Quick Start Guide STM32 ODE Function Pack for IoT sensor node connection to 6LoWPAN networks through sub-1ghz RF communication (FP-SNS-6LPNODE1)

Size: px
Start display at page:

Download "Quick Start Guide STM32 ODE Function Pack for IoT sensor node connection to 6LoWPAN networks through sub-1ghz RF communication (FP-SNS-6LPNODE1)"

Transcription

1 Quick Start Guide STM32 ODE Function Pack for IoT sensor node connection to 6LoWPAN networks through sub-1ghz RF communication (FP-SNS-6LPNODE1) Version 1.2 (Feb.28, 2017)

2 Quick Start Guide Contents 2 FP-SNS-6LPNODE1: STM32 ODE Function Pack for IoT sensor node connection to 6LoWPAN networks through sub-1ghz RF communication Hardware and Software overview Setup & Demo Examples Documents & Related Resources STM32 Open Development Environment: Overview

3 Sub-1 GHz RF expansion boards Hardware Overview (1/4) 3 X-NUCLEO-IDS01A4/5 Hardware description The X-NUCLEO-IDS01A4, X-NUCLEO-IDS01A5 are evaluation boards based on the SPIRIT1 RF modules SPSGRF-868 and SPSGRF-915 Arduino UNO R3 connector The SPIRIT1 module communicates with the STM32 Nucleo developer board host microcontroller though an SPI link available on the Arduino UNO R3 connector. Key products on board SPSGRF Sub-GHz (868 or 915 MHz) low power programmable RF transceiver modules SPIRIT1 Low data-rate, low-power sub-1ghz transceiver) module M95640-R 64 Kbit SPI bus EEPROM with high-speed clock SPSGRF-868 or SPSGRF-915 (*) EEPROM (*) Identification of the operating frequency of the X-NUCLEO- IDS01Ax (x=4 or 5) is performed through two resistors (R14 and R15). Latest info available at X-NUCLEO-IDS01A4 X-NUCLEO-IDS01A5

4 Motion MEMS and environmental sensors expansion board Hardware Overview (2/4) 4 OPTIONAL X-NUCLEO-IKS01A1 Hardware Description The X-NUCLEO-IKS01A1 is a motion MEMS and environmental sensor evaluation board system. It is compatible with the Arduino UNO R3 connector layout, and is designed around ST s latest sensors. Key Features The X-NUCLEO-IKS01A1 is a motion MEMS and environmental sensor evaluation board system. All sensors are connected on a single I²C bus Sensor I²C address selection Each sensor has separate power supply lines allowing power consumption measurement Sensor disconnection (disconnect the I²C bus as well as the power supply) Interrupt and DRDY signals from sensors DIL24 socket (Compatible to STEVAL-MKI***V* MEMS adapter boards, i.e. STEVAL-MKI160V1) Key Product on board LSM6DS0: MEMS 3D accelerometer (±2/±4/±8 g) + 3D gyroscope (±245/±500/±2000 dps) LIS3MDL: MEMS 3D magnetometer (±4/ ±8/ ±12/ 16 gauss) LPS25HB: MEMS pressure sensor, hpa absolute digital output barometer HTS221: capacitive digital relative humidity and temperature DIL 24-pin: socket available for additional MEMS adapters and other sensors HTS221 LPS25HB LSM6DS0 LIS3MDL ** Connector for the STM32 Nucleo Board ST morpho connector** Arduino UNO R3 connector DIL 24-pin Latest info available at X-NUCLEO-IKS01A1

5 Motion MEMS and environmental sensor expansion board Hardware overview (3/4) 5 OPTIONAL X-NUCLEO-IKS01A2 Hardware description The X-NUCLEO-IKS01A2 is a motion MEMS and environmental sensor evaluation board system. It is compatible with the Arduino UNO R3 connector layout, and is designed around ST s latest sensors. Key products on board LSM6DSL MEMS 3D accelerometer (±2/±4/±8/±16 g) + 3D gyroscope (±125/±245/±500/±1000/±2000 dps) LSM303AGR MEMS 3D magnetometer (±50 gauss) + MEMS 3D accelerometer (±2/±4/±8/±16 g) LPS22HB MEMS pressure sensor, hpa absolute digital output barometer HTS221 Capacitive digital relative humidity and temperature DIL 24-pin Socket available for additional MEMS adapters and other sensors (UV index) HTS221 LPS22HB LSM6DSL LSM303AGR ST morpho connector** Arduino UNO R3 connector DIL 24-pin Latest info available at X-NUCLEO-IKS01A2 ** Connector for the STM32 Nucleo Board

6 Proximity, gesture and ambient light sensor expansion board Hardware Overview (4/4) 6 OPTIONAL X-NUCLEO-6180XA1 Hardware Description Arduino UNO R3 connectors The X-NUCLEO-6180XA1 is proximity and ambient light sensor evaluation and development board system, designed around VL6180X, a device based on ST s FlightSense TM, Time-of- Flight technology. The VL6180X communicates with STM32 Nucleo developer board host microcontroller through an I2C link available on the Arduino UNO R3 connector. Key Products on board VL6180X Proximity, gesture and Ambient Light sensor (ALS) Selection between Ranging and ALS measurement Possibility to add 3x VL6180X external satellite boards (order code: VL6180X-SATEL 2 satellites) VL6180X ALS or Range VL6180X satellites Latest info available at X-NUCLEO-6180XA1

7 FP-SNS-6LPNODE1 Software Description FP-SNS-6LPNODE1 is an STM32 ODE Function Pack. Thanks to this package you can connect your IoT node to a 6LoWPAN Wireless Sensors Network and expose the sensors and actuator resources using standard application layer protocols. This software package provides a sample application that allows RESTful access to the sensors and actuators resources on the IoT node by the means of the OMA Lightweight M2M (LWM2M) standard protocol, using the IPSO Smart Objects Guidelines for data representation. Key features Complete firmware to connect an IoT node with sensors and actuators to a 6LoWPAN network, using sub-1ghz RF communication technology Middleware library with Contiki OS and Contiki 6LoWPAN protocol stack 3.0 Support for mesh networking technology by the means of the standard RPL protocol IPSO Smart Objects data representation of the node resources (sensors and actuators) Access to the node from a remote server by the means of the OMA Lightweight M2M (LWM2M) standard Example implementation available for X-NUCLEO-IDS01A4 or X- NUCLEO-IDS01A5 RF boards, X-NUCLEO-IKS01A1 or X- NUCLEO-IKS01A2, and X-NUCLEO-6180X1 sensors boards, when connected to a NUCLEO-F401RE or NUCLEO-L152RE board Easy portability across different MCU families, thanks to STM32Cube Free, user-friendly license terms FP-SNS-6LPNODE1 Software Overview 7 Overall Software Architecture Latest info available at FP-SNS-6LPNODE1

8 Quick Start Guide Contents 8 FP-SNS-6LPNODE1: STM32 ODE Function Pack for IoT sensor node connection to 6LoWPAN networks through sub-1ghz RF communication Hardware and Software overview Setup & Demo Examples Documents & Related Resources STM32 Open Development Environment: Overview

9 1x STM32 Nucleo Sub-1GHz RF expansion board (X-NUCLEO-IDS01A4 or X-NUCLEO-IDS01A5) 1x Motion MEMS and environmental sensor expansion board (optional) (X-NUCLEO-IKS01A1 or X-NUCLEO-IKS01A2) Setup & Demo Examples HW prerequisites 9 1x STM32 Nucleo proximity, gesture and ambient light expansion board (optional) (*) (X-NUCLEO-6180XA1) 1x STM32 Nucleo development board (NUCLEO-F401RE or NUCLEO-L152RE) X-NUCLEO-IDS01A4 X-NUCLEO-IDS01A5 X-NUCLEO- IKS01A1 (optional) X-NUCLEO- IKS01A2 (optional) 1x PC with Windows 7, 8 or 10 1x USB type A to Mini-B USB cable The FP-SNS-6LPNODE1 package contains some sample applications for demonstration and evaluation purpose for three different wireless node configurations, as shown in the following pictures Mini USB X-NUCLEO-6180XA1 (optional) NUCLEO-F401RE or NUCLEO-L152RE Node Configuration ipso-nosensors NUCLEO-F401RE or NUCLEO-L152RE + X-NUCLEO-IDS01A4 (or X-NUCLEO-IDS01A5) Node Configuration ipso-mems NUCLEO-F401RE or NUCLEO-L152RE + X-NUCLEO-IDS01A4 (or X-NUCLEO-IDS01A5) + X-NUCLEO-IKS01A1 Node Configuration ipso-flightsense NUCLEO-F401RE (*) + X-NUCLEO-IDS01A4 (or X-NUCLEO-IDS01A5) + X-NUCLEO-6180XA1 (*) configuration only available with NUCLEO-F401RE

