devices can be found with respect to time. ISSN: Page 61

6 Figure. 6. TCC CURVE VI. CONCLUSION Thus, the details collected from SMIT campus is fed in to the ETAP software. The Single Line Diagram is drawn in the One Line View and Load Flow Analysis is performed by selecting the module. From the results, an efficiency drop in CSE Bus is observed. The load flowing through the system is given in the report generated. After the completion of Load Flow Analysis fault is created in all the buses and Short Circuit Analysis is performed. Three phase fault is created and the reports are generated. Sample report of BUS 1 is given in Result. It is observed that all the protective devices present in the system are overloaded and highlighted as shown in SLD. The fault current calculated in Short Circuit Analysis is used to coordinate the protective devices. Circuit Breakers are the protective devices present in the existing system. Circuit Breakers are coordinated in downstream sequence in order to avoid the blackout condition. Further TCC curves are drawn for particular portion of the system to show the coordination of devices and device settings are generated in the report format. Thus, the simulation diagram is completed for the existing system and the various reports are generated. Delivery, Volume 3, No. 3.Power System Technology, vol. 24, no. 4, [2]. Balaguer.I, Q. Lei, S. Yang, U. Supatti, and F. Z. Peng,(2011) Control for grid-connected and intentional islanding operations of distributed power generation, IEEE Trans. Ind. Electron., vol. 58, no. 1, pp [3]. P. S. Bhowmik, D. V. Rajan,a nd S. P. Bose,(2012) Load Flow Analysis: An Overview World Academy of Science, Engineering and Technology [4]. Carpentier (1979) Optimal Power Flows, Electrical Power and Energy Systems, Vol.1, pp [5]. J. Carpentier,(1985) Optimal power flow, uses, methods and development, Planning andoperation of electrical energy system Proc. of IFAC symposium, Brazil, pp [6]. Dharamjit and D.K.Tanti,(2012) Load Flow study on IEEE 30 Bussystem, International Journal of Scientific and Research Publications, Volume 2, Issue 11, ISSN [7]. H. Dommel,(1963) Digital methods for power system analysis (in German), Arch. Elektrotech., vol. 48, pp , and pp , April [8]. Girgis.A and S. Brahma, (2001) Effect of distributed generation on protective device coordination in distribution system, in Proc. LESCOPE, pp [9]. Nagrath & Kothari, Modern power system analysis, Tata McGraw Hill, June pp (177, 186,, 205,21 7). References [1]. Albert0 J. Urdaneta Member, IEEE Ram & Nadira, Member, IEEE,Luis G.Luis G.Pdrez Jimdnez,(1998) Optimal Coordination of Directional Overcurrent Relays Interconnected Power Systems,IEEE Transactions on Power ISSN: Page 62

RELAY CO-ORDINATION IN A 11KV SUBSTATION USING ETAP

RELAY CO-ORDINATION IN A 11KV SUBSTATION USING ETAP International Journal of Recent Innovation in Engineering and Research Scientific Journal Impact Factor - 3.605 by SJIF e- ISSN: 2456 2084 RELAY CO-ORDINATION IN A 11KV SUBSTATION USING ETAP Ms. Serene

More information

Power System Protection with Relay Co-Ordination

Power System Protection with Relay Co-Ordination Power System Protection with Relay Co-Ordination Mehulkumar D. Devdhariya 1, Vibhuti R. Adroja 2, Kajal M. Rafaliya 3, Prof. Manan M. Desai 4 1,2,3 Students, B.E. in Electrical Engineering, 4 Assistant

More information

Performance analysis of FACTS devices in steady state power flow

Performance analysis of FACTS devices in steady state power flow Performance analysis of FACTS devices in steady state power flow VELAMURI SURESH 1, SREEJITH.S 2 1 Research Scholar, 2 Associate Professor School of Electrical engineering, VIT University Vellore, INDIA

More information

ETAP PowerStation 4.0

ETAP PowerStation 4.0 ETAP PowerStation 4.0 User Guide Copyright 2001 Operation Technology, Inc. All Rights Reserved This manual has copyrights by Operation Technology, Inc. All rights reserved. Under the copyright laws, this

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 1, July 2017

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 1, July 2017 Congestion Management in Deregulated Power System Using Market Splitting Based Approach Manish Harchand 1, KanwardeepSingh 2 M.Tech student 1, Associate professor 2 Department of Electrical Engineering,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online): 2321-0613 Comparison of Shunt Facts Devices for the Improvement of Transient Stability of Two Machine

More information

Short-Circuit Calculation Methods

Short-Circuit Calculation Methods Short-Circuit Calculation Methods Oct 1, 2004 12:00 PM, By Massimo Mitolo, Ph.D., Chu & Gassman Consulting Engineers Ref.: http:// ecmweb.com/mag/electric_shortcircuit_calculation_methods/ The task may