10 Setup & Demo Examples SW prerequisites 10 STSW-LINK009: ST-LINK/V2-1 USB driver STSW-LINK007: ST-LINK/V2-1 firmware upgrade FP-SNS-6LPNODE1 Copy the.zip file content into a folder on your PC The package will contain source code example (Keil, IAR, System Workbench for STM32) based only on NUCLEO-F401RE

11 FP-SNS-6LPNODE1 Start coding in few minutes 11 1 Go to 2 Select FP-SNS-6LPNODE1 3 Download & unpack FP-SNS-6LPNODE1 FP-SNS-6LPNODE1 package structure HTML Docs BSP, HAL and Drivers 6LoWPAN stack Application examples 4 Download and install STM32 Nucleo ST-LINK/V2-1 USB driver 6 Modify and build the application 5 Open project example, e.g. ipso-mems

12 FP-SNS-6LPNODE1 System Overview End-to-End Deployment Example 12 Wireless Sensors Node (example) Hardware: NUCLEO-F410RE + X-NUCLEO- IDS01A4/5 (sub-1 GHz) + X-NUCLEO- 6180XA1 (Time of flight sensor) Software: FP-SNS-6LPNODE1 package, ipso-flightsense application REST Access to the Wireless Nodes Resources Application Server (e.g. Leshan LWM2M) IPv6/6LoWPAN Network Wi-Fi Router internet Wireless Sensors Node (example) Hardware: NUCLEO-F401RE or NUCLEO-L152RE + X-NUCLEO- IDS01A4/5 (sub-1 GHz) + X-NUCLEO- IKS01A1/2 (Environmental & Motion sensors) Software: FP-SNS-6LPNODE1 package, ipso-mems application 6LoWPAN-WiFi Bridge Hardware: NUCLEO-F410RE + X- NUCLEO-IDS01A4/5 (sub-1 GHz) + X- NUCLEO-IDW01M1 (Wi-Fi) Software: FP-NET-6LPWIFI1 package, WiFi-Bridge sample application

13 FP-SNS-6LPNODE1 6LoWPAN-to-Wi-Fi Bridge Setup 13 6LoWPAN to Wi-Fi bridge Setup 6LoWPAN-WiFi Bridge Go to FP-NET-6LPWIFI1 Package 1 Select the FP-NET-6LPWIFI1 package Wi-Fi AP/Router Follow the installation instructions to configure and connect the bridge to a Wi-Fi AP/Router USB type A to Mini-B USB cable Successful connection to the Wi-Fi AP/Router

14 2 Go to Select the FP-SNS-6LPNODE1 package, download and extract the zip file Select one of the three supported wireless nodes hardware configuration, assemble the STM32 Nucleo and X-NUCLEO expansion boards, connect the STM32 Nucleo board to the host PC and program the binary firmware that is provided for the chosen configuration FP-SNS-6LPNODE1 Wireless Sensors Node Setup (1/4) 14 USB type A to Mini-B USB cable Wireless Sensors Node Example: Configuration for ipso-mems sample application NUCLEO-F401RE development board + X-NUCLEO-IDS01A4 or X-NUCLEO-IDS01A5 (Sub-1GHz RF communication) + X-NUCLEO-IKS01A1 or X-NUCLEO-IKS01A2 (temperature, humidity, motion sensors) Note: The simplest way to program the sensor node is to drag and drop the selected binary file on the device with removable storage associated to the corresponding STM32 Nucleo board (e.g. NODE_F401RE ) 6 Open a serial line monitor utility, select the serial port name to which the board is connected and configure it with the following parameters: Baud Rate = , Parity = None, Data Bit = 8, Stop bits = 1 Reset the MCU. The application will run: it demonstrates how a node can interact with a remote server by the means of the OMA Lightweight M2M (LWM2M) standard protocol. In this example application, the node will attempt, for evaluation purpose, to connect to a public online OMA Lightweight M2M server called Leshan (located at:

15 FP-SNS-6LPNODE1 Wireless Sensors Node Setup (2/4) 15 7 Wait for the node (acting in this example as a LWM2M client) to complete the registration with the LWM2M server. If the client registration is successful a client ID will appear on the terminal (see the red box) Note: in case the node registration is not successful, try again by doing a reset of the STM32 Nucleo board 8 Open a web browser and go to then find the endpoint whose client ID matches the one in the previous step

16 FP-SNS-6LPNODE1 Wireless Sensors Node Setup (3/4) 16 9 Click on the corresponding Client Endpoint to visualize the client homepage on the Leshan server: the available resources hosted on the wireless sensor node are listed on the web page

17 10 FP-SNS-6LPNODE1 Wireless Sensors Node Setup (4/4) 17 Click either on Observe or Read to access one or more resources on the node (for example the temperature sensor data). Observe is a feature that enables to get updates of sensor data when they change, while Read can be used to obtain an instantaneous reading of the sensor data Current Temperature sensor value read from the 6LoWPAN node

18 FP-NET-6LPNODE1 Additional LWM2M Demo Setup Tips (1/2) 18 It is recommended - especially when using the public Leshan LWM2M server to avoid using a host PC that is inside a network behind a proxy (which typically happens in corporate networks) this proxy may create issues, in particular with the visualization of the notifications It may happen that the web page does not show notifications: most of the time it is because the host PC went in sleep mode try to refresh the web page, there is no need to click on the Observe button again When you click on the Observe button, there is no need to also click on the Read one. To cancel the observation you just need to click on the black square button near the Observe button. Please allow several seconds when you boot a node to have it registered to the public Leshan server

19 FP-NET-6LPNODE1 Additional LWM2M Demo Setup Tips (2/2) 19 The following table contains a list of actually observable resources Note that observing other resources not listed here might have side effects due to the current LWM2M server implementation Note that in case of observation some thresholds and timers apply. For example, don t expect the presence sensor to react in less than one second, or a new temperature sensor reading to be sent every few seconds Object Description Object ID Resource Description Resource IDs Default Timers (1) Default Threshold (2) Magnetometer axis (X,Y,Z) 5702, 5703, sec - Accelerometer axis (X,Y,Z) 5702, 5703, sec - Temperature 3303 min, max, actual value 5601, 5602, sec 0.5 C Humidity 3304 min, max, actual value 5601, 5602, sec 1 % rh Barometer 3315 min, max, actual value 5601, 5602, sec 1 hpa Digital Input (button) Presence Sensor (3) 3200 Digital input state and counter 5500, Sensor state sec - (1) Time elapsed to get a new value of the sensor, this affects notification periods (when using Observe ) (2) If, compared to the previous reading, the new sensor value is changed less than this threshold, then notifications are not sent (3) The Presence sensor range is configured by default to 2 cm

20 Documents & Related Resources 20 All documents are available in the DESIGN tab of the related products webpage FP-SNS-6LPNODE1: DB3010: STM32 ODE Function Pack for IoT sensor node connection to 6LoWPAN networks through sub-1ghz RF communication Data brief UM2100: Getting started with FP-SNS-6LPNODE1 software for IoT sensor node connection to 6LoWPAN networks using sub- 1GHz RF User Manual Software setup file X-NUCLEO-IDS01A4: Gerber files, BOM, and schematics DB2552: Sub-1 GHz RF expansion board based on the SPSGRF-868 module for STM32 Nucleo Data brief UM1872: Getting started with the Sub-1 GHz expansion board based on the SPSGRF-868 and SPSGRF-915 modules for STM32 User Manual X-NUCLEO-IDS01A5: Gerber files, BOM, and schematics DB2553: Sub-1 GHz RF expansion board based on the SPSGRF-915 module for STM32 Nucleo Data brief UM1872: Getting started with the Sub-1GHz expansion board based on the SPSGRF-868 and SPSGRF-915 modules for STM32 User Manual Consult for the complete list

21 Documents & Related Resources 21 All documents are available in the DESIGN tab of the related products webpage X-NUCLEO-IKS01A1 Gerber files, BOM, Schematic DS10619: Motion MEMS and environmental sensor expansion board for STM32 Nucleo data brief UM1820: Getting started with motion MEMS and environmental sensor expansion board for STM32 Nucleo user manual X-NUCLEO-IKS01A2 Gerber files, BOM, Schematic DB3009: Motion MEMS and environmental sensor expansion board for STM32 Nucleo data brief UM2121: Getting started with the X-NUCLEO-IKS01A2 motion MEMS and environmental sensor expansion board for STM32 Nucleo user manual X-NUCLEO-6180XA1: Gerber files, BOM, Schematic DB2473: Proximity and ambient light sensor expansion board based on VL6180X for STM32 Nucleo Data brief AN4663: VL6180X expansion boards - Description of version 1 and version 2 Application note UM1852: Proximity and ambient light sensor expansion board based on VL6180X for STM32 Nucleo User manual Consult for the complete list

22 Quick Start Guide Contents 22 FP-SNS-6LPNODE1: STM32 ODE Function Pack for IoT sensor node connection to 6LoWPAN networks through sub-1ghz RF communication Hardware and Software overview Setup & Demo Examples Documents & Related Resources STM32 Open Development Environment: Overview

23 STM32 Open Development Environment Fast, affordable Prototyping and Development 23 The STM32 Open Development Environment (ODE) consists of a set of stackable boards and a modular open SW environment designed around the STM32 microcontroller family. STM32Cube development software STM32 Nucleo expansion boards (X-NUCLEO) STM32 Nucleo development boards STM32Cube expansion software (X-CUBE) Function Packs (FP)

24 STM32 Nucleo Development Boards (NUCLEO) 24 A comprehensive range of affordable development boards for all the STM32 microcontroller series, with unlimited unified expansion capabilities and integrated debugger/programmer functionality. Power supply through USB or external source STM32 microcontroller Integrated debugging and programming ST-LINK probe Complete product range from ultra-low power to high-performance ST morpho extension header Arduino UNO R3 extension headers

25 STM32 Nucleo Expansion Boards (X-NUCLEO) 25 Boards with additional functionality that can be plugged directly on top of the STM32 Nucleo development board directly or stacked on another expansion board. Connect Power Move/Actuate Interact Sense Motion MEMS sensors Environmental sensors DIL24 support for new devices Example of STM32 expansion board (X-NUCLEO-IKS01A1)

26 STM32 Open Development Environment Software components 26 STM32Cube software (CUBE) - A set of free tools and embedded software bricks to enable fast and easy development on the STM32, including a Hardware Abstraction Layer and middleware bricks. STM32Cube expansion software (X-CUBE) - Expansion software provided free for use with the STM32 Nucleo expansion board and fully compatible with the STM32Cube software framework. It provides abstracted access to expansion board functionality through high-level APIs and sample applications. Tools & IDEs Applications Middleware Hardware Abstraction Hardware IAREWARM,Keil MDK-ARM, GCC-based IDEs (e.g. Ac6 System Workbench for STM32) Sample applications STM32Cube middleware Application examples (e.g. based on STOpenSoftwareX) Upper level middleware (e.g. ST OpenSoftwareX) STM32Cubeexpansion middleware STM32CubeHardware Abstraction Layer (HAL) STM32 Nucleo expansion boards (X-NUCLEO) STM32 Nucleo developer boards Compatibility with multiple Development Environments - The STM32 Open Development Environment is compatible with a number of IDEs including IAR EWARM, Keil MDK, and GCC-based environments. Users can choose from three IDEs from leading vendors, which are free of charge and deployed in close cooperation with ST. These include Eclipse-based IDEs such as Ac6 System Workbench for STM32 and the MDK-ARM environment. OPEN LICENSE MODELS: STM32Cube software and sample applications are covered by a mix of fully open source BSD license and ST licenses with very permissive terms.

27 STM32 Open Development Environment Building block approach 27 The building blocks Your need Our answer Accelerometer, gyroscope Inertial modules, magnetometer Pressure, temperature, humidity Proximity, microphone Sense COLLECT Bluetooth LE, Sub-GHz radio NFC, Wi-Fi, GNSS Connect TRANSMIT Audio amplifier Touch controller Operation Amplifier Translate ACCESS Stepper motor driver DC & BLDC motor driver Industrial input / output Move / Actuate CREATE Energy management & battery Power POWER General-purpose microcontrollers Secure microcontrollers Process PROCESS Software

Quick Start Guide. STM32 ODE Function Pack for connecting 6LoWPAN IoT Nodes to smartphone through a BLE interface (FP-NET-6LPBLE1)

Quick Start Guide. STM32 ODE Function Pack for connecting 6LoWPAN IoT Nodes to smartphone through a BLE interface (FP-NET-6LPBLE1) Quick Start Guide STM32 ODE Function Pack for connecting 6LoWPAN IoT Nodes to smartphone through a BLE interface (FP-NET-6LPBLE1) Version 1.1 (Jan. 30, 2017) Quick Start Guide Contents 2 FP-NET-6LPBLE1:

More information

Version (Apr 28, 2016)

Version (Apr 28, 2016) Quick Start Guide Sub-1 GHz RF expansion board based on SPSGRF modules for STM32 Nucleo X-NUCLEO-IDS01A4 (based on SPSGRF-868) X-NUCLEO-IDS01A5 (based on SPSGRF-915) Version 1.1.0 (Apr 28, 2016) Quick

More information

Quick Start Guide. High power stepper motor driver expansion board based on powerstep01 for STM32 Nucleo (X-NUCLEO-IHM03A1)

Quick Start Guide. High power stepper motor driver expansion board based on powerstep01 for STM32 Nucleo (X-NUCLEO-IHM03A1) Quick Start Guide High power stepper motor driver expansion board based on powerstep01 for STM32 Nucleo (X-NUCLEO-IHM03A1) Version 1.1.0 (May 16, 2016) Quick Start Guide Contents 2 X-NUCLEO-IHM03A1: high

More information

Quick Start Guide. Bipolar stepper motor driver expansion board based on L6208 for STM32 Nucleo (X-NUCLEO-IHM05A1) Version 1.1.

Quick Start Guide. Bipolar stepper motor driver expansion board based on L6208 for STM32 Nucleo (X-NUCLEO-IHM05A1) Version 1.1. Quick Start Guide Bipolar stepper motor driver expansion board based on L6208 for STM32 Nucleo (X-NUCLEO-IHM05A1) Version 1.1.0 (May 16, 2016) Quick Start Guide Contents 2 X-NUCLEO-IHM05A1: bipolar stepper

More information

Quick Start Guide. Dynamic NFC/RFID tag IC expansion board based on ST25DV04K for STM32 Nucleo (X-NUCLEO-NFC04A1) Version 1.

Quick Start Guide. Dynamic NFC/RFID tag IC expansion board based on ST25DV04K for STM32 Nucleo (X-NUCLEO-NFC04A1) Version 1. Quick Start Guide Dynamic NFC/RFID tag IC expansion board based on ST25DV04K for STM32 Nucleo (X-NUCLEO-NFC04A1) Version 1.0 (Jun 23, 2017) Quick Start Guide Contents 2 X-NUCLEO-NFC04A1: Dynamic NFC/RFID

More information

Quick Start Guide. Bluetooth low energy, sensors and NFC tag software for STM32Cube (BLUEMICROSYSTEM3) Version (September 15, 2016)

Quick Start Guide. Bluetooth low energy, sensors and NFC tag software for STM32Cube (BLUEMICROSYSTEM3) Version (September 15, 2016) Quick Start Guide Bluetooth low energy, sensors and NFC tag software for STM32Cube (BLUEMICROSYSTEM3) Version 1.0.1 (September 15, 2016) Quick Start Guide Contents 2 BLUMICROSYSTEM3: Bluetooth low energy,

More information

Quick Start Guide. Long distance ranging ToF sensor expansion board based on VL53L1X for STM32 Nucleo (X-NUCLEO-53L1A1) Version (February 20, 2018)

Quick Start Guide. Long distance ranging ToF sensor expansion board based on VL53L1X for STM32 Nucleo (X-NUCLEO-53L1A1) Version (February 20, 2018) Quick Start Guide Long distance ranging ToF sensor expansion board based on VL53L1X for STM32 Nucleo (X-NUCLEO-53L1A1) Version (February 20, 2018) Quick Start Guide Contents 2 X-NUCLEO-53L1A1: Long distance

More information

Quick Start Guide. Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1.2.