More information

EMS / DMS. DISTRIBUTION MANAGEMENT SYSTEM- Functional Description

EMS / DMS. DISTRIBUTION MANAGEMENT SYSTEM- Functional Description EMS / DMS DISTRIBUTION MANAGEMENT SYSTEM- Content 1. INTRODUCTION... 4 2. MODES OF INTERACTION WITH THE SCADA SYSTEM... 5 2.1 Simulation Mode... 5 2.2 State Estimation Mode (See functional description

More information

Smart and Adaptive Over Current Protection for Distribution System with Distributed Generation

Smart and Adaptive Over Current Protection for Distribution System with Distributed Generation Smart and Adaptive Over Current Protection for Distribution System with Distributed Generation M. Chandran 1, S. Ravindra kumar 2 Dr. P. Somasundaram 3 PG Student [PSE], Dept. of EEE, College of Engineering,

More information

Power System Protection Training

Power System Protection Training Power System Protection Training Contact us Today for a FREE quotation to deliver this course at your company?s location. https://www.electricityforum.com/onsite-training-rfq Refresh your knowledge of

More information

Load Flow Analysis. I Objectives

Load Flow Analysis. I Objectives EE342 Electrical Power Lab Experiment PS3 Load Flow Analysis I Objectives To demonstrate load flow concepts. To study system performance under different operating conditions. To experience the real feel

More information

Applying branch circuit breakers and supplementary protectors in North America

Applying branch circuit breakers and supplementary protectors in North America Supersedes June 2017 FAZ-NA-L FAZ-NA FAZ Applying branch circuit breakers and supplementary protectors in North America Introduction Eaton offers three types of miniature circuit breakers for use in North

More information

Power System Enterprise Solution

Power System Enterprise Solution Power System Enterprise Solution ETAP is the most comprehensive analysis platform for the design, simulation, operation, control, optimization, and automation of generation, transmission, distribution,

More information

Automation of Distribution Grid with FLISR using ZigBee Communication

Automation of Distribution Grid with FLISR using ZigBee Communication Automation of Distribution Grid with FLISR using ZigBee Communication 1 Ajinkya Shirdhankar, 2 Digambar Ahire, 3 B. S. Kunure, 4 Asmita Bote Department of Electrical Engineering, ZCOER, Pune, India Abstract

More information

LAB1 INTRODUCTION TO PSS/E EE461: POWER SYSTEMS COLORADO STATE UNIVERSITY

LAB1 INTRODUCTION TO PSS/E EE461: POWER SYSTEMS COLORADO STATE UNIVERSITY LAB1 INTRODUCTION TO PSS/E EE461: POWER SYSTEMS COLORADO STATE UNIVERSITY PURPOSE: The purpose of this lab is to introduce PSS/E. This lab will introduce the following aspects of PSS/E: Introduction to

More information

SPECIFIC INTERCONNECTION PROTECTION REQUIREMENTS... 5

SPECIFIC INTERCONNECTION PROTECTION REQUIREMENTS... 5 Central Hudson Gas & Electric Corporation (CHG&E) Interconnection Protection Requirements for Distributed Generators of Greater than 300 kva Connected in Parallel with the CHG&E Electrical Delivery System

More information

ELG4125: System Protection

ELG4125: System Protection ELG4125: System Protection System Protection Any power system is prone to 'faults', (also called short-circuits), which occur mostly as a result of insulation failure and sometimes due to external causes.

More information

Transient Stability Improvement of Long Transmission Line System by Using SVC

Transient Stability Improvement of Long Transmission Line System by Using SVC Transient Stability Improvement of Long Transmission Line System by Using SVC Dr.Tarlochan Kaur 1 and Sandeep Kakran 2 1 Associate Professor, EED, PEC University of Technology, Chandigarh, India 2 Assistant

More information

Applying branch circuit breakers and supplementary protectors in North America

Applying branch circuit breakers and supplementary protectors in North America Product Application AP01102005E WMZT WMZS Applying branch circuit breakers and supplementary protectors in North America Introduction Eaton offers two types of miniature circuit breakers for use in North

More information

Exercise 2. Single Bus Scheme EXERCISE OBJECTIVE DISCUSSION OUTLINE. The single bus scheme DISCUSSION

Exercise 2. Single Bus Scheme EXERCISE OBJECTIVE DISCUSSION OUTLINE. The single bus scheme DISCUSSION Exercise 2 Single Bus Scheme EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with electric power substations using the single bus scheme with bus section circuit breakers.