Quick Start Guide. Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1.2. Quick Start Guide Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1.2.0 (May 16, 2016) Quick Start Guide Contents 2 X-NUCLEO-IHM01A1: Stepper motor driver

More information

Quick Start Guide. Dual-channel high side driver expansion board based on VPS2535H for STM32 Nucleo (X-NUCLEO-IPS02A1) Version 1.0 (Sept.

Quick Start Guide. Dual-channel high side driver expansion board based on VPS2535H for STM32 Nucleo (X-NUCLEO-IPS02A1) Version 1.0 (Sept. Quick Start Guide Dual-channel high side driver expansion board based on VPS2535H for STM32 Nucleo (X-NUCLEO-IPS02A1) Version 1.0 (Sept. 2016) Quick Start Guide Contents 2 X-NUCLEO-IPS02A1: Dual-channel

More information

Quick Start Guide. GNSS expansion board based on Teseo-LIV3F module for STM32 Nucleo (X-NUCLEO-GNSS1A1) Version 2.1 (Nov 9, 2018)

Quick Start Guide. GNSS expansion board based on Teseo-LIV3F module for STM32 Nucleo (X-NUCLEO-GNSS1A1) Version 2.1 (Nov 9, 2018) Quick Start Guide GNSS expansion board based on Teseo-LIV3F module for STM32 Nucleo (X-NUCLEO-GNSS1A1) Version 2.1 (Nov 9, 2018) Quick Start Guide Contents 2 X-NUCLEO-GNSS1A1: STM32 Nucleo GNSS expansion

More information

Quick Start Guide. Bluetooth Low Energy expansion board based on SPBTLE-RF module for STM32 Nucleo (X-NUCLEO-IDB05A1) Version 1.

Quick Start Guide. Bluetooth Low Energy expansion board based on SPBTLE-RF module for STM32 Nucleo (X-NUCLEO-IDB05A1) Version 1. Quick Start Guide Bluetooth Low Energy expansion board based on SPBTLE-RF module for STM32 Nucleo (X-NUCLEO-IDB05A1) Version 1.5 (Feb 1, 2017) Quick Start Guide Contents 2 STM32 Nucleo Bluetooth Low Energy

More information

Quick Start Guide. Sound terminal expansion board based on STA350BW for STM32 NUCLEO (X-NUCLEO-CCA01M1) Version 1.1.

Quick Start Guide. Sound terminal expansion board based on STA350BW for STM32 NUCLEO (X-NUCLEO-CCA01M1) Version 1.1. Quick Start Guide Sound terminal expansion board based on STA350BW for STM32 NUCLEO (X-NUCLEO-CCA01M1) Version 1.1.0 (May 31, 2016) Quick Start Guide Contents 2 X-NUCLEO-CCA01M1: Sound terminal expansion

More information

Quick Start Guide. STM32 ODE Function Pack for Building a PLC controlled via Wi-Fi (FP-IND-PLCWIFI1) Version 1.1 (Oct 16, 2017)

Quick Start Guide. STM32 ODE Function Pack for Building a PLC controlled via Wi-Fi (FP-IND-PLCWIFI1) Version 1.1 (Oct 16, 2017) Quick Start Guide STM32 ODE Function Pack for Building a PLC controlled via Wi-Fi (FP-IND-PLCWIFI1) Version 1.1 (Oct 16, 2017) Quick Start Guide Contents 2 FP-IND-PLCWIFI1: STM32 ODE function pack for

More information

Quick Start Guide. NFC card reader expansion board based on ST25R3911B for STM32 Nucleo (X-NUCLEO-NFC05A1) Version (July 14 th, 2017)

Quick Start Guide. NFC card reader expansion board based on ST25R3911B for STM32 Nucleo (X-NUCLEO-NFC05A1) Version (July 14 th, 2017) Quick Start Guide NFC card reader expansion board based on ST25R3911B for STM32 Nucleo (X-NUCLEO-NFC05A1) Version 1.0.0 (July 14 th, 2017) Quick Start Guide Contents 2 X-NUCLEO-NFC05A1: NFC card reader

More information

Getting started with FP-SNS-6LPNODE1 software for IoT sensor node connection to 6LoWPAN networks using sub-1ghz RF

Getting started with FP-SNS-6LPNODE1 software for IoT sensor node connection to 6LoWPAN networks using sub-1ghz RF User manual Getting started with FP-SNS-6LPNODE1 software for IoT sensor node connection to 6LoWPAN networks using sub-1ghz RF Introduction FP-SNS-6LPNODE1 is an STM32 ODE function pack. Thanks to this

More information

Quick Start Guide. Bluetooth Low Energy expansion board based on BlueNRG for STM32 Nucleo (X-NUCLEO-IDB04A1) Version 1.

Quick Start Guide. Bluetooth Low Energy expansion board based on BlueNRG for STM32 Nucleo (X-NUCLEO-IDB04A1) Version 1. Quick Start Guide Bluetooth Low Energy expansion board based on BlueNRG for STM32 Nucleo (X-NUCLEO-IDB04A1) Version 1.6 (Feb 1, 2017) Quick Start Guide Contents 2 STM32 Nucleo Bluetooth Low Energy expansion

More information

Quick Start Guide. STM32Cube function pack for IoT node with dynamic NFC tag, environmental and motion sensors (FP-SNS-SMARTAG1)

Quick Start Guide. STM32Cube function pack for IoT node with dynamic NFC tag, environmental and motion sensors (FP-SNS-SMARTAG1) Quick Start Guide STM32Cube function pack for IoT node with dynamic NFC tag, environmental and motion sensors (FP-SNS-SMARTAG1) Version 1.1 (May 29, 2018) Quick Start Guide Contents 2 FP-SNS-SMARTAG1:

More information

Quick Start Guide. Version 3.0 (June 12, 2017)

Quick Start Guide. Version 3.0 (June 12, 2017) Quick Start Guide STM32 ODE function pack for IoT node with NFC, BLE connectivity and environmental, motion and time-of-flight sensors (FP-SNS-FLIGHT1) Version 3.0 (June 12, 2017) Quick Start Guide Contents

More information

Quick Start Guide. STM32Cube function pack for IoT sensor node with telemetry and device control applications for Amazon AWS Cloud (FP-CLD-AWS1)

Quick Start Guide. STM32Cube function pack for IoT sensor node with telemetry and device control applications for Amazon AWS Cloud (FP-CLD-AWS1) Quick Start Guide STM32Cube function pack for IoT sensor node with telemetry and device control applications for Amazon AWS Cloud (FP-CLD-AWS1) Version 1.3 (Oct 18, 2018) Quick Start Guide Contents 2 FP-CLD-AWS1:

More information

Quick Start Guide. STM32 ODE function pack for IoT node with BLE connectivity and environmental and motion sensors (FP-SNS-MOTENV1)

Quick Start Guide. STM32 ODE function pack for IoT node with BLE connectivity and environmental and motion sensors (FP-SNS-MOTENV1) Quick Start Guide STM32 ODE function pack for IoT node with BLE connectivity and environmental and motion sensors (FP-SNS-MOTENV1) Version 2.6 (March 1, 2018) Quick Start Guide Contents 2 FP-SNS-MOTENV1:

More information

Quick Start Guide. Version 3.1 (August 8, 2018)

Quick Start Guide. Version 3.1 (August 8, 2018) Quick Start Guide STM32Cube function pack for IoT node with NFC, BLE connectivity and environmental, motion and time-of-flight sensors (FP-SNS-FLIGHT1) Version 3.1 (August 8, 2018) Quick Start Guide Contents

More information

Quick Start Guide. STM32 ODE function pack for MEMS microphones acquisition, advanced audio processing and audio output (FP-AUD-SMARTMIC1)

Quick Start Guide. STM32 ODE function pack for MEMS microphones acquisition, advanced audio processing and audio output (FP-AUD-SMARTMIC1) Quick Start Guide STM32 ODE function pack for MEMS microphones acquisition, advanced audio processing and audio output (FP-AUD-SMARTMIC1) Version 1.0 (June 27, 2017) Quick Start Guide Contents 2 FP-AUD-SMARTMIC1:

More information

Quick Start Guide. Wi-Fi expansion board based on SPWF01SA module for STM32 Nucleo (X-NUCLEO-IDW01M1) Version 1.0 (November 18, 2015)

Quick Start Guide. Wi-Fi expansion board based on SPWF01SA module for STM32 Nucleo (X-NUCLEO-IDW01M1) Version 1.0 (November 18, 2015) Quick Start Guide Wi-Fi expansion board based on SPWF01SA module for STM32 Nucleo (X-NUCLEO-IDW01M1) Version 1.0 (November 18, 2015) Overview 2 1 Introduction to the STM32 Open Development Environment

More information

Quick Start Guide STM32Cube function pack for creating a BLE star network connected via Wi-Fi to IBM Watson IoT cloud (FP-NET-BLESTAR1)

Quick Start Guide STM32Cube function pack for creating a BLE star network connected via Wi-Fi to IBM Watson IoT cloud (FP-NET-BLESTAR1) Quick Start Guide STM32Cube function pack for creating a BLE star network connected via Wi-Fi to IBM Watson IoT cloud (FP-NET-BLESTAR1) Version 1.6 (Sep 18, 2018) Quick Start Guide Contents 2 FP-NET-BLESTAR1

More information

STM32 Open Development Environment

STM32 Open Development Environment STM32 Open Development Environment Fast, affordable Development and prototyping The STM32 Open Development Environment is a fast and affordable way to develop and prototype innovative devices and applications

More information

Quick Start Guide (V1.0 May2015) Dynamic NFC tag expansion board based on M24SR for STM32 NUCLEO (X-NUCLEO-NFC01A1)

Quick Start Guide (V1.0 May2015) Dynamic NFC tag expansion board based on M24SR for STM32 NUCLEO (X-NUCLEO-NFC01A1) Quick Start Guide (V1.0 May2015) Dynamic NFC tag expansion board based on M24SR for STM32 NUCLEO (X-NUCLEO-NFC01A1) Overview 2 1 Introduction to the STM32 Open Development Environment 2 STM32 Nucleo Dynamic

More information

Quick Start Guide. IoT node with BLE connectivity, environmental and motion sensors, and motion middleware libraries (BLUEMICROSYSTEM1)

Quick Start Guide. IoT node with BLE connectivity, environmental and motion sensors, and motion middleware libraries (BLUEMICROSYSTEM1) Quick Start Guide IoT node with BLE connectivity, environmental and motion sensors, and motion middleware libraries (BLUEMICROSYSTEM1) Version 3.2.0 (Dec 19, 2016) Quick Start Guide Contents 2 BLUEMICROSYSTEM1:

More information

Quick Start Guide. Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1.

Quick Start Guide. Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1. Quick Start Guide Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1.1 (July 07, 2015) Overview 2 1 Introduction to the STM32 Open Development Environment

More information

Quick Start Guide. Version 2.4 (September 05, 2018)

Quick Start Guide. Version 2.4 (September 05, 2018) Quick Start Guide STM32Cube function pack for IoT node with Wi-Fi, NFC and sensors for vibration analysis, connected to IBM Watson IoT cloud (FP-CLD-WATSON1) Version 2.4 (September 05, 2018) Quick Start

More information

Quick Start Guide. Contiki OS and 6LoWPAN sub-1ghz RF communication software expansion for STM32 Cube (Contiki6LP) Version 1.3 (December 10, 2018)

Quick Start Guide. Contiki OS and 6LoWPAN sub-1ghz RF communication software expansion for STM32 Cube (Contiki6LP) Version 1.3 (December 10, 2018) Quick Start Guide Contiki OS and 6LoWPAN sub-1ghz RF communication software expansion for STM32 Cube (Contiki6LP) Version 1.3 (December 10, 2018) Quick Start Guide Contents 2 Contiki6LP: Contiki OS/6LoWPAN

More information

Getting started with the FP-NET-6LPBLE1 function pack for 6LoWPAN IoT node connection to a smartphone via BLE interface

Getting started with the FP-NET-6LPBLE1 function pack for 6LoWPAN IoT node connection to a smartphone via BLE interface User manual Getting started with the FP-NET-6LPBLE1 function pack for 6LoWPAN IoT node connection to a smartphone via BLE interface Introduction FP-NET-6LPBLE1 is an STM32 ODE function pack. This package

More information

Quick Start Guide. STM32 ODE function pack for IoT node with BLE connectivity, digital microphone, environmental and motion sensors (FP-SNS-ALLMEMS1)

Quick Start Guide. STM32 ODE function pack for IoT node with BLE connectivity, digital microphone, environmental and motion sensors (FP-SNS-ALLMEMS1) Quick Start Guide STM32 ODE function pack for IoT node with BLE connectivity, digital microphone, environmental and motion sensors (FP-SNS-ALLMEMS1) Version 3.3.0 (Sep 30, 2017) Quick Start Guide Contents

More information

Quick Start Guide. STM32 ODE function pack for half-duplex voice streaming over Bluetooth Low Energy (FP-AUD-BVLINK1) Version 1.

Quick Start Guide. STM32 ODE function pack for half-duplex voice streaming over Bluetooth Low Energy (FP-AUD-BVLINK1) Version 1. Quick Start Guide STM32 ODE function pack for half-duplex voice streaming over Bluetooth Low Energy (FP-AUD-BVLINK1) Version 1.0 (June 21, 2017) Quick Start Guide Contents 2 FP-AUD-BVLINK1: STM32 ODE function

More information

STM32 Open Development Environment

STM32 Open Development Environment STM32 Open Development Environment Fast, affordable Development and prototyping The STM32 Open Development Environment is a fast and affordable way to develop and prototype innovative devices and applications

More information

Quick Start Guide. STM32Cube function pack for IoT tracker node with LoRa connectivity, GNSS and sensors (FP-ATR-LORA1) Version 1.2 (Feb.

Quick Start Guide. STM32Cube function pack for IoT tracker node with LoRa connectivity, GNSS and sensors (FP-ATR-LORA1) Version 1.2 (Feb. Quick Start Guide STM32Cube function pack for IoT tracker node with LoRa connectivity, GNSS and sensors (FP-ATR-LORA1) Version 1.2 (Feb. 26, 2019) Quick Start Guide Contents 2 FP-ATR-LORA1: STM32Cube function

More information

Getting started with the FP-SNS-ALLMEMS1 Bluetooth low energy and sensors software expansion for STM32Cube

Getting started with the FP-SNS-ALLMEMS1 Bluetooth low energy and sensors software expansion for STM32Cube User manual Getting started with the FP-SNS-ALLMEMS1 Bluetooth low energy and sensors software expansion for STM32Cube Introduction FP-SNS-ALLMEMS1 is an STM32 ODE function pack. Thanks to this package

More information

Getting started with the X-CUBE-MEMS1 motion MEMS and environmental sensor software expansion for STM32Cube

Getting started with the X-CUBE-MEMS1 motion MEMS and environmental sensor software expansion for STM32Cube User manual Getting started with the X-CUBE-MEMS1 motion MEMS and environmental sensor software expansion for Introduction The X-CUBE-MEMS1 expansion software package for runs on the STM32 and includes

More information

Getting started with STM32Nucleo Boards

Getting started with STM32Nucleo Boards Getting started with STM32Nucleo Boards Mirko Falchetto February 27 th, 2017 Agenda 2 0 The IoT Opportunities 1 Introduction to the STM32 Nucleo Boards 2 Introduction to the MBED Development Environment

More information

Quick Start Guide. STM32 ODE function pack for IoT node with Wi-Fi or Ethernet, NFC and sensors, connected to Microsoft Azure cloud (FP-CLD-AZURE1)

Quick Start Guide. STM32 ODE function pack for IoT node with Wi-Fi or Ethernet, NFC and sensors, connected to Microsoft Azure cloud (FP-CLD-AZURE1) Quick Start Guide STM32 ODE function pack for IoT node with Wi-Fi or Ethernet, NFC and sensors, connected to Microsoft Azure cloud (FP-CLD-AZURE1) Version 3.2.1 (31 January, 2018) Quick Start Guide Contents

More information

Quick Start Guide. Version (May 14, 2018)

Quick Start Guide. Version (May 14, 2018) Quick Start Guide STM32 ODE function pack for IoT node with Wi-Fi or Ethernet, NFC, sensors and motor control, connected to Microsoft Azure cloud (FP-CLD-AZURE1) Version 3.3.0 (May 14, 2018) Quick Start