More information

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February ISSN

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February ISSN International Journal of Scientific & Engineering Research Volume 4, Issue, February-1 1 Voltage Stability Enhancement through Static Var Compensator A.S. Siddiqui 1, Tanmoy Deb Jamia Millia Islamia, New

More information

System Protection and Control Subcommittee

System Protection and Control Subcommittee Power Plant and Transmission System Protection Coordination GSU Phase Overcurrent (51T), GSU Ground Overcurrent (51TG), and Breaker Failure (50BF) Protection System Protection and Control Subcommittee

More information

A Simple and Direct Approach for Unbalanced Radial Distribution System three phase Load Flow Solution

A Simple and Direct Approach for Unbalanced Radial Distribution System three phase Load Flow Solution Research Journal of Applied Sciences, Engineering and Technology 2(5): 452-459, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: May 16, 2010 Accepted Date: May 27, 2010 Published

More information

C C CIRCUIT-BREAKERS Moulded-case (MCCB), general. 1. Introduction. 2. General description

C C CIRCUIT-BREAKERS Moulded-case (MCCB), general. 1. Introduction. 2. General description CIRCUIT-BREAKERS C C81-21 CIRCUIT-BREAKERS - Contents 1. Introduction 2. General description 3. Rated voltages 3.1 Rated operational voltage (U e ) 3.2 Rated impulse withstand voltage (U imp ) 3.3 Rated

More information

Bus Protection Application Challenges

Bus Protection Application Challenges Bus Protection Application Challenges KN Dinesh Babu - Megger JC Theron, Lubomir Sevov GE Grid Solutions 2017 Texas A&M Protective Relay Conference Content Introduction Application Challenges Increase

More information

Optimal Placement and Sizing of SVC for Improving Voltage Profile of Power System

Optimal Placement and Sizing of SVC for Improving Voltage Profile of Power System Optimal Placement and Sizing of SVC for Improving Voltage Profile of Power System Shraddha Udgir, Sarika Varshney & Laxmi Srivastava Deptt. of Electrical Engineering, Madhav Institute of Technology & Science,

More information

empowering power system engineers

empowering power system engineers PRDC Transmission Sub-transmission Distribution Planning Analysis Design Simulation TM empowering power system engineers th nd # 5, 11 Cross, 2 Stage, West of Chord Road, Bangalore, IIA, PIN 560086 Tel:

More information

Study of Transient Stability Improvement of IEEE 9-Bus System by using SVC

Study of Transient Stability Improvement of IEEE 9-Bus System by using SVC Study of Transient Stability Improvement of IEEE 9-Bus System by using SVC Rathnasagar Rangu 1, Poonam Upadhyay 2 1 PG Student, VNR VJIET, Hyderabad, India 2 Professor, VNR VJIET, Hyderabad, India Abstract

More information

OPTIMAL LOCATION OF SVC USING BENEFIT FACTORS TO IMPROVE THE VOLTAGE PROFILE IN POWER SYSTEMS

OPTIMAL LOCATION OF SVC USING BENEFIT FACTORS TO IMPROVE THE VOLTAGE PROFILE IN POWER SYSTEMS European International Journal of Science and Technology Vol. 4 No. 2 February, 2015 OPTIMAL LOCATION OF SVC USING BENEFIT FACTORS TO IMPROVE THE VOLTAGE PROFILE IN POWER SYSTEMS IRENE N. MUISYO a, KEREN

More information

Blackstart Hardware-in-the-loop Relay Testing Platform

Blackstart Hardware-in-the-loop Relay Testing Platform 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2016 Grid of the Future Symposium Blackstart Hardware-in-the-loop Relay Testing Platform R. LIU R. SUN M. TANIA Washington

More information

INTERCONNECTION FACILITIES STUDY REPORT

INTERCONNECTION FACILITIES STUDY REPORT Interconnection Request No. TI-08-0312 INTERCONNECTION FACILITIES STUDY REPORT Prepared by Tri-State Generation and Transmission Association, Inc. 1 of 7 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

More information

Disturbance Monitoring and

Disturbance Monitoring and PRC-002-2 R1 Notification Disturbance Monitoring and Reporting Requirements Compliance Spring Workshop May 10, 2017 Objectives This presentation will discuss: Requirement R1 Part 1.2 notifications Definition

More information

Verification of Utility Requirements on Modern Numerical Busbar Protection by Dynamic Simulation

Verification of Utility Requirements on Modern Numerical Busbar Protection by Dynamic Simulation 111 Verification of Utility Requirements on Modern Numerical Busbar Protection by Dynamic Simulation Z. Gajić (ABB, Sweden) JP Wang / PW Gong / YS Xu (ABB China) ZX Zhou (CERPI, China) Summary Power utilities

More information

Optimization of Reactive Power by Using SVC and TCSC Devices for Reducing Transmission Losses

Optimization of Reactive Power by Using SVC and TCSC Devices for Reducing Transmission Losses Optimization of Reactive Power by Using SVC and TCSC Devices for Reducing Transmission Losses Abstract Kuldeep G, Thakre 1 Dr. Z. J. Khan 2 1 Department of electrical engineering, RCERT, Gondwana University,

More information

Redundant Bus Protection Using High-Impedance Differential Relays. Josh LaBlanc

Redundant Bus Protection Using High-Impedance Differential Relays. Josh LaBlanc Redundant Bus Protection Using High-Impedance Differential Relays Josh LaBlanc Purpose Discuss the configuration of the bus under study, and touch on the needs for redundant protection on the bus. Briefly