More information

Running a simple 6LowPAN network consisting of one receiver node and one or more sensor nodes in a Sub-1GHz RF band

Running a simple 6LowPAN network consisting of one receiver node and one or more sensor nodes in a Sub-1GHz RF band DT0067 Design tip Running a simple 6LowPAN network consisting of one receiver node and one or more sensor nodes in a Sub-1GHz RF band By Salvo Bonina Main components SPSGRF X-NUCLEO-IDS01A4 X-NUCLEO-IDS01A5

More information

Quick Start Guide. SensiBLE (BLUEMICROSYSTEM1) Bluetooth low energy and sensor software for. Version (May 25, 2016)

Quick Start Guide. SensiBLE (BLUEMICROSYSTEM1) Bluetooth low energy and sensor software for. Version (May 25, 2016) Quick Start Guide Bluetooth low energy and sensor software for SensiBLE (BLUEMICROSYSTEM1) Version 1.0.0 (May 25, 2016) Quick Start Guide Contents 2 BLUEMICROSYSTEM1: Bluetooth low energy and sensor software

More information

Quick Start Guide. Version (May 14, 2018)

Quick Start Guide. Version (May 14, 2018) Quick Start Guide STM32 ODE function pack for IoT node with Wi-Fi or Ethernet, NFC, sensors and motor control, connected to Microsoft Azure cloud (FP-CLD-AZURE1) Version 3.3.0 (May 14, 2018) Quick Start

More information

Environmental sensors for true user experience

Environmental sensors for true user experience Environmental sensors for true user experience Content Content... 2 MEMS and sensors portfolio... 3 Environmental sensors for wearable devices... 4 Environmental sensors for smart homes... 4 Environmental

More information

Getting started with the FP-CLD-AWS1 software package for IoT node with Wi-Fi and sensors, connected to Amazon AWS IoT cloud

Getting started with the FP-CLD-AWS1 software package for IoT node with Wi-Fi and sensors, connected to Amazon AWS IoT cloud User manual Getting started with the FP-CLD-AWS1 software package for IoT node with Wi-Fi and sensors, connected to Amazon AWS IoT cloud Introduction FP-CLD-AWS1 is an STM32 ODE function pack. Thanks to

More information

Getting started with X-CUBE-LED channel LED driver software expansion based on LED1642GW for STM32Cube

Getting started with X-CUBE-LED channel LED driver software expansion based on LED1642GW for STM32Cube User manual Getting started with X-CUBE-LED1642 16 channel LED driver software expansion based on LED1642GW for STM32Cube Introduction The X-CUBE-LED16A1 expansion software package for STM32Cube runs on

More information

Getting started with the FP-IND-PLCWIFI1 function pack for PLC management via Wi-Fi

Getting started with the FP-IND-PLCWIFI1 function pack for PLC management via Wi-Fi User manual Getting started with the FP-IND-PLCWIFI1 function pack for PLC management via Wi-Fi Introduction FP-IND-PLCWIFI1 is an STM32 ODE function pack which lets you build a mini PLC and interact with

More information

Getting started with MotionPM real-time pedometer library in X-CUBE-MEMS1 expansion for STM32Cube

Getting started with MotionPM real-time pedometer library in X-CUBE-MEMS1 expansion for STM32Cube User manual Getting started with MotionPM real-time pedometer library in X-CUBE-MEMS1 expansion for STM32Cube Introduction The MotionPM is a middleware library part of X-CUBE-MEMS1 software and runs on

More information

UM2045 User manual. Getting started with the X-CUBE-NFC3 near field communication transceiver software expansion for STM32Cube.

UM2045 User manual. Getting started with the X-CUBE-NFC3 near field communication transceiver software expansion for STM32Cube. User manual Getting started with the X-CUBE-NFC3 near field communication transceiver software expansion for STM32Cube Introduction This document describes how to get started with the X-CUBE-NFC3 software

More information

UM2350. Getting started with MotionPW real-time pedometer for wrist library in X-CUBE-MEMS1 expansion for STM32Cube. User manual.

UM2350. Getting started with MotionPW real-time pedometer for wrist library in X-CUBE-MEMS1 expansion for STM32Cube. User manual. User manual Getting started with MotionPW real-time pedometer for wrist library in X-CUBE-MEMS1 expansion for STM32Cube Introduction The MotionPW middleware library is part of the X-CUBE-MEMS1 software

More information

Getting started with the X-CUBE-NFC5 high performance HF reader / NFC initiator IC software expansion for STM32Cube

Getting started with the X-CUBE-NFC5 high performance HF reader / NFC initiator IC software expansion for STM32Cube User manual Getting started with the X-CUBE-NFC5 high performance HF reader / NFC initiator IC software expansion for STM32Cube Introduction The X-CUBE-NFC5 software expansion for STM32Cube provides the

More information

STEVAL-STLKT01V1. SensorTile development kit. Description. Features

STEVAL-STLKT01V1. SensorTile development kit. Description. Features SensorTile development kit Data brief data streaming via USB, data logging on SDCard, audio acquisition and audio streaming. It includes low level drivers for all the on-board devices BLUEMICROSYSTEM1

More information

Getting started with the STM32 ODE function pack for IoT node with NFC, BLE connectivity and environmental, motion and Time-of-Flight sensors

Getting started with the STM32 ODE function pack for IoT node with NFC, BLE connectivity and environmental, motion and Time-of-Flight sensors User manual Getting started with the STM32 ODE function pack for IoT node with NFC, BLE connectivity and environmental, motion and Time-of-Flight sensors Introduction FP-SNS-FLIGHT1 is an STM32 ODE function

More information

UM2194. Getting started with MotionAW activity recognition for wrist library in X-CUBE-MEMS1 expansion for STM32Cube. User manual.

UM2194. Getting started with MotionAW activity recognition for wrist library in X-CUBE-MEMS1 expansion for STM32Cube. User manual. User manual Getting started with MotionAW activity recognition for wrist library in X-CUBE-MEMS1 expansion for STM32Cube Introduction The MotionAW is a middleware library part of X-CUBE-MEMS1 software

More information

Getting started with osxmotionmc magnetometer calibration library for X-CUBE-MEMS1 expansion for STM32Cube

Getting started with osxmotionmc magnetometer calibration library for X-CUBE-MEMS1 expansion for STM32Cube User manual Getting started with osxmotionmc magnetometer calibration library for X-CUBE-MEMS1 expansion for STM32Cube Introduction The osxmotionmc add-on software package for X-CUBE-MEMS1 software runs

More information

STEVAL-STLKT01V1. SensorTile development kit. Description. Features

STEVAL-STLKT01V1. SensorTile development kit. Description. Features SensorTile development kit Data brief FP-SNS-ALLMEMS1: STM32 ODE functional pack ST BlueMS: ios and Android demo apps BlueST-SDK: ios and Android SD Compatible with STM32 ecosystem through STM32Cube support

More information

Getting started with osxmotionar activity recognition library for X-CUBE-MEMS1 expansion for STM32Cube

Getting started with osxmotionar activity recognition library for X-CUBE-MEMS1 expansion for STM32Cube UM1936 Getting started with osxmotionar activity recognition library for X-CUBE-MEMS1 expansion for STM32Cube Introduction This document describes how get started with the osxmotionar software package.

More information

STEVAL-STLKT01V1. SensorTile development kit. Description. Features

STEVAL-STLKT01V1. SensorTile development kit. Description. Features SensorTile development kit Data brief Features Included in the development kit package: SensorTile module (STEVAL- STLCS01V1) with STM32L476, LSM6DSM, LSM303AGR, LPS22HB, MP34DT04, BlueNRG-MS, BALF-NRG-

More information

Getting started with osxmotiongc gyroscope calibration library for X-CUBE-MEMS1 expansion for STM32Cube

Getting started with osxmotiongc gyroscope calibration library for X-CUBE-MEMS1 expansion for STM32Cube UM2162 User manual Getting started with osxmotiongc gyroscope calibration library for X-CUBE-MEMS1 expansion for STM32Cube Introduction The osxmotiongc add-on software package for X-CUBE-MEMS1 software

More information

UM2276. Getting started with MotionSD standing vs sitting desk detection library in X-CUBE-MEMS1 expansion for STM32Cube. User manual.