More information

AN ADVANCED APPROACH TO IDENTIFY INRUSH CURRENT AND HARMONICS USING ARTIFICIAL INTELLIGENCE FOR POWER SYSTEM PROTECTION

AN ADVANCED APPROACH TO IDENTIFY INRUSH CURRENT AND HARMONICS USING ARTIFICIAL INTELLIGENCE FOR POWER SYSTEM PROTECTION AN ADVANCED APPROACH TO IDENTIFY INRUSH CURRENT AND HARMONICS USING ARTIFICIAL INTELLIGENCE FOR POWER SYSTEM PROTECTION Tawheeda Yousouf 1, Raguwinder Kaur 2 1 Electrical engineering, AIET/PTU Jalandhar,

More information

Fault Analysis of Distribution Network with Flexible Ring Network Control Device

Fault Analysis of Distribution Network with Flexible Ring Network Control Device 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) Fault Analysis of Distribution Network with Flexible Ring Network Control Device Kuo Tan 1, a, Chenghong Tang

More information

Smart Grid Protection through Self-Healing

Smart Grid Protection through Self-Healing Smart Grid Protection through Self-Healing Chathurika Chandraratne, R.T. Naayagi, Thillainathan Logenthiran School of Electrical and Electronic Engineering Newcastle University (Singapore) Singapore 567739

More information

Implementing the protection and control of future DC Grids

Implementing the protection and control of future DC Grids Implementing the protection and control of future DC Grids Hengxu Ha, Sankara Subramanian Innovation and Technology Department, SAS, Alstom Grid 1. The challenge of the DC Grid protection 1 High speed

More information

Micro physical simulation system of electric power systems

Micro physical simulation system of electric power systems International Journal of Smart Grid and Clean Energy Micro physical simulation system of electric power systems Xin Xu, Zongshuai Jin, Hengxu Zhang * Key Laboratory of Power System Intelligent Dispatch

More information

System Studies for American Transmission Co. s Benson Lake SVC Project

System Studies for American Transmission Co. s Benson Lake SVC Project Helping to keep the lights on, businesses running and communities strong System Studies for American Transmission Co. s Benson Lake SVC Project Adam Manty, Transmission Planning Engineer, ATC Outline Introduction

More information

Effective Management of Transformer Inrush during Restoration of a Typical Industrial Power System

Effective Management of Transformer Inrush during Restoration of a Typical Industrial Power System Effective Management of Transformer Inrush during Restoration of a Typical Industrial Power System Dr. J. K. Das 1, Debnil Chakraborty 2 Professor& Head, Dept. of EL, Guru Nanak Institute of Technology,

More information

DESIGN OF A DC OVERCURRENT FAULT DETECTION AND PROTECTION SCHEME FOR DC COLLECTORS OF A PHOTOVOLTAIC PLANT

DESIGN OF A DC OVERCURRENT FAULT DETECTION AND PROTECTION SCHEME FOR DC COLLECTORS OF A PHOTOVOLTAIC PLANT DESIGN OF A DC OVERCURRENT FAULT DETECTION AND PROTECTION SCHEME FOR DC COLLECTORS OF A PHOTOVOLTAIC PLANT I. Holland*, P. Bokoro*, B. Paul* and E. Ndlovu** *Department of Electrical and Electronic Engineering

More information

Auto-Check Circuit Breaker Interrupting Capabilities

Auto-Check Circuit Breaker Interrupting Capabilities Auto-Check Circuit Breaker Interrupting Capabilities Thanh C. Nguyen and Sherman Chan ASPEN, Inc. Ron Bailey and Thanh Nguyen Dominion Virginia Power Paper published in IEEE Computer Applications in Power,

More information

A Novel Method for Power-Flow Solution of Radial Distribution Networks

A Novel Method for Power-Flow Solution of Radial Distribution Networks A Novel Method for Power-Flow Solution of Radial Distribution Networks 1 Narinder Singh, 2 Prof. Rajni Bala 1 Student-M.Tech(Power System), 2 Professor(Power System) BBSBEC, Fatehgarh Sahib, Punjab Abstract

More information

Optimal Reactive Power Dispatch Using Hybrid Loop-Genetic Based Algorithm

Optimal Reactive Power Dispatch Using Hybrid Loop-Genetic Based Algorithm Optimal Reactive Power Dispatch Using Hybrid Loop-Genetic Based Algorithm Md Sajjad Alam Student Department of Electrical Engineering National Institute of Technology, Patna Patna-800005, Bihar, India

More information

Multifunctional System Protection for Transmission Lines Based on Phasor Data

Multifunctional System Protection for Transmission Lines Based on Phasor Data Multifunctional System Protection for Transmission Lines Based on Phasor Data Igor Ivanković Croatian transmission system operator HOPS igor.ivankovic@hops.hr Igor Kuzle University of Zagreb, Faculty of

More information

SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM : PROTECTION AND SWITCHGEAR

SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM : PROTECTION AND SWITCHGEAR SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING MICRO LESSION PLAN SUBJECT CODE SUBJECT NAME YEAR SEM CLASS : EE72 : PROTECTION AND SWITCHGEAR : IV : VII

More information

EE 868: Digital Techniques for Power System Protection. Laboratory Assignment #2 (Feb. 8 (12pm)) Overcurrent Relay Coordination

EE 868: Digital Techniques for Power System Protection. Laboratory Assignment #2 (Feb. 8 (12pm)) Overcurrent Relay Coordination EE 868: Digital Techniques for Power System Protection 1 Objective Laboratory Assignment #2 (Feb. 8 (12pm)) Overcurrent Relay Coordination Rama Gokaraju Department of Electrical & Computer Engineering

More information

Real Time Monitoring of

Real Time Monitoring of Real Time Monitoring of Cascading Events Mladen Kezunovic Nan Zhang, Hongbiao Song Texas A&M University Tele-Seminar, March 28, 2006 Project Reports (S-19) M. Kezunovic, H. Song and N. Zhang, Detection,

More information

FAULT DETECTION ON RADIAL POWER DISTRIBUTION SYSTEMS USING FUZZY LOGIC.

FAULT DETECTION ON RADIAL POWER DISTRIBUTION SYSTEMS USING FUZZY LOGIC. FAULT DETECTION ON RADIAL POWER DISTRIBUTION SYSTEMS USING FUZZY LOGIC. Nitish Kumar 1, Manish Sharma 2, Ayush Sinha 3,Indu Bhushan 4 1, 2,3 Students, Electrical Engineering Department Greater Noida Institutes

More information

EE076: Load Flow Analysis, Short Circuit Calculations & Protection Coordination

EE076: Load Flow Analysis, Short Circuit Calculations & Protection Coordination EE076: Load Flow Analysis, Short Circuit Calculations & Protection Coordination EE076 Rev.001 CMCT COURSE OUTLINE Page 1 of 6 Training Description: This course provides a comprehensive review of the fundamental

More information

DISRIBUTED AUTOMATION FOR BACK-FEED NETWORK POWER RESTORATION

DISRIBUTED AUTOMATION FOR BACK-FEED NETWORK POWER RESTORATION DISRIBUTED AUTOMATION FOR BACK-FEED NETWORK POWER RESTORATION Fahrudin Mekic Zhenyuan Wang Vaibhav Donde Fang Yang James Stoupis ABB Inc. USA ABB Inc. USA ABB Inc. USA ABB Inc. USA ABB Inc. USA fahrudin.mekic@us.abb.com

More information

Requests for Clarifications And Responses Order No. 754 Data Request The Study of Single Point of Failure

Requests for Clarifications And Responses Order No. 754 Data Request The Study of Single Point of Failure Requests for Clarifications And Responses Order No. 754 Data Request The Study of Single Point of Failure Revised: July 12, 2013 Introduction The following information includes requests for clarification

More information

Application Techniques CENTERLINE 2100 Motor Control Centers

Application Techniques CENTERLINE 2100 Motor Control Centers POWER SYSTEM CONSIDERATIONS FOR PRODUCT SELECTION Application Techniques CENTERLINE 2100 Motor Control Centers Power System Considerations for Product Selection i Power System Considerations for Product

More information

MiCOM P122C Time-Overcurrent Protection

MiCOM P122C Time-Overcurrent Protection Protection Relays 01 MiCOM P122C Time-Overcurrent Protection Customer Benefits 1A/5A software setting 4 function keys Compact unit for flush and wall-surface mounting Comprehensive measurements Disturbance

More information

Smart Power Flow Monitoring and Control

Smart Power Flow Monitoring and Control IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X John Richardson. J Mathivathani. N Karthikeyan. K Preethi. PA Vivekanandhan. C Vice

More information

Microgrids: Building Blocks of the Smart Grid Adaptive Protection Schemes for Microgrids

Microgrids: Building Blocks of the Smart Grid Adaptive Protection Schemes for Microgrids Enrico Ragaini (ABB Low Voltage Products), Alexandre Oudalov (ABB Corporate Research), ISGT Europe 2012, Berlin Microgrids: Building Blocks of the Smart Grid Adaptive Protection Schemes for Microgrids

More information

POWER FACTOR CORRECTION USING SVC WITH FUZZY LOGIC CONTROLLER

POWER FACTOR CORRECTION USING SVC WITH FUZZY LOGIC CONTROLLER POWER FACTOR CORRECTION USING SVC WITH FUZZY LOGIC CONTROLLER Puranik Sahu 1, Arun Pachori 2 1 puranik1987@gmail.com Abstract: To transmit or distribute fixed amount of power at fixed voltage, the conductor

More information

What s New in Version 14 of ASPEN OneLiner/ Power Flow

What s New in Version 14 of ASPEN OneLiner/ Power Flow What s New in Version 14 of ASPEN OneLiner/ Power Flow The following are the new features in version 14 of ASPEN OneLiner/Power Flow. 1. Sharper and more vivid graphics on Windows 10. 2. New command to

More information

Adaptive Protection in Distribution power networks

Adaptive Protection in Distribution power networks 1 Adaptive Protection in Distribution power networks Vasilis Kleftakis, Vasileios Papaspiliotopoulos, George Korres, Nikos Hatziargyriou vkleftakis@power.ece.ntua.gr Smart RUE: Smart grids Research Unit