UM2276. Getting started with MotionSD standing vs sitting desk detection library in X-CUBE-MEMS1 expansion for STM32Cube. User manual. User manual Getting started with MotionSD standing vs sitting desk detection library in X-CUBE-MEMS1 expansion for STM32Cube Introduction The MotionSD middleware library is part of the X-CUBE-MEMS1 software

More information

Getting started with MotionAR activity recognition library in X-CUBE-MEMS1 expansion for STM32Cube

Getting started with MotionAR activity recognition library in X-CUBE-MEMS1 expansion for STM32Cube User manual Getting started with MotionAR activity recognition library in X-CUBE-MEMS1 expansion for STM32Cube Introduction The MotionAR is a middleware library part of X-CUBE-MEMS1 software and runs on

More information

AN4624 Application note

AN4624 Application note Application note Getting started with the STM32 Nucleo and the M24SR expansion board X-NUCLEO-NFC01A1 Introduction This document describes how to develop a M24SR based application using the STM32 Nucleo

More information

IoT node with BLE connectivity, digital microphone, environmental and motion sensors, motion and audio middleware libraries.

IoT node with BLE connectivity, digital microphone, environmental and motion sensors, motion and audio middleware libraries. IoT node with BLE connectivity, digital microphone, environmental and motion sensors, motion and audio middleware libraries Data brief Features For STM32 Nucleo expansion boards, middleware to build applications

More information

Getting started with the X-CUBE-53L1A1 Time-of-Flight long distance ranging sensor software expansion for STM32Cube

Getting started with the X-CUBE-53L1A1 Time-of-Flight long distance ranging sensor software expansion for STM32Cube UM2371 User manual Getting started with the X-CUBE-53L1A1 Time-of-Flight long distance ranging sensor software expansion for STM32Cube Introduction This document describes how to get started with the X-CUBE-53L1A1

More information

Getting started with VL53L0X ranging and gesture detection sensor software expansion for STM32Cube

Getting started with VL53L0X ranging and gesture detection sensor software expansion for STM32Cube User manual Getting started with VL53L0X ranging and gesture detection sensor software expansion for STM32Cube Introduction STMicroelectronics has introduced various evaluation and development tools to

More information

NUCLEO-L433RC-P NUCLEO-L452RE-P

NUCLEO-L433RC-P NUCLEO-L452RE-P NUCLEO-L433RC-P NUCLEO-L452RE-P STM32 Nucleo-64-P boards Data brief Features STM32 microcontroller in LQFP64 package SMPS: significantly reduces power consumption in Run mode One user LED shared with Arduino

More information

Ubiquitous IoT Perspectives The Power of Connected Sensors and Actuators

Ubiquitous IoT Perspectives The Power of Connected Sensors and Actuators Ubiquitous IoT Perspectives The Power of Connected Sensors and Actuators Andrea Onetti Vice President, General Manager MEMS Sensor Division STMicroelectronics Digital Technologies are Transforming nearly

More information

Getting started Guide

Getting started Guide Getting started Guide STEVAL-BFA001V1B Predictive maintenance kit with sensors and IO-Link capability System Research and Applications July 2018 Contents 2 STEVAL-BFA001V1B Kit Overview Setup and programming

More information

UM2216 User manual. Getting started with MotionFA fitness activity library in X CUBE MEMS1 expansion for STM32Cube. Introduction

UM2216 User manual. Getting started with MotionFA fitness activity library in X CUBE MEMS1 expansion for STM32Cube. Introduction User manual Getting started with MotionFA fitness activity library in X CUBE MEMS1 expansion for STM32Cube Introduction The MotionFA is a middleware library part of X-CUBE-MEMS1 software and runs on STM32

More information

STEVAL-BCNKT01V1. BlueCoin Starter kit. Features. Description

STEVAL-BCNKT01V1. BlueCoin Starter kit. Features. Description BlueCoin Starter kit Features Contains FCC ID: S9NBCOIN01 Contains module IC 8976C-BCOIN01 certified with PMN: ; HVIN: STEVAL-BCNCS01V1; HMN: STEVAL-BCNCR01V1; FVIN: bluenrg_7_2_c_mode_2-32mhz- XO32K_4M.img

More information

LiDAR in a Chip FlightSense Introduction to Time of Flight. Imaging Division Photonic Sensors Business Line

LiDAR in a Chip FlightSense Introduction to Time of Flight. Imaging Division Photonic Sensors Business Line LiDAR in a Chip FlightSense Introduction to Time of Flight Imaging Division Photonic Sensors Business Line Flightsense Breakthrough Technology 2 Measurement at the speed of light! FlightSense Principle

More information

Getting started with MotionPM real-time pedometer library in X CUBE-MEMS1 expansion for STM32Cube

Getting started with MotionPM real-time pedometer library in X CUBE-MEMS1 expansion for STM32Cube User manual Getting started with MotionPM real-time pedometer library in X CUBE-MEMS1 expansion for STM32Cube Introduction The MotionPM is a middleware library part of X-CUBE-MEMS1 software and runs on

More information

From Sensors to Cloud: The Case for a Complete Ecosystem for IoT Development

From Sensors to Cloud: The Case for a Complete Ecosystem for IoT Development From Sensors to Cloud: The Case for a Complete Ecosystem for IoT Development Ernesto Manuel CANTONE AME IoT Promotion and Enablement The IoT Movement 2 IoT is a movement where any system is able to leverage

More information

SensiBLE Getting Started. Your Idea - Worth come true

SensiBLE Getting Started. Your Idea - Worth come true SensiBLE Getting Started Your Idea - Worth come true From Idea to Form Factor Device 2 The building blocks Your need Prototype Form Factor Sensors Connectivity Audio Actuators Power Motion & Environ. Sensors

More information

Getting started with MotionAR activity recognition library in X-CUBE-MEMS1 expansion for STM32Cube

Getting started with MotionAR activity recognition library in X-CUBE-MEMS1 expansion for STM32Cube User manual Getting started with MotionAR activity recognition library in X-CUBE-MEMS1 expansion for STM32Cube Introduction The MotionAR is a middleware library part of X-CUBE-MEMS1 software and runs on

More information

P-NUCLEO-6180X2. Proximity, gesture, ambient light sensor expansion board based on VL6180X for STM32L053R8. Description. Features

P-NUCLEO-6180X2. Proximity, gesture, ambient light sensor expansion board based on VL6180X for STM32L053R8. Description. Features Proximity, gesture, ambient light sensor expansion based on VL6180X for STM32L053R8 Data brief integrate the VL6180X in customer s application. Basic gesture recognition application can be developed using

More information

NUCLEO-L496ZG. STM32 Nucleo-144 board. Features. Description

NUCLEO-L496ZG. STM32 Nucleo-144 board. Features. Description STM32 Nucleo-144 board Data brief Features STM32 microcontroller in LQFP144 package Two types of extension resources: ST Zio connector including: support for Arduino Uno V3 connectivity (A0 to A5, D0 to

More information

STM32 Open Development Environment

STM32 Open Development Environment STM32 Open Development Environment Aaron Xu Hem Dutt Dabral Mridupawan Das Agenda 2 STM32 Open Development Environment The Environment Overview of Boards Key Benefits Software Architecture X-Nucleo Solutions

More information

Getting started with the X-CUBE-IKA02A1 multifunctional software expansion for STM32Cube

Getting started with the X-CUBE-IKA02A1 multifunctional software expansion for STM32Cube User manual Getting started with the X-CUBE-IKA02A1 multifunctional software expansion for STM32Cube Introduction The X-CUBE-IKA02A1 expansion software package for STM32Cube runs on the STM32 microcontrollers

More information

Getting started with the X-CUBE-SPN2 two-axis stepper motor driver software expansion for STM32Cube

Getting started with the X-CUBE-SPN2 two-axis stepper motor driver software expansion for STM32Cube User manual Getting started with the X-CUBE-SPN2 two-axis stepper motor driver software expansion for STM32Cube Introduction This document describes how to get started with the X-CUBE-SPN2 software expansion

More information

Getting started with the STM32 Nucleo pack for USB Type-C and Power Delivery with the Nucleo-F072RB board and the STUSB1602

Getting started with the STM32 Nucleo pack for USB Type-C and Power Delivery with the Nucleo-F072RB board and the STUSB1602 User manual Getting started with the STM32 Nucleo pack for USB Type-C and Power Delivery with the Nucleo-F072RB board and the STUSB1602 Introduction The USB Type-C and Power Delivery Nucleo pack P-NUCLEO-USB002

More information

UM2192. Getting started with MotionMC magnetometer calibration library in X-CUBE-MEMS1 expansion for STM32Cube. User manual.