More information

Load Flow Analysis Using Real Coded Genetic Algorithm

Load Flow Analysis Using Real Coded Genetic Algorithm RESEARCH ARTICLE OPEN ACCESS Load Flow Analysis Using Real Coded Genetic Algorithm Himakar Udatha *, Dr. M. Damodar Reddy ** * M.tech Student, Department of EEE, S.V. University, Tirupati. ** Professor,

More information

A guide on PowerWorld Simulator ver. 12.0

A guide on PowerWorld Simulator ver. 12.0 A guide on PowerWorld Simulator ver. 12.0 This tutorial has been developed to aid the undergraduate and graduate students at the University of Cyprus to learn the basic features of PowerWorld. It is not

More information

KRUSKAL AIDED FLOYD WARSHALL ALGORITHM FOR SHORTEST PATH IDENTIFICATION IN MICROGRIDS

KRUSKAL AIDED FLOYD WARSHALL ALGORITHM FOR SHORTEST PATH IDENTIFICATION IN MICROGRIDS KRUSKAL AIDED FLOYD WARSHALL ALGORITHM FOR SHORTEST PATH IDENTIFICATION IN MICROGRIDS O. V. Gnana Swathika and S. Hemamalini VIT University, Chennai Campus, Chennai, India ABSTRACT Microgrids are indispensable

More information

Small Generator Interconnection System Impact Study Report. Completed For Q0047

Small Generator Interconnection System Impact Study Report. Completed For Q0047 Small Generator Interconnection Completed For Q0047 Proposed Interconnection PacifiCorp s Existing Goshen Rigby 69 kv Line March 7, 2005 1.0 Description of the Generation Facility Q0047 ( Interconnection

More information

4. CIRCUIT BREAKERS. Functional Emergency Switching

4. CIRCUIT BREAKERS. Functional Emergency Switching 4. CIRCUIT BREAKERS The circuit breaker/disconnector fulfils all of the basic switchgear functions, while, by means of accessories, numerous other possibilities exist. As shown in table H2-19 the circuit

More information

Small Generator Interconnection Facilities Study Report. Completed for Q0314 ( Interconnection Customer ) A Qualified Facility

Small Generator Interconnection Facilities Study Report. Completed for Q0314 ( Interconnection Customer ) A Qualified Facility Small Generator Interconnection Completed for Q0314 ( Interconnection Customer ) A Qualified Facility Proposed Interconnection PacifiCorp s 34.5-kV West Cedar Substation December 29, 2010 TABLE OF CONTENTS

More information

1. Coordination of series-rated devices is permitted where indicated on Drawings.

1. Coordination of series-rated devices is permitted where indicated on Drawings. SECTION 16055 - OVERCURRENT PROTECTIVE DEVICE COORDINATION PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and

More information

IEEE PES Swiss Chapter Workshop: Microgrids Evolution and Integration in Modern Power Systems

IEEE PES Swiss Chapter Workshop: Microgrids Evolution and Integration in Modern Power Systems Alexandre Oudalov, ABB Switzerland Ltd., Corporate Research, 2014-04-30 Microgrid Protection IEEE PES Swiss Chapter Workshop: Microgrids Evolution and Integration in Modern Power Systems Microgrid Protection

More information

USE CASE 14 CONTROLLED ISLANDING

USE CASE 14 CONTROLLED ISLANDING I USE CASE 14 CONTROLLED ISLANDING Use Case Title Centralized application separates grid into islands to prevent blackout Use Case Summary Controlled islanding is a method that can significantly improve

More information

i-pcgrid Workshop 2014 PG&E Order No. 754 Analysis: Protection

i-pcgrid Workshop 2014 PG&E Order No. 754 Analysis: Protection i-pcgrid Workshop 2014 PG&E Order No. 754 Analysis: Protection 1 Process PG&E Order No. 754 Analysis Receive Bus List from Planning that Meet the Criteria in Table A Protection Computes Actual Clearing

More information

Power systems 5: Protection

Power systems 5: Protection Power systems 5: Protection Introduction In this series of articles, we will be looking at each of the main stages of the electrical power system in turn. As you will recall from our Introduction to Electrical

More information

Circuit Breaker Operation & its load calculations

Circuit Breaker Operation & its load calculations Circuit Breaker Operation & its load calculations Abstract Circuit breaker is very effective protection device in any lighting application. Improper loading of MCB might lead to Nuisance Tripping, damage

More information

Bulletin 1489 Circuit Breakers. Selection Guide

Bulletin 1489 Circuit Breakers. Selection Guide Bulletin 1489 s Selection Guide Overview/Description Bulletin 1489-A s Energy-limiting design protects downstream components better than conventional breakers during short circuits Field-mountable options

More information

Level 2, 3 and 4 Interconnection Application for Certified, Inverter Based Generating Facilities Not Greater than 2MW