UM2192. Getting started with MotionMC magnetometer calibration library in X-CUBE-MEMS1 expansion for STM32Cube. User manual. User manual Getting started with MotionMC magnetometer calibration library in X-CUBE-MEMS1 expansion for STM32Cube Introduction The MotionMC is a middleware library part of X-CUBE-MEMS1 software and runs

More information

Getting started with the software package for digital MEMS microphones in X-CUBE-MEMSMIC1 expansion for STM32Cube

Getting started with the software package for digital MEMS microphones in X-CUBE-MEMSMIC1 expansion for STM32Cube User manual Getting started with the software package for digital MEMS microphones in X-CUBE-MEMSMIC1 expansion for STM32Cube Introduction The X-CUBE-MEMSMIC1 software provides the complete STM32 middleware

More information

Getting started with the software package for L6474 stepper motor driver X-CUBE-SPN1 expansion for STM32Cube

Getting started with the software package for L6474 stepper motor driver X-CUBE-SPN1 expansion for STM32Cube User manual Getting started with the software package for L6474 stepper motor driver X-CUBE-SPN1 expansion for STM32Cube Introduction X-CUBE-SPN1 is a software package based on STM32Cube for the X-NUCLEO-IHM01A1

More information

32L476GDISCOVERY. Discovery kit with STM32L476VG MCU. Features. Description

32L476GDISCOVERY. Discovery kit with STM32L476VG MCU. Features. Description Discovery kit with STM32L476VG MCU Data brief Features STM32L476VGT6 microcontroller featuring 1 Mbyte of Flash memory, 128 Kbytes of RAM in LQFP100 package On-board ST-LINK/V2-1 supporting USB reenumeration

More information

Getting started with the STSW-BCNKT01 software package for STEVAL-BCNKT01V1 based on STM32Cube

Getting started with the STSW-BCNKT01 software package for STEVAL-BCNKT01V1 based on STM32Cube User manual Getting started with the STSW-BCNKT01 software package for STEVAL-BCNKT01V1 based on STM32Cube Introduction The STSW-BCNKT01 firmware package for BlueCoin Starter Kit provides sample projects

More information

Empowering Embedded Devices for IoT Applications

Empowering Embedded Devices for IoT Applications Empowering Embedded Devices for IoT Applications Q&A with Benedetto Vigna, Executive Vice President, Analog and MEMS Group, STMicroelectronics ST Bluemicrosystem Bluetooth Smart Sensor Node Empowers Real-World

More information

Getting started with the X-CUBE-SPN3 high power stepper motor driver software expansion for STM32Cube

Getting started with the X-CUBE-SPN3 high power stepper motor driver software expansion for STM32Cube User manual Getting started with the X-CUBE-SPN3 high power stepper motor driver software expansion for STM32Cube Introduction The X-CUBE-SPN3 is an expansion software package for STM32Cube. The software

More information

Getting started with the FP-CLD-AZURE1 software for IoT node with Wi-Fi or Ethernet, NFC and sensors, connected to Microsoft Azure IoT

Getting started with the FP-CLD-AZURE1 software for IoT node with Wi-Fi or Ethernet, NFC and sensors, connected to Microsoft Azure IoT User manual Getting started with the FP-CLD-AZURE1 software for IoT node with Wi-Fi or Ethernet, NFC and sensors, connected to Microsoft Azure IoT Introduction FP-CLD-AZURE1 is an STM32 ODE function pack

More information

SensorTile Miniature Multi-Sensor Module

SensorTile Miniature Multi-Sensor Module SensorTile Miniature Multi-Sensor Module SensorTile Development Kit Reference Software and Applications Smart Acoustic Audio libraries Virtual Reality With SensorTile SensorTile Development Kit SensorTile

More information

Getting started with the P-NUCLEO-IKA02A1 STM32 Nucleo pack for electrochemical toxic gas sensor expansion board with CO sensor

Getting started with the P-NUCLEO-IKA02A1 STM32 Nucleo pack for electrochemical toxic gas sensor expansion board with CO sensor User manual Getting started with the P-NUCLEO-IKA02A1 STM32 Nucleo pack for electrochemical toxic gas sensor expansion board with CO sensor Introduction The P-NUCLEO-IKA02A1 evaluation pack provides a

More information

UM1982 User manual. Multi-Sensor RF 868 MHz platform. Introduction

UM1982 User manual. Multi-Sensor RF 868 MHz platform. Introduction UM1982 User manual Multi-Sensor RF 868 MHz platform Introduction The objective of this document is to demonstrate the workings of a 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) using ST's

More information

Getting started with MotionMC magnetometer calibration library in X-CUBE-MEMS1 expansion for STM32Cube

Getting started with MotionMC magnetometer calibration library in X-CUBE-MEMS1 expansion for STM32Cube User manual Getting started with MotionMC magnetometer calibration library in X-CUBE-MEMS1 expansion for STM32Cube Introduction The MotionMC is a middleware library part of X-CUBE-MEMS1 software and runs

More information

EVALKIT-VL6180X. VL6180X plug-in and STM32 F401RE Nucleo board explorer kit. Description. Features

EVALKIT-VL6180X. VL6180X plug-in and STM32 F401RE Nucleo board explorer kit. Description. Features EVALKIT-VL6180X VL6180X plug-in and STM32 F401RE Nucleo board explorer kit Data brief Equipped with Arduino UNO R3 connector. RoHS compliant. Full system SW supplied, download from www.st.com/vl6180x in

More information

AT&T IoT Starter Kit (LTE-M, STM32L4) Getting Started Guide

AT&T IoT Starter Kit (LTE-M, STM32L4) Getting Started Guide AT&T IoT Starter Kit (LTE-M, STM32L4) Getting Started Guide Version 1.3 o STM32L4 Discovery Kit IoT Node o Avnet M14A2A WNC Cellular Shield o AT&T Flow Designer 2018 Avnet. All rights reserved. All trademarks

More information

P-NUCLEO-IKA02A1. STM32 Nucleo pack: electrochemical toxic gas sensor expansion board with CO sensor. Description. Features

P-NUCLEO-IKA02A1. STM32 Nucleo pack: electrochemical toxic gas sensor expansion board with CO sensor. Description. Features STM32 Nucleo pack: electrochemical toxic gas sensor expansion board with CO sensor Data brief Features STM32 Nucleo gas expansion board compatible with most electrochemical sensors four different footprints

More information

Getting started with STEVAL-IDB007V1 and STEVAL-IDB008V1 evaluation boards

Getting started with STEVAL-IDB007V1 and STEVAL-IDB008V1 evaluation boards User manual Getting started with STEVAL-IDB007V1 and STEVAL-IDB008V1 evaluation boards Introduction The STEVAL-IDB007V1 is an evaluation board based on BlueNRG-1, a low power Bluetooth Smart System on

More information

P-NUCLEO-USB001. STM32 Nucleo pack for USB Type-C and Power Delivery. Features. Description

P-NUCLEO-USB001. STM32 Nucleo pack for USB Type-C and Power Delivery. Features. Description STM32 Nucleo pack for USB Type-C and Power Delivery Data brief Features Two DRP USB Type-C receptacles USB 2.0 full-speed data communication interface as peripheral V BUS load and discharge switches V

More information

UM2220. Getting started with MotionFX sensor fusion library in X-CUBE-MEMS1 expansion for STM32Cube. User manual. Introduction

UM2220. Getting started with MotionFX sensor fusion library in X-CUBE-MEMS1 expansion for STM32Cube. User manual. Introduction User manual Getting started with MotionFX sensor fusion library in X-CUBE-MEMS1 expansion for STM32Cube Introduction The MotionFX is a middleware library component of the X-CUBE-MEMS1 software and runs

More information

DT0095 Design tip. Datalogging the SensorTile through a PC. Purpose and benefits. Description

DT0095 Design tip. Datalogging the SensorTile through a PC. Purpose and benefits. Description DT0095 Design tip Datalogging the SensorTile through a PC By Mauro Scandiuzzo Main components STEVAL-STLKT01V1 STSW-STLKT01 SensorTile development kit Embedded software samples for SensorTile, including

More information