Level 2, 3 and 4 Interconnection Application for Certified, Inverter Based Generating Facilities Not Greater than 2MW Level 2, 3 and 4 Interconnection Application for Certified, Inverter Based Generating Facilities Not Greater than 2MW The Customer Generator applicant ("Applicant") hereby makes application to the T &

More information

Study on Power Transformer Inrush Current

Study on Power Transformer Inrush Current IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 59-63 www.iosrjournals.org Study on Power Transformer Inrush Current Gopika R, Deepa Sankar Department

More information

Simulation and Analysis of Static Var Compensator with Matlab

Simulation and Analysis of Static Var Compensator with Matlab The International Journal Of Engineering And Science (IJES) Volume 4 Issue 12 Pages PP -07-11 2015 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Simulation and Analysis of Static Var Compensator with Matlab

More information

Tutorials. Tutorial: Creating a New Case Page 1 of 13

Tutorials. Tutorial: Creating a New Case Page 1 of 13 Tutorial: Creating a New Case Page 1 of 13 This procedure describes how to create a simple power system model using PowerWorld Simulator. This procedure was developed for use with version 13 and later

More information

Re-Dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus

Re-Dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus 496 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 15, NO 2, MAY 2000 Re-Dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus Ronghai Wang, Student Member, IEEE, and Robert

More information

USE CASE 13 ADAPTIVE TRANSMISSION LINE PROTECTION

USE CASE 13 ADAPTIVE TRANSMISSION LINE PROTECTION H USE CASE 13 ADAPTIVE TRANSMISSION LINE PROTECTION Use Case Title Adaptive Transmission Line Protection Use Case Summary The requirements for improvement in the performance of protection relays under

More information

LOAD SHEDDING AN EFFICIENT USE OF LTC TRANSFORMERS

LOAD SHEDDING AN EFFICIENT USE OF LTC TRANSFORMERS LOAD SHEDDING AN EFFICIENT USE OF LTC TRANSFORMERS Luciano V. Barboza André A. P. Lerm Roberto S. Salgado Catholic University of Pelotas Federal Center for Technological Education of Pelotas Federal University

More information

Approval...6. Current Revision...7. Introduction... 8 About PJM Manuals... 8 About This Manual... 8 Using This Manual...9

Approval...6. Current Revision...7. Introduction... 8 About PJM Manuals... 8 About This Manual... 8 Using This Manual...9 PJM Manual 07: PJM Protection Standards Revision: 3 Effective Date: May 24, 2018 Prepared by System Planning Division Transmission Planning Department PJM 2018 Table of Contents Table of Contents Approval...6

More information

PG&E Transmission Interconnection Handbook

PG&E Transmission Interconnection Handbook Table of Contents TABLE OF CONTENTS... 1 UPDATE HISTORY... UP-1 INTRODUCTION... IN-1 I-1. PURPOSE... IN-1 I-2. INTRODUCTORY DEFINITIONS... IN-1 I-3. HANDBOOK APPLICABILITY... IN-2 I-3.1. New Load, New

More information

ASPEN Software - Introduction

ASPEN Software - Introduction ASPEN Software - Introduction ASPEN is a very user-friendly software package that is capable of doing load-flow and shortcircuit studies, as well as relay application and coordination. Its simple graphical

More information

Transformer Protection and Control RET630 Numerical transformer protection in medium voltage networks

Transformer Protection and Control RET630 Numerical transformer protection in medium voltage networks GUIDEFORM SPECIFICATION Transformer Protection and Control RET630 Numerical transformer protection in medium voltage networks The freely configurable relay is intended for protection, control, measurement

More information

Combined Overcurrent and Earth-fault Relay SPAJ 140 C. Product Guide

Combined Overcurrent and Earth-fault Relay SPAJ 140 C. Product Guide Combined Overcurrent and Earth-fault Product Guide Issued: April 1999 Status: Updated Version: C/18.04.2006 Data subject to change without notice Features Three-phase, low-set phase overcurrent unit with

More information

Optimal Proxy-Limited Lines for Representing Voltage Constraints in a DC Optimal Powerflow

Optimal Proxy-Limited Lines for Representing Voltage Constraints in a DC Optimal Powerflow Optimal Proxy-Limited Lines for Representing Voltage Constraints in a DC Optimal Powerflow by Michael Schlindwein A thesis submitted in fulfillment of the requirements for the degree of Master of Science

More information

MiCOM P521. Fast Feeder Differential Protection

MiCOM P521. Fast Feeder Differential Protection 01 Fast Feeder Differential Protection The relay provides high-speed two-ended current differential unit protection of overhead lines and underground cables in applications such as ring mains and parallel

More information

.2 Section General Commissioning (Cx) Requirements. .3 Section Common Work Requirements - Electrical

.2 Section General Commissioning (Cx) Requirements. .3 Section Common Work Requirements - Electrical Issued for Review Section 26 28 16.01 Air Circuit Breakers Page 1 of 7 PART 1 GENERAL 1.1 GENERAL.1 This specification serves to define requirements for a replacement of low voltage circuit breaker of

More information

FAULT DETECTION ISOLATION AND RESTORATION ON THE FEEDER (FDIR): PICK YOUR TECHNOLOGY

FAULT DETECTION ISOLATION AND RESTORATION ON THE FEEDER (FDIR): PICK YOUR TECHNOLOGY FAULT DETECTION ISOLATION AND RESTORATION ON THE FEEDER (FDIR): PICK YOUR TECHNOLOGY Fahrudin Mekic Ken Alloway Cleber Angelo Robert Goodin ABB Inc. USA ABB Inc. USA ABB Inc. USA ABB Inc. USA fahrudin.mekic@us.abb.com.ken.alloway@us.abb.com

More information

PRC Coordination of Protection Systems for Performance During Faults

PRC Coordination of Protection Systems for Performance During Faults PRC-027-1 Coordination of Protection Systems for Performance During Faults A. Introduction 1. Title: Coordination of Protection Systems for Performance During Faults 2. Number: PRC-027-1 3. Purpose: To

More information

For the State of Washington SMALL GENERATOR INTERCONNECTION REQUEST (Tier 1 [Non-Net Meter], Tier 2, Tier 3) (Application Form)

For the State of Washington SMALL GENERATOR INTERCONNECTION REQUEST (Tier 1 [Non-Net Meter], Tier 2, Tier 3) (Application Form) Electrical Company: PacifiCorp For the State of Washington SMALL GENERATOR INTERCONNECTION REQUEST (Tier 1 [Non-Net Meter], Tier 2, Tier 3) (Application Form) Designated Contact Person: Robin Moore Address

More information

Instructions. Interconnection Customer declares its intention to interconnect with the AEP Distribution System.

Instructions. Interconnection Customer declares its intention to interconnect with the AEP Distribution System. APPLICATION FOR INTERCONNECTION WITH THE Indiana Michigan Power Company INDIANA DISTRIBUTION SYSTEM (Project capacity greater than 10kW) Instructions Interconnection Customer declares its intention to

More information

Static Var Compensator: Effect of Fuzzy Controller and Changing Membership Functions in its operation

Static Var Compensator: Effect of Fuzzy Controller and Changing Membership Functions in its operation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 2 (2013), pp. 189-196 International Research Publication House http://www.irphouse.com Static Var Compensator: Effect of

More information

Network Configuration Document Selection for New Substations Framework

Network Configuration Document Selection for New Substations Framework Network Configuration Document Selection for New Substations Current version: 20/06/2018 EXTERNAL USE Page 1 of 14 Table of contents 1. Introduction... 3 1.1 Purpose... 3 1.2 Scope... 3 1.3 References...

More information

SYMPATHETIC INRUSH PHENOMENA IN PARALLEL AND SERIES CONNECTED TRANSFORMERS USING PSCAD

SYMPATHETIC INRUSH PHENOMENA IN PARALLEL AND SERIES CONNECTED TRANSFORMERS USING PSCAD SYMPATHETIC INRUSH PHENOMENA IN PARALLEL AND SERIES CONNECTED TRANSFORMERS USING PSCAD Tejpal P. Purohit 1, Prashant K. Bhavsar 2 Department of Electrical Engineering, Government Polytechnic Palanpur,

More information

DTRV-EP. COMPLEX DIGITAL PROTECTION FOR 120 kv / MEDIUM VOLTAGE TRANSFORMERS. Application field

DTRV-EP. COMPLEX DIGITAL PROTECTION FOR 120 kv / MEDIUM VOLTAGE TRANSFORMERS. Application field DTRV-EP COMPLEX DIGITAL PROTECTION FOR 120 kv / MEDIUM VOLTAGE TRANSFORMERS Application field The DTRV type of complex transformer protection is designed to protect 120 kv / medium voltage transformers,

More information

MV Network Switchgear, Protection and Control

MV Network Switchgear, Protection and Control MV Network Switchgear, Protection and Control Ravinder Negi Manager, Services Execution INDIA Schneider Electric, New Delhi. Agenda An Overview MV Network Basic Definitions Circuit breaker Switchgear Control

More information

Superseding SHEET NO. 34C-51 REVISED SHEET NO. 34C-51 Effective May 27, 2010 Effective December 3, 2011

Superseding SHEET NO. 34C-51 REVISED SHEET NO. 34C-51 Effective May 27, 2010 Effective December 3, 2011 Superseding SHEET NO. 34C-51 REVISED SHEET NO. 34C-51 INTERCONNECTION APPLICATION FOR ALL BUT UL1741 CERTIFIED INVERTER BASED SYSTEMS LESS THAN 10 KW In addition to the information provided below, a complete

More information

Modeling and Simulation of Static VAR Compensator Controller for Improvement of Voltage Level in Transmission Lines

Modeling and Simulation of Static VAR Compensator Controller for Improvement of Voltage Level in Transmission Lines Modeling and Simulation of Static VAR Compensator Controller for Improvement of Voltage Level in Transmission Lines 1 B.T.RAMAKRISHNA RAO, 2 N.GAYATRI, 3 P.BALAJI, 4 K.SINDHU 1 Associate Professor, Department

More